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Abstract 

Background  Fetal alcohol syndrome (FAS) can result in cognitive dysfunction. Cognitive functions affected are sub-
served by few functional brain networks. Functional connectivity (FC) in these networks can be assessed with resting-
state functional MRI (rs-fMRI). Alterations of FC have been reported in children and adolescents prenatally exposed 
to alcohol. Previous reports varied substantially regarding the exact nature of findings. The purpose of this study 
was to assess FC of cognition-related networks in young adults with FAS.

Methods  Cross-sectional rs-fMRI study in participants with FAS (n = 39, age: 20.9 ± 3.4 years) and healthy participants 
without prenatal alcohol exposure (n = 44, age: 22.2 ± 3.4 years). FC was calculated as correlation between corti-
cal regions in ten cognition-related sub-networks. Subsequent modelling of overall FC was based on linear models 
comparing FC between FAS and controls. Results were subjected to a hierarchical statistical testing approach, first 
determining whether there is any alteration of FC in FAS in the full cognitive connectome, subsequently resolving 
these findings to the level of either FC within each network or between networks based on the Higher Criticism 
(HC) approach for detecting rare and weak effects in high-dimensional data. Finally, group differences in single con-
nections were assessed using conventional multiple-comparison correction. In an additional exploratory analysis, 
dynamic FC states were assessed.

Results  Comparing FAS participants with controls, we observed altered FC of cognition-related brain regions 
globally, within 7 out of 10 networks, and between networks employing the HC statistic. This was most obvious 
in attention-related network components. Findings also spanned across subcomponents of the fronto-parietal control 
and default mode networks. None of the single FC alterations within these networks yielded statistical significance 
in the conventional high-resolution analysis. The exploratory time-resolved FC analysis did not show significant group 
differences of dynamic FC states.

Conclusions  FC in cognition-related networks was altered in adults with FAS. Effects were widely distributed 
across networks, potentially reflecting the diversity of cognitive deficits in FAS. However, no altered single connections 
could be determined in the most detailed analysis level. Findings were pronounced in networks in line with atten-
tional deficits previously reported.
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Background
Prenatal alcohol exposure (PAE) can negatively affect a 
wide range of cognitive functions throughout life. These 
functions include general intelligence, attention, execu-
tive functions (including inhibitory control), learning and 
memory, language, mathematical abilities, social cogni-
tion [1, 2], and impulse control [1, 3, 4]. Deficits associ-
ated with PAE frequently persist into adulthood [5, 6]. 
While the term fetal alcohol spectrum disorders (FASD) 
generally encompasses a broad range of possible condi-
tions related to PAE, only the full picture of characteristic 
physical (including growth retardation and facial abnor-
malities), psychological, and cognitive features is termed 
fetal alcohol syndrome (FAS) [2, 7, 8].

Brain activity in individual regions underlying spe-
cific cognitive functions can be assessed by functional 
neuroimaging with a wide range of targeted tests [9]. 
However, a frequent neuroscientific observation is that 
many higher cognitive functions, such as those nega-
tively affected in FAS, are subserved by activity in few 
common sets of brain regions, i.e., functional brain net-
works. These include task-positive networks with over-
lapping definitions such as the central executive network, 
cognitive control network, or multiple demands net-
work as well as networks closely interacting with them, 
such as the salience network and default mode network 
[10–12]. Spontaneous activity and functional connectiv-
ity within and between these networks can be examined 
by resting-state functional magnetic resonance imag-
ing (rs-fMRI) [13, 14]. Static functional connectivity 
(FC) analysis methods identify correlated activity over 
a full rs-fMRI data acquisition period [14]. They have 
recently been supplemented by approaches for assessing 
dynamic or time-varying FC. Such dynamic FC analyses 
promise a deeper understanding of dynamic interactions 
of brain regions within and across these functional net-
works [15–17] in health and disease. Dynamic FC meas-
ures have been associated with differences in individual 
attentional performance [18, 19] and impulsivity [20, 21]. 
For example, altered FC dynamics have been observed in 
participants with attention deficit hyperactivity disorder 
(ADHD) [22–24].

Few studies have directly investigated resting-state FC 
within and between brain networks related to higher cog-
nitive functions in individuals with FAS or prenatal alco-
hol exposure: Focusing on within-network connectivity, 
Fan et  al. observed reduced FC in a subset of regions 
within the default mode, salience, ventral attention, 

dorsal attention, and right fronto-parietal executive 
control networks in children with FASD compared with 
non-exposed controls. These networks reflect cognitive 
functions typically affected in children with FASD. Net-
works not directly related to cognition were, however, 
not affected [25]. In another study with children and ado-
lescents with FASD, Little et al. mainly described reduc-
tions of FC between core regions of the salience and 
fronto-parietal control networks and regions from other 
cognition-related networks rather than within networks 
[26]. In contrast, Ware et al. found lower within-network 
but higher between-network FC in attention-related 
networks in children with FASD [27]. All three studies 
report relatively high overall similarity of FC in cogni-
tion-related networks between exposed individuals and 
controls, while FC group differences had relatively small 
effect sizes, contrasting with the distinct clinical deficits 
in these individuals [25–27]. Further rs-fMRI and meth-
odologically related FC studies in individuals with PAE 
report evidence of altered overall functional brain organ-
ization based on global graph-theoretical measures [28–
31] as well as FC alterations of the default mode network 
[32] and within networks less directly related to cogni-
tive control [33, 34]. No previous study has, however, 
explored dynamic FC in FASD. Beyond that, amid studies 
describing persisting cognitive deficits into adulthood [5, 
6], FC has not been previously examined in adults prena-
tally exposed to alcohol.

The main goal of this study was therefore to examine 
functional connectivity in cognition-related functional 
brain networks in young adults with FAS and to assess 
whether these patterns are comparable to alterations pre-
viously observed in affected children and adolescents.

The following hypotheses should be tested:

–	 Static FC in the connectome of all brain regions con-
stituting cognition-related brain networks is altered 
in young adults with FAS compared with a control 
group without prenatal alcohol exposure (omnibus 
test, bi-directional effects possible).

–	 Static FC within individual cognition-related brain 
networks is altered in FAS participants compared 
with controls without prenatal alcohol exposure (bi-
directional effects possible).

–	 Static FC between cognition-related brain networks 
is altered in FAS participants compared with controls 
without prenatal alcohol exposure (bi-directional 
effects possible).
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In an additional exploratory analysis, we addressed 
dynamic interactions between cognition-related brain 
regions in FAS participants compared with non-exposed 
controls. This dynamic FC analysis [17] focused on tran-
sitions between putative FC states. Rationale of this anal-
ysis is that less stable FC states in FAS might underlie 
impaired impulse control (similar to reports in ADHD 
[22–24]).

Methods
The study was carried out in a research setting outside 
routine clinical care. Samples overlapped with previously 
published task-based fMRI studies on inhibitory control 
with joint data acquisition in a superordinate research 
project: a control group overlap with a task-based study 
in phenylketonuria [35] and a female patient and control 
group overlap with a task-based study in FAS [36]. There 
was no sample overlap with previous rs-fMRI research in 
FAS or FASD.

Participants
Young adult persons (n = 50) with FAS seen for regular 
appointments at the FAS outpatient clinic at the Chil-
dren’s healthcare center Haus Walstedde (Drensteinfurt, 
Germany) were initially invited based on standardized 
primary inclusion and exclusion criteria: These primary 
inclusion criteria were a diagnosis of FAS made by a 
specialist based on the Majewski criteria [37] (see sup-
plementary Additional_file_1.pdf: supplementary meth-
ods) [37, 38], and being 18 to 32  years of age. Primary 
exclusion criteria were contraindications for MRI, severe 
psychiatric (e.g., current symptomatic episode of major 
depression, bipolar disorder or schizophrenia), neuro-
logical (e.g., stroke or epilepsy) or medical (e.g., cancer) 
conditions, pregnancy, and severe sensory impairments. 
Less severe psychiatric comorbidity or symptoms in gen-
eral (e.g., signs of hyperactivity or a history of adjust-
ment disorder) as well as medication in general were not 
defined as primary exclusion criteria for the FAS group 
since they are common in individuals with a history of 
prenatal alcohol exposure [39]. In four participants, no 
fMRI data could be acquired because of claustrophobia. 
After data acquisition, further participants were excluded 
after review of potentially biasing medication, structural 
brain lesions, and MRI data quality control before any FC 
group analyses: Two participants were excluded from the 
analyses due to use of potentially psychoactive anti-aller-
gic medication unrelated to FAS, which can alter rs-fMRI 
measurements [40]. One subject was excluded because 
of a callosal hypoplasia leading to structural image mis-
registration. Data from further 4 FAS participants were 
excluded because of excessive head motion (based on 
motion parameters, see section “Pre-processing and 

image quality control” for criteria). All results are based 
on the remaining 39 FAS participants. Current intake of 
the following potentially psychoactive medication was 
reported in the FAS group: methylphenidate or deriva-
tives (n = 8), antipsychotics (n = 5), and antidepressants 
(n = 1).

The control group consisted of participants without a 
history of prenatal alcohol exposure. Initially, n = 52 par-
ticipants were recruited by using the internal information 
board for employees of the Münster university hospi-
tal and mailing lists of medical students at the Münster 
medical faculty. Apart from general exclusion of partici-
pants with psychoactive medication in the control group, 
inclusion and exclusion criteria (both for initial inclu-
sion and after data acquisition) were identical in both 
groups. Reasons for exclusion after data acquisition in 
this group were: Two participants were excluded due to 
use of psychoactive medication (disclosed at the study 
appointment). One subject was excluded because of a 
large frontal venous anomaly potentially biasing fMRI 
data [41]. One fMRI dataset was excluded because of a 
technical failure. Data from 4 participants were excluded 
because of excessive head motion (3 based on motion 
parameters, 1 based on visual quality indicators, see sec-
tion “Pre-processing and image quality control” for crite-
ria). We observed a statistically significant age difference 
between the groups with a small effect size (Table 1). We 
refrained from excluding further control participants in 
order not to compromise statistical power considering 

Table 1  Demographical and clinical characteristics of 
participants with FAS and controls

a Chi-squared test (sex distribution between groups)
b Mann–Whitney U test
c based on TMT reaction times
d  only calculated for n = 36 within valid range

*significant difference

FAS fetal alcohol syndrome, CON controls, SD standard deviation, NA not 
applicable, EHI Edinburgh Handedness Inventory, TMT trail-making task, IQ 
intelligence quotient estimated from TMT performance

a) Group Total Female Male pa

Sex FAS 39 17 (43.6%) 22 (56.4%) .319

CON 44 24 (54.5%) 20 (45.5%)

b) Group Mean ± SD Median Range pb

Age (years) FAS 20.9 ± 3.4 20 18–32 .013*

CON 22.2 ± 3.4 21 18–32

EHI Handedness 
index

FAS 71.6 ± 37.9 83.3  − 58.3–100 .887

CON 69.8 ± 40.3 83.3  − 58.3–100

TMT reaction 
time (sec)

FAS 97.2 ± 36.7 86.3 54.3–220.0  < .001*

CON 54.0 ± 8.7 54.1 35.5–74.8

IQ (mean ± SD)c FASd 82.0 ± 16.7 80.5 58–116  < .001*

CON 117.7 ± 15.0 116.5 88–150
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that only small age effects on FC are expected in this par-
ticular age range [42]. Finally, 44 controls were included 
in further analyses. Demographical data of the final sam-
ple are reported in Table 1.

Neuropsychological pre‑assessment
Participants completed questionnaire-based pre-tests 
for handedness (Edinburgh Handedness Inventory, EHI) 
[43], processing speed (trail-making task, TMT) [44], and 
screening for severe mental comorbidity (DIA-X Stamm-
Screening questionnaire, SSQ) [45]. A general intelli-
gence estimate was calculated based on TMT results [44, 
46]. Quantitative test results are presented in Table 1.

Acquisition of MRI data
MRI data were acquired at 3 Tesla (Intera with Achieva 
upgrade, Philips, Best, NL) using a single-channel trans-
mit/receive head coil. FMRI data were acquired during 
9:45 min of wakeful rest using gradient echo planar imag-
ing covering the whole brain (234 functional volumes 
after 5 non-recorded dummy scans to allow for signal 
equilibration; repetition time: 2500 ms, echo time: 35 ms, 
36 axial slices, spatial resolution 3.6 × 3.6 × 3.6 mm). Par-
ticipants were instructed to keep their eyes open and 
think of nothing in particular during the rs-fMRI acquisi-
tion. T1-weighted 3D data were acquired with an inver-
sion-prepared turbo field echo (TFE) sequence (inversion 
time: 411 ms, repetition time: 7.1 ms, echo time: 3.5 ms, 
flip angle: 9°, sagittal slices measured with 2  mm thick-
ness, reconstructed spatial resolution by zero-filling in 
k-space 1.0 × 1.0 × 1.0 mm).

Analysis of MRI data
Pre‑processing and image quality control
MRI data were converted to the Brain Imaging Data 
Structure (BIDS) [47] using in-house scripts preceding 
the BiDirect-BIDS-ConverteR [48, 49]. Facial features 
were removed from the T1-weighted anatomical data 
[50]. Main MRI data pre-processing was carried out 
using fMRIPrep [51] (version 20.0.7, RRID:SCR_016216) 
briefly consisting of motion estimation and correction, 
co-registration of fMRI and structural MRI data, esti-
mation of noise regressors, and standard space normali-
zation. Please consult the Supplementary Methods for 
further details. Subsequent actual denoising was carried 
out using fMRIDenoise [52] (version 0.2.1), comprising 
regressing out 24 head motion parameters (3 transla-
tions, 3 rotations, their 6 temporal derivatives, and their 
12 quadratic terms) [53], 8 physiological noise param-
eters (mean physiological signals from white matter and 
cerebrospinal fluid, their 2 temporal derivatives, and 4 
quadratic terms) [53] as well as movement spike regres-
sion based on frame-wise displacement (FD > 0.5  mm) 

and so-called “DVARS” (> 3) thresholds [54], temporally 
filtering (0.008–0.08  Hz), and, finally, smoothing the 
resulting standard space image with a Gaussian kernel 
(FWHM = 6 mm). This pre-processing leads to denoised 
fMRI data in a common standard space as input for fur-
ther analyses.

The following steps were taken for MRI data qual-
ity control (numbers of excluded participants reported 
in the section “participants”): Structural MRI data were 
screened by a radiologist for incidental findings and 
major artifacts. fMRIPrep reports were reviewed for 
registration errors and image artifacts (including signs 
of strong motion artifacts in the carpet plots). Subject 
exclusion for excessive head motion (see section “Par-
ticipants”) was based on pre-processing criteria (mean 
frame-wise displacement, FD > 0.3  mm or maximum 
FD > 5 mm or more than 20% outlier data points). FD did 
not differ significantly between FAS and controls. How-
ever, there was a trend towards higher mean and maxi-
mum FD in the FAS group (see Supplementary Table 1).

Static functional connectivity analysis: general approach
Functional connectivity analyses were based on a cortical 
atlas (“Schaefer atlas”) derived from rs-fMRI data in 1489 
participants. The atlas was obtained from TemplateFlow 
(RRID:SCR_021876) to match the dimensions of the 
fmriprep outputs [55]. The atlas version with 400 parcels 
adopted here is the most extensively validated version 
of this atlas, e.g., regarding stability and correspondence 
with markers of brain function [56]. The individual par-
cels in the published atlas have been matched to 17 non-
overlapping networks from a previously established atlas 
by Yeo et al. [57]. Ten cognition-related components out 
of these 17 networks were selected for further analysis: 
the dorsal attention network (2 sub-networks A and B), 
the salience / ventral attention network (2 sub-networks 
A and B), the mainly fronto-parietal control network (3 
sub-networks A-C), and the default mode network (3 
sub-networks A-C). Time-series extraction from the pre-
processed fMRI data and calculation of z-transformed 
Pearson correlation coefficients as primary measures 
of FC were carried out with the Data Processing Assis-
tant for Resting-State fMRI (DPARSF, version 5.2, 
RRID:SCR_002372) [58] based on Matlab 2019b (The 
MathWorks, Natick, MA, USA, RRID:SCR_001622). As a 
basis for subsequent modelling, we carried out multiple 
linear models (one model per pair of regions), comparing 
z-transformed correlation coefficients (dependent vari-
able) among regions of interest between FAS participants 
and controls. The following independent variables were 
included in the multiple linear regression models: group 
(FAS vs. control, categorical), sex (categorical), age (nor-
malized to center: 0, and standard deviation: 1), mean 
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FD, and a constant term (intercept). Main effects of the 
factor group (FAS vs. controls, two-sided) are the basis 
of the subsequent analyses at different spatial scales. A 
previous analogous analysis based on multiple two-tailed 
two-sample t-tests, i.e., not including age, sex, and head 
movement with similar results has been made available 
in the preprint version of this article [59].

We followed a hierarchical statistical testing approach 
with three levels of analysis: (1) first, determining 
whether there is any alteration of FC in FAS participants 
compared with controls in the full connectome of 243 
regions constituting these 10 cognition-related networks 
(i.e., an omnibus test) globally and subsequently aim-
ing to resolve these findings, (2) to the level of either FC 
within each network or between-network connectivity, 
and finally (3) to individual connections.

Static functional connectivity analysis: global analysis
The omnibus test on the full connectome (main effect 
of group: FAS vs. control) is based on the “Higher Criti-
cism” (HC) approach [60] in an improved version [61] 
implemented in Matlab (https://​www.​stat.​cmu.​edu/​
~jiash​un/​Resea​rch/​softw​are/​HC/). HC statistics can be 
applied in order to test whether there are any non-zero 
effects within a large number of individual tests carried 
out in high-dimensional datasets. They are thus suitable 
to identify the existence of rare and weak effects in such 
data [60]. HC follows the rationale of p-value histogram 
analyses: Under a null-hypothesis of only zero effects in 
multiple parallel tests, an equal distribution of p-values 
is expected. Under the alternative hypothesis of existing 
non-zero effects, there is an excess of low p-values [62]. 
In simplified terms, HC statistics quantitatively test a 
joint hypothesis of such an excess of low p-values [60, 62]. 
HC has been increasingly popular for detecting effects in 
high-dimensional data such as in genetic [60] and eco-
nomic [63] research. It has been argued that HC could be 
favorable for the detection of rare events compared with 
conventional false discovery rate (FDR) or family-wise 
error rate (FWE) correction methods [60]. Considering 
the similarly high dimensionality of FC datasets, HC has 
recently been applied to rs-fMRI analyses [64, 65]. Both, 
in this global analysis and the subsequent network-wise 
HC-based hypothesis tests, we used p-value histograms 
(main effect of group) as a plausibility check.

Static functional connectivity analysis: within‑network HC 
analysis
Subsequently, we aimed to determine which of the 10 
cognition-related networks were affected by within-
network functional connectivity differences between 
FAS and control participants. We therefore carried out 
equivalent HC tests separately for these networks. Each 

set of tests included the full set of correlation coefficients 
between all regions within each network.

Static functional connectivity analysis: between‑network HC 
analysis
For a similar analysis of between-network FC (i.e., to 
determine whether any between-network FC differences 
were present), we concatenated all parcels for each of the 
10 networks separately. This resulted in a single mask 
for each network before time-series data extraction. The 
resulting correlation coefficients were assessed with an 
equivalent HC test.

Static functional connectivity analysis: analysis of individual 
connections
In a third level, we aimed to identify single between- 
and within-network connections exhibiting statistically 
significant FC differences between FAS participants 
and controls. Therefore, in contrast to the previously 
described HC-based joint hypothesis tests, we now 
FDR-adjusted [66] the individual hypothesis tests (main 
effect of group: FAS vs. control) of between- and within-
network connectivity (q < 0.05), using an FDR imple-
mentation in Matlab (https://​brain​der.​org/​2011/​09/​05/​
fdr-​corre​cted-​fdr-​adjus​ted-p-​values). This was carried 
out separately for either all 45 between-network connec-
tions or all individual connections, and also within each 
separate network.

Exploratory time‑resolved functional connectivity analysis
Beyond the static FC analysis, we carried out an explor-
atory dynamic FC analysis, using a sliding window 
approach with the DynamicBC toolbox (version 2.2) 
[67]. FC between all 243 regions in the cognition-related 
networks was calculated for each individual subject by 
Pearson linear correlation separately in overlapping win-
dows with a length of 18 consecutive functional volumes 
equivalent to 45  s, similar to window lengths in previ-
ous studies [68, 69], and with a 60% overlap. The result-
ing time-resolved FC estimates from individual time 
windows were grouped by similarity (K-means cluster 
analysis, distance measure: correlation) in order to derive 
presumed FC states in the entire sample. Established 
methods were used to estimate the optimal number of 
clusters and assess the goodness of fit of the clustering 
solutions: (1) The optimal number of clusters (search 
range: 2 to 10) was estimated using the Calinski-Harabasz 
[70] and Davies–Bouldin [71] indices resulting in 2 clus-
ters (see Supplementary Fig.  1). (2) Cluster-separability 
was estimated by a silhouette analysis. Briefly, the silhou-
ette analysis assesses, how similar an individual element 
is to other elements within its own cluster compared with 
elements in other clusters [72]. The following summary 

https://www.stat.cmu.edu/~jiashun/Research/software/HC/
https://www.stat.cmu.edu/~jiashun/Research/software/HC/
https://brainder.org/2011/09/05/fdr-corrected-fdr-adjusted-p-values
https://brainder.org/2011/09/05/fdr-corrected-fdr-adjusted-p-values
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measures describing the temporal dynamics of putative 
FC states were calculated for individual participants: 
number of transitions (NT) between connectivity states, 
mean dwell time (MDT) per cluster, and frequency of 
observing each cluster (FRC). Participants with FAS and 
controls were compared regarding NT and MDT using 
t-tests or Mann–Whitney U tests.

Statistical analysis
Statistical modelling is inherent to the FC analyses 
described above and is thus presented within the preced-
ing sub-sections. Statistical tests on clinical and demo-
graphical data were carried out in SPSS (version 27.0, 
IBM, Armonk, NY, USA, RRID:SCR_002865).

Results
Static functional connectivity analysis: global analysis
We observed significantly altered FC of cognition-
related brain regions in FAS participants compared with 
non-exposed controls in the global (all parcels of all 10 
cognition-related networks) analysis over the entire 
data acquisition period. This finding is based on a joint 
hypothesis test (HC test statistic: 25.80, a higher value 
represents stronger support for an excess of low p-values 
in the underlying primary hypothesis tests). This joint 
hypothesis test aims to detect the existence of alterations 
within this high-dimensional dataset but which does 
not identify which exact connections are altered (Fig. 1). 
Quantitative results of FC group differences in connec-
tions between single atlas regions (Additional_file_2.csv, 
Additional_file_3.csv) as depicted in Fig.  1C are shared 
together with standardized effect size estimates (Addi-
tional_File_4.csv).

Static functional connectivity analysis: within‑network HC 
analysis
FC was altered within 7 out of 10 of these cognition-
related brain networks based on the joint hypothesis 
tests. Based on the HC test statistic and supported by 
p-value histograms of tests of individual functional con-
nections, this effect was most obvious in the salience / 
ventral attention A network (HC test statistic: 13.31), 
followed by the dorsal attention A sub-network (HC test 
statistic: 11.27). However, findings also spanned across 
sub-networks A, B, and C of the fronto-parietal control 
(HC test statistics: 4.02, 5.20, and 4.82) and sub-networks 
A, and B of the default mode (HC test statistics: 4.56 and 
3.45) networks (Fig.  2). Three networks did not exhibit 
significant group effects: the dorsal attention B (HC test 
statistic: 1.00), salience/ventral attention B (HC test sta-
tistic: − 1.15), and default mode C (HC test statistic: 2.84) 
components (Fig. 3).

Static functional connectivity analysis: between‑network 
HC analysis
A subsequent analysis revealed altered FC between cog-
nition-related brain networks based on an equivalent 
joint hypothesis test (HC test statistic: 5.95). Descrip-
tively, underlying strongest relative decreases of FC 
(ranking of correlation coefficient group differences) in 
FAS participants were observed between the salience 
/ ventral attention B and fronto-parietal control C sub-
networks. The strongest relative increases were observed 
between the dorsal attention B and fronto-parietal con-
trol sub-networks as well as between the default mode C 
sub-network and other parts of the default mode network 
and fronto-parietal control network (Fig. 4).

Fig. 1  Global analysis of static functional connectivity of cognition-related brain networks. A Full atlas-based selection of 243 individual brain 
regions in cognition-related networks (redundant color coding for illustration of atlas resolution only). B P-value histogram of multiple individual 
linear models (main effect of group) comparing functional connectivity among all these brain regions between FAS patients and control 
participants. Under the null hypothesis of equal functional connectivity in both groups, equal numbers of p-values are expected in each histogram 
bin. The histogram shows an excess of low p-values. The existence of at least rare and/or weak effects visualized in the histogram is confirmed 
by a quantitative test of the joint hypothesis based on higher criticism statistics, following the same rationale. This means that regarding a 
significant number of functional connections, FAS patients differ from healthy controls. C Unthresholded matrix of connectivity group differences 
describing the full connectome of cognition-related brain regions. Yellow: mean z-transformed correlation coefficients relatively increased in FAS 
compared with controls. Blue: relatively decreased functional connectivity in FAS. Color coding of networks identical with Fig. 4. D Standardized 
effect size estimates (partial η2 from linear models)
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Static functional connectivity analysis: analysis 
of individual connections
A single connection within the default mode B sub-
network between the left dorsal prefrontal cortex and 
the right temporal lobe (decreased FC in FAS, differ-
ence of group-averages z-transformed correlation coef-
ficients: − 0.210, partial η2 = 0.196) was statistically 
significant with FDR-adjustment within this network 
only (p = 0.0198), however not when adjusting (FDR) 
across all connections. None of the other individual FC 
alterations (either from the within- or between-network 
analysis) were statistically significant when correcting 
the separate tests of individual connections for multiple 
comparisons.

Exploratory time‑resolved functional connectivity analysis
In the exploratory dynamic FC analysis, a solution con-
sisting of two FC states was empirically derived as the 
optimal number of clusters across the entire sample. 
These two clusters representing putative FC states were 
only weakly separable (see silhouette values and further 
goodness-of-fit statistics for the clustering solutions in 
Supplementary Fig.  1). Both clusters differed mainly 
regarding (1) the relatively connectivity strength of the 
DMN and (2) the extent that the DMN appeared inter-
connected with other cognition-related brain networks. 
See Additional_file_1.pdf: Supplementary Fig.  2 for fur-
ther details on the clusters. FAS participants did not dif-
fer significantly regarding the temporal dynamics of these 
FC states NT, MDT, and FRC (Table 2).

Discussion
In summary, FC was altered in adults with FAS compared 
to controls not exposed to alcohol prenatally both within 
a majority of cognition-related networks (including the 
salience / ventral attention networks and dorsal atten-
tion networks, as well as, to a lesser degree, the fronto-
parietal control network, and the default mode network) 
and between these networks. These results on the global 

and network level are based on an HC approach, indicat-
ing that at least rare and weak group effects seem to be 
present [60]. HC-based findings do, however, not nec-
essarily mean that FC is changed in a majority of con-
nections. Group effects could not be further resolved to 
connections between individual regions using conven-
tional mass-univariate testing with multiple-comparison 
correction. In the additional exploratory time-resolved 
FC analysis, altered FC dynamics in the FAS group could 
not be observed.

Wide distribution of group effects across networks
The wide distribution of findings across cognition-related 
networks is in line with the similarly wide range of cogni-
tive deficits observed in individuals with FAS [1]. It thus 
suggests a rather distributed neural basis (i.e., unspe-
cific alcohol-related damage) of such deficits rather than 
strongly localized alterations. A similarly wide distribu-
tion of FC alterations across networks was observed by 
Fan et  al. in children with FASD [25]. Thus, this obser-
vation of a wide distribution spans different age groups 
(from childhood to young adulthood) and rs-fMRI analy-
sis approaches. Visual interpretation of the connectiv-
ity matrices reveals different directionalities of findings: 
Some connections exhibited higher, and some lower 
FC in FAS. This bidirectionality is generally in line with 
a study in children with FASD by Ware et al.. They also 
report different directionalities of FC alterations [27]. 
Consequently, a simple picture of either overall increases 
or decreases of FC in FAS does not exist.

Group differences in attention‑related networks
The observation of more obvious effects in attention- 
and salience-related systems compared with networks 
underlying other cognitive functions highlights the 
importance of attentional deficits in FASD [1, 73–77], 
including adults [5, 78]. However, this interpretation 
might be limited by the infeasibility of a direct quanti-
tative comparison between networks as well as reverse 

(See figure on next page.)
Fig. 2  Within-network static functional connectivity differences in cognition-related brain networks. Seven (out of ten) sub-networks exhibiting 
altered functional connectivity in FAS patients compared with controls. First column: Overview of the networks’ overall extent. Second column: 
P-value histograms (different scaling reflecting different numbers of regions in each network) of multiple linear models (main effect of group) 
comparing functional connectivity within these sub-networks between FAS patients and control participants. Under the null hypothesis 
of equal functional connectivity in both groups, equal numbers of p-values are expected in each histogram bin. The histograms show an excess 
of low p-values, quantitatively confirmed by a test of the joint hypothesis based on higher criticism statistics. This means that FAS patients differ 
from healthy controls regarding at least rare and/or weak effects. Third column: Unthresholded matrices of connectivity group differences 
describing the full connections of cognition- related brain regions within each network. Yellow: mean z-transformed correlation coefficients 
relatively increased in FAS compared with controls. Blue: relatively decreased functional connectivity in FAS. Fourth column: Standardized 
effect size estimates (partial η2 from linear models, * single connection with significant group difference, false-discovery-rate-corrected p < 0.05 
within the network but not significant when correcting across all connections). The remaining three networks without significant results are 
presented in Fig. 3
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Fig. 2  (See legend on previous page.)
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inference [79, 80]. Our rs-fMRI findings are generally 
in line with previous studies suggesting a particular 
involvement of attentional functions and underlying 
neural systems in FAS when compared to other cogni-
tive deficits: Response and activation patterns in a Go/
NoGo task in a sample of young female adults overlap-
ping with this study also provide indirect evidence of a 
particular importance of attentional deficits compared 
with inhibitory control deficits in this age group [36]. 
Attention-related networks were also altered in other 
alcohol-exposed samples studied with fMRI: Atten-
tion networks were among those altered in studies by 
Fan et al. [25] and Ware et al. [27]. In the latter study, 
FC alterations were associated with differences in 
attentional performance measures. The authors con-
sequently conclude that the patterns observed (lower 
within-network, higher between-network FC) provide 
support for reduced attention network specialization 
and inefficiency [27]. Reduced FC between key regions 
of the salience network with other cognition-related 
networks were among the key findings by Little et  al. 
[26]. There is further evidence of altered attention 

systems from magnetoencephalography [81] and diffu-
sion tensor imaging [82].

Group differences in networks related to cognitive control
To a lesser extent, we observed altered FC in parts of the 
fronto-parietal control network. This network is consid-
ered a flexible hub that interacts with other processing 
networks in order to orchestrate performance in a wide 
range of cognitive tasks [83]. Changes in fronto-parietal 
network FC were among those also observed in younger 
participants with FASD [25, 26]. There is further evi-
dence of altered activity in these networks in children 
with FASD from task-based fMRI studies on inhibitory 
control [84] and working memory [85].

Group differences in the default mode network
The default mode network (DMN), though classically 
reported as anti-correlated with task-positive cogni-
tive networks [86], is considered to be involved in cogni-
tive functions including task-switching and integration of 
information [87, 88]. There is evidence of regional differ-
entiation within the DMN, with subdivisions subserving 

Fig. 3  Within-network static functional connectivity of cognition-related brain networks (networks without significant group differences). 
Three (out of ten) sub-networks not exhibiting altered functional connectivity in FAS patients compared with controls. First column: Overview 
of the networks’ overall extent. Second column: P-value histograms of multiple linear models (main effect of group) comparing functional 
connectivity within these sub-networks between FAS and control participants (global null hypothesis not rejected based on HC test statistic). Third 
column: Unthresholded matrix of connectivity group differences describing the full connections of cognition-related brain regions within each 
network. Yellow: mean z-transformed correlation coefficients relatively increased in FAS compared with controls. Blue: relatively decreased 
functional connectivity in FAS. Fourth column: Standardized effect size estimates (partial η2 from linear models)
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different cognitive functions [89]. Fan et  al. observed 
altered FC in the anterior part of the DMN, discussed as 
subserving social perception, judgment, and self-referen-
tial processing in individuals with FASD; however, they 
found no changes within the posterior DMN [25]. Dif-
ferent from the preprint version of this analysis (i.e., not 
controlling for covariates in the primary models) [59], we 
did not find evidence of a strong predominance of group 
effects in either the anterior or posterior part of the DMN. 
Beyond that, there is further evidence of less regionally 
specific DMN dysfunction in FASD [32]. One single con-
nection within the DMN was significant when correcting 
for multiple comparisons within the sub-network only, but 
not with global correction. Considering the distribution of 

effects within this network in comparison with the other 
networks, we consider this a potential outlier.

Specific aspects of the statistical approach underlying 
main results
The main static FC analysis applied in this study follows 
a hierarchical statistical approach, partially based on HC 
statistics. This approach addresses the general limita-
tions of functional neuroimaging analyses in relatively 
infrequent disorders such as FAS: Conventional high-
dimensional FC analysis methods, such as frequently 
used mass-univariate statistical testing, carry the risk 
to report only a “tip of the iceberg” of true underlying 
alterations due to lower than optimal statistical power. 
There is an increased risk of both published findings 

Fig. 4  Between-network static functional connectivity of cognition-related brain networks. A 10 cognition-related networks. Each color represents 
an individual sub-network (network-wise concatenation of individual regions based on atlas labels). B P-value histogram of multiple linear models 
(main effect of group) comparing functional connectivity among these sub-networks between FAS patients and control participants. Under the null 
hypothesis of equal functional connectivity in both groups, equal numbers of p-values are expected in each histogram bin. The histogram shows 
an excess of low p-values quantitatively confirmed by a test of the joint hypothesis based on higher criticism statistics. This means that regarding a 
significant number of functional connections, FAS patients differ from healthy controls. C Unthresholded matrix of connectivity group differences 
describing the full connectome of cognition- related brain regions. Yellow: mean z-transformed correlation coefficients relatively increased in FAS 
compared with controls. Blue: relatively decreased functional connectivity in FAS. D Standardized effect size estimates (partial η2 from linear models)
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being false-positive [90, 91] or false-negative findings 
[90]. Further in-depth discussions on this issue have been 
published [91–93]. Consequently, statistical thresholding 
of mass-univariate analyses (mainly for multiple-com-
parison correction) might in part explain ambiguous FC 
results in previous studies in children with FASD [25–
27]. Such a conventional analysis approach as applied 
at the most detailed analysis level in this study did not 
yield significant group effects regarding single connec-
tions between regions of interest in this study when cor-
recting for multiple comparisons across all connections. 
There are increasing efforts to report subthreshold effects 
in fMRI studies in order to facilitate better interpreta-
tion of underlying patterns [94–96]. An example is the 
additional presentation of unthresholded activation or 
connectivity maps [95, 97]. Our hierarchical approach 
with HC-based joint hypothesis tests [60, 61] at the net-
work level might help avoid these shortcomings without 
sacrificing information from individual connections. 
Compared with conventional mass-univariate fMRI anal-
yses, it avoids selectively reporting and interpreting few 
selected results that would pass a multiple-comparison 
threshold but might not well represent the true under-
lying effect in a medium-power setting. The finding of 
group effects in HC statistics not being observed in the 
conventional mass-univariate analysis might indicate 
that substantially larger samples are desirable in future 
rs-fMRI studies in neurodevelopmental disorders such as 
FAS. This is, however, limited by the rarity of these disor-
ders [98]. Recent work in a related field further highlights 
the potential specific relevance of a network-perspec-
tive and limitations of group mean comparisons at the 
regional perspective: Segal et al. observed that structural 

brain alterations in individuals with mental disorders 
mainly converge at the network level while effects on the 
regional level are sparse and heterogeneous [99]. Please 
see the “Methods” section for a more detailed description 
of the HC-based multi-level approach and underlying 
rationale, as well as the “Potential limitations” section for 
further methodical aspects.

No evidence of group differences in dynamic functional 
connectivity (additional exploratory analysis)
Our findings discussed so far are based on conventional 
static FC analyses. Clinical features typically observed 
in FASD include impulsivity or hyperactivity (including 
overlap/comorbidity with attention deficit hyperactiv-
ity disorder) [1, 3, 4]. These clinical features might sug-
gest a potential dynamic or temporally changing nature 
of underlying neural disease mechanisms. This assump-
tion is supported by dynamic FC alterations previously 
reported in ADHD [22–24]. Contrary to this assumption, 
we did not observe alterations of features representing 
non-stationarity in the exploratory time-resolved analy-
sis of dynamical aspects of FC. In particular, compared 
to controls FAS participants did neither change more 
or less frequently between two putative FC states, nor 
did they remain in the different FC states for shorter or 
longer periods of times. Thus, we did not find evidence 
of altered dynamic interactions of brain regions of differ-
ent networks. There is at least some evidence in children, 
that hyperactivity might be less severe in PAE compared 
with ADHD [100]. Though those findings cannot be 
directly translated to adult FAS participants, relatively 
lower hyperactivity might be the reason for the lack of 
dynamic FC alterations observed in our study. These 
findings are also generally in line with a previous rs-fMRI 
study reporting no alteration in regional temporal vari-
ance in less severely affected children with low levels of 
PAE [101].

Potential limitations
Findings of this first FC analysis in adults with PAE are 
restricted to young adults (ages 18–32  years) with FAS. 
They do not necessarily translate to other age groups. 
Furthermore, findings do also not necessarily translate 
to other gradations across the FASD spectrum. Despite 
greater psychopathology, attention deficits, and impul-
siveness compared with controls, a recent study did not 
find network-based FC alterations in a population of 
adolescents with a wide range of PAE, i.e., less severely 
exposed individuals [102]. Adult participants with FAS 
in this sample had been diagnosed during their child-
hood using the Majewski criteria [37] then widely used in 
German-speaking countries. These criteria did not gain 
widespread use in other countries [38]. Although they 

Table 2  Group comparison results for the optimal clustering 
solution (2  cl) of the time-resolved functional connectivity 
analysis

Clusters represent estimates of putative FC states. In summary, cluster 1 
represents widely distributed FC dominated by the DMN while cluster 2 exhibits 
stronger dichotomization between the DMN and the other cognition-related 
networks
a mean ± standard deviation and t-test result)
b  unit: number of (partially overlapping) windows, median (range) and Mann–
Whitney U test result
c  median (range) and Mann–Whitney U test result

FAS fetal alcohol syndrome, CON controls

FAS CON p

Number of transitionsa 6.59 ± 2.99 7.11 ± 2.24 0.366

Mean dwell time (cluster 1)b 3.33 (0.00–13.5) 3.29 (1.33–27.00) 0.809

Mean dwell time (cluster 2)b 3.00 (1.00–28.00) 3.00 (1.00–9.00) 0.982

Frequency (cluster 1)c 57.14 (0–96) % 53.57 (11–96) % 0.780

Frequency (cluster 2)c 42.86 (4–100) % 46.43 (4–89) % 0.780
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generally reflect the full clinical picture of FAS (see also 
Additional_file_1.pdf: supplementary methods), disease 
severity cannot be exactly mapped onto newer diagnos-
tic criteria [2]. Explicit information about the presence 
and quantity of maternal alcohol exposure is not available 
in this sample. This represents a more general limitation 
of FAS diagnosis both, in research and clinical care: As 
reflected by current clinical guidelines [8, 103–105], FAS 
can be diagnosed based on the typical clinical picture and 
does not require explicit knowledge about prenatal alco-
hol exposure. Similarly, there is a possibility of unknown 
sub-clinical prenatal alcohol exposure in the control 
group, potentially reducing the sensitivity for FC group 
differences. While occasional alcohol consumption has 
been reported in 14%, regular alcohol consumption dur-
ing pregnancy has been relatively rarely reported (around 
1%) in Germany [106]. Social and psychopathological 
characterization of the participants and their families 
is limited: no information about socioeconomic status 
is available. Socioeconomic inequalities such as paren-
tal income, educational status, or neighborhood context 
have been related to differences in structural brain devel-
opment and to disrupted development of cognitive abili-
ties [107]. Early SES disadvantage in childhood has been 
associated with altered resting-state functional connec-
tivity of brain networks involved in cognition [108]. Chil-
dren with FASD are frequently exposed to such adverse 
experiences when growing up [109–111]. In addition 
to the influence of prenatal alcohol exposure itself, SES 
might therefore pose an independent factor that could 
have interfered with brain development in our sample 
[110]. Future research is needed to highlight the effects 
of the additional burden imposed upon FASD subjects 
by socioeconomic disadvantage and the associated impli-
cations on brain structure and activity in affected indi-
viduals. Information on psychiatric comorbidity for the 
exclusion criteria is based on anamnestic information 
and a screening tool (SSQ), but not on detailed assess-
ment within this study or on previously assigned ICD or 
DSM diagnostic codes. We did not include total brain 
volume and IQ in the statistical models of FC alterations, 
since both reduced IQs [1] and reduced total brain vol-
umes [112, 113] are considered disease features of FAS 
with the potential for overcorrection if included as covar-
iates [114].

Taking differences in head motion into account in 
rs-fMRI studies in clinical populations is a matter of 
ongoing critical debate [115]. Although we have taken 
precautions to minimize head motion, excluded partici-
pants with excessive head motion, include head motion 
in the analyses and even though measures did not dif-
fer significantly between groups, it cannot be excluded 
that parts of the results are movement-related [53, 115]. 

The state-of-the-art motion correction methods during 
data pre-processing are very similar to those showing a 
particularly good performance in an additional large-
scale benchmarking study of rs-fMRI motion correction 
strategies [115]. We have also included head motion as 
a covariate in the main FC group analyses at the level of 
individual connections to further take a potential move-
ment bias into account. This also means that connec-
tions with different distances between brain regions were 
modelled separately at this stage. We refrained from 
including global signal regression since it may confound 
the directionality of FC estimates and aggravate potential 
distance-related effects of residual head motion [115]. In 
this, context, it should however also be considered that 
motor restlessness itself is a disease feature in FAS [116].

Statistical power of the final step of the hierarchical 
analysis approach (resolving FC alterations to single con-
nections between pairs of regions) is potentially limited 
by the high dimensionality of the underlying atlas. This 
notion is also supported by the distribution of effect size 
estimates for group differences of individual connections. 
This atlas resolution was chosen because it is exten-
sively validated [56] and aims to optimally reflect the 
brain’s functional architecture [56, 117]. The HC-based 
approach was chosen here instead of averaging FC esti-
mates to allow global and network-wise inference while 
maintaining the advantages of the high-resolution atlas. 
Findings are limited to the cortex and do not include sub-
cortical gray matter nuclei within these networks [118, 
119]. It has to be noted that there is an ongoing debate 
about functional network nomenclature, so that the net-
works described here [56] may deviate from studies using 
other atlases [120].

Though widely used in other research areas with 
high-dimensional data [60, 63], the HC statistic has 
only recently been introduced to fMRI [64, 65, 96]. The 
HC statistic primarily assumes statistically independ-
ent features, since correlations among features can lead 
to unbalanced p-value histograms, however without 
expecting peaks in the first histogram bin (low p-values). 
It has thus been argued that the influence of correlations 
among features is negligible when the underlying histo-
grams show typical behavior [62]. In addition to the HC 
statistic, we therefore visually interpreted the underlying 
p-value histograms as a plausibility control and observed 
well-behaved p-value histograms in the global and 
within-network analysis and to a slightly lesser degree 
in the between-network analysis. The HC-based global 
hypothesis test does not directly result in p-values but 
in a primary decision to reject/retain the corresponding 
global null hypothesis. However, p-values for typical HC 
values have been approximated [121]. Even when using 
these approximated p-values, thus departing from the 
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notion of the original HC statistic, main results would 
be statistically significant at the p < 0.05 level or stricter 
p-values.

Dynamic or time-resolved FC analysis is a promising, 
already widely used, yet still evolving rs-fMRI analysis 
method [15–17]. Thus, there is currently a relatively 
high methodological variability [15, 17]. Here, we 
adopted a widely used sliding window approach [17] 
and refrained from extensively exploring analysis set-
tings in order to avoid false-positive findings [122]. 
Hence, there is a risk to miss group differences of FC 
dynamics which might have been uncovered with other, 
less well-established dynamic FC analysis approaches 
[15, 17, 123]. Furthermore, FC states themselves, which 
were estimated in the entire sample here, might be 
intrinsically different in both groups. This might be 
addressed by separate FC state estimation, however 
will need in the future more advanced methodology 
for subsequent actual group comparison. Similar to 
methodological heterogeneity and open methodologi-
cal questions, there is still no consensus of connectivity 
states to be expected in a normal population. However, 
a relatively small number of FC states partially reflect-
ing changing interactions of parts of the DMN, similar 
to those observed here (Additional_file_1.pdf: Supple-
mentary Fig. 2) has been repeatedly reported [17, 124]. 
Silhouette values (Additional_file_1.pdf: Supplemen-
tary Fig. 1) indicate that clusters observed in our analy-
sis may not be well separated. Thus, these two clusters 
capture dynamic FC changes as a model but might not 
represent truly discrete FC states in a neurobiological 
sense. Cluster frequencies suggest a high inter-subject 
variability. Despite these general limitations of this 
evolving methodology, we believe that our exploratory 
approach can be a starting point for further investiga-
tions on dynamic FC in FAS and other neurodevelop-
mental disorders.

Conclusions
We observed altered FC in cognition-related brain 
networks in young adults with FAS. Using a HC-based 
statistical approach, this study provides evidence of 
the existence of at least rare and weak effects (i.e., FC 
differences between participants with FAS and con-
trols) widely distributed across a majority of these 
networks, potentially underlying the diversity of cog-
nitive deficits in these individuals. Findings were pro-
nounced in attention-related sub-networks, which 
is in line with substantial attentional deficits previ-
ously reported. Relevant for comparisons with previ-
ous studies is that—in contrast with network-level 
results—the most detailed analysis level using a more 

conventional mass-univariate approach did not iden-
tify significant group differences. Thus, findings could 
not be resolved to single functional connections. An 
exploratory time-resolved analysis did also not iden-
tify altered FC dynamics and could thus not explain 
reduced impulse control and attention deficits which 
have been frequently reported in FAS.
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