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Abstract 

Background  The development of machine learning models for aiding in the diagnosis of mental disorder is rec‑
ognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a 
challenge, with poor generalizability being a major limitation.

Methods  Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the 
psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view 
that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. 
Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of exist‑
ing machine learning models for psychiatric diagnoses.

Results  A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient 
(G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, 
G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national 
economic levels (β =  − 2.75, p < .001, R2adj = 0.40; r =  − .84, 95% CI: − .41 to − .97), and was plausibly predictable for 
model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses 
showed that lack of independent testing (84.24% of models, 95% CI: 81.0–87.5%), improper cross-validation (51.68% 
of models, 95% CI: 47.2–56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9–90.8%)/availability 
(80.88% of models, 95% CI: 77.3–84.4%) are prevailing in current diagnostic classifiers despite improvements over 
time. Relating to these observations, model performances were found decreased in studies with independent cross-
country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assess‑
ment checklist, which demonstrated that the overall ratings of these models increased by publication year but were 
negatively associated with model performance.

Conclusions  Together, improving sampling economic equality and hence the quality of machine learning models 
may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
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Background
Machine learning (ML) models have been extensively 
utilized for classifying patients with mental illness to aid 
in clinical decision-making [1, 2]. By building machine 
learning models that are trained from neuroimaging-
based features, the diagnostic decision could be more 
accurate and reliable with the aid of these objective 
and high-dimensional biomarkers [3, 4]. Furthermore, 
given the multivariate nature of brain features, machine 
learning techniques could capture the whole neural pat-
tern across high-volume dependent voxels for revealing 
pathophysiological signatures of these disorders, while 
individualized prediction of machine learning models in 
the neuroimaging-based ML models also facilitates to 
address the increasing needs of precision psychiatry [5, 
6]. Despite considerable efforts devoted to this end, the 
translation of machine learning classification for diagnos-
tic and treatment recommendation into clinical practice 
remains challenging [7]. This is partly due to the poor 
generalizability of particular these neuroimaging-based 
classifiers, which are often optimized within a specific 
sample to incur failure of generalizing to diagnose unseen 
patients in new samples [8–10]. Although these classifi-
ers can be trained to achieve a desirably high accuracy in 
a specific cohort, they are not representative of a more 
general population across medical centers, geographic 
regions, socioeconomic statuses, and ethnic groups [11, 
12]. Moreover, persisting concerns over generalizability 
imply potential sampling biases despite the substantially 
increased size of data over recent decades [13].

As promising noninvasive, in  vivo techniques (e.g., 
magnetic resonance imaging, MRI; electroencephalo-
gram, EEG; positron emission computed tomography, 
PET), they provide unique opportunities to assess brain 
structure, function, and metabolic anomalies for reveal-
ing the pathophysiological signatures of these psychiatric 
disorders as intermediate phenotype, and hence fueled 
the enthusiasm in these machine learning diagnostic 
models [9, 14]. In addition, with the huge developments 
of big-data sharing initiatives (e.g., UK Biobank, Alzhei-
mer’s Disease Neuroimaging Initiative), the diagnostic 
studies utilizing neuroimaging-based methods for clas-
sifying psychiatric conditions have seen a remarkable 
proliferation at an unprecedented speed over the recent 
decades [9, 15]. Despite these technical merits and prom-
ising research insights, these approaches are nonetheless 
cost, somewhat non-scalable, and are mostly not read-
ily available or accessible in low-income countries and 
regions, especially the high-field MRI and PET for neural 
system mapping. In this vein, probing into why and how 
the sampling bias and relevant factors impeded the gen-
eralizability could be a potent avenue prompting trans-
lations of these neuroimaging-based machine learning 

models into clinical actions. However, comprehensive 
knowledge about the degree of such sampling issues and 
what relevant factors incur poor generalizability in these 
models is still scarce.

The importance of replication in generalizing scientific 
conclusions has been increasingly stressed, and a “rep-
lication crisis” has been discussed for several decades 
within or beyond psychological science: multiple experi-
mental findings fail to be replicated and generalized 
across populations and contexts [16, 17]. One possible 
underlying reason may be that the available data was pri-
marily and predominantly drawn from WEIRD (western, 
educated, industrialized, rich, and democratic) socie-
ties, which mirrors a typical sampling bias [18, 19]. Spe-
cifically, in 2008, 96% studies on human behavior relied 
on samples from WEIRD counties, with the remaining 
82% of global population being largely ignored [20, 21]. 
Recently, we have conducted a systematic appraisal for 
neuroimaging-based machine learning models in the 
psychiatric diagnosis by using PTOBAST (Prediction 
model Risk Of Bias ASsessment Tool) criterion. Results 
demonstrated that 83.1% of these models are at high risk 
of bias (ROB), and further indicate a biased distribu-
tion of sampled populations [22]. Despite these descrip-
tive evidences, there have been no quantitative analyses 
conducted to clearly illustrate the extent of sampling 
biases at a global or regional level [22]. And what’s more, 
the long-lasting discussion regarding the association 
between the regional economic level and these sampling 
biases remains uncertain, and requires reliable statistical 
evidence for clarification [22, 23]. Examining the status 
quo of sampling biases is particularly important for psy-
chiatric neuroimaging-based classifiers as generalizabil-
ity is critical for translating models into clinical actions 
[23, 24]. Patient groups, compared with non-clinical or 
healthy entities, are far more heterogeneous due to high 
inter-individual variability in psychopathology [25, 26]. 
This is affected not only by genetics, but environment, 
a broad sense covering socioeconomic status, family 
susceptibility, and living environment [27, 28]. There-
fore, developing a generally applicable model remains 
challenging, as the issues raised by sampling biases may 
further compound poor generalizability in psychiatric 
classification experiments.

Apart from the generalization failures due to sam-
pling bias, there are other pitfalls to cause overfitting as 
the results of heedless or intended analysis optimiza-
tion. Overfitting accompanied by accuracy inflation in 
machine learning models refers that the results are only 
valid within the data used for optimization but can hardly 
generalize to other data drawn from the same distribu-
tion [29, 30]. In support of this notion, a recent large-
scale methodological overview indicated that 87% of 
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machine learning models for clinical prediction exhib-
ited a high risk of bias (ROB) for overfitting, particularly 
in the domain of psychiatric classification [31]. In addi-
tion, variants of methodological parameters that may 
cause overfitting have been repeatedly discussed in prior 
review papers: sample-size limitation, in-sample valida-
tion, overhyping, data leakage, and especially “double-
dipping” cross-validation (CV) methods [32, 33]. The 
cross-validation procedure is to evaluate the classifica-
tion performance of the ML model by splitting the whole 
sample into an independent training set and testing set 
[32, 34]. Nevertheless, improper CV schemes have been 
found to overestimate model performance by “double-
dipping” dependence or data leakage, which is a main 
source of incurring overfitting [8]. Besides, a recent 
review on the application of machine learning for gain-
ing neurobiological and nosological insights in psychia-
try underscored the need for cautious interpretation of 
accuracy in machine learning models [35]. That is, the 
analytic procedures to obtain reliable model performance 
are even more critical. However, a comprehensive review 
that systematically determines these methodological 
issues in prior studies of psychiatric machine learning 
classification is currently lacking, and how data/model 
availability allows for replication analysis to ensure gen-
eralization remains unclear. Thus, conducting a meta-
research review concerning this topic would facilitate the 
characterization of the shortcomings and limitations in 
these current models. Moreover, developing a proof-of-
concept assessment tool integrating these issues would 
facilitate the establishment of a favorable psychiatric 
machine learning eco-system.

To systematically access the generalizability issues, we 
conducted a pre-registered meta-research review of cur-
rent studies that applied neuroimaging-based machine 
learning models to diagnose psychiatric populations. A 
total of 476 studies screened from PubMed (n total = 41, 
980) over the recent three decades (Jan 1990–July 2021) 
were included (see Additional file  1: Fig. S1-S2). First, 
geospatial mapping of the distribution patterns of the 
samples used in prior literature was depicted to illustrate 
the sampling biases. Furthermore, capitalizing on the 
sampling Gini model with the Dagum-Gini algorithm, we 
quantified the global and area-wide sampling inequality 
by taking both sampling biases and geospatial patterns 
into account. The underlying factors of these sampling 
inequalities were further explored, focusing on eco-
nomic, social developmental, educational developmental 
gaps, and psychiatric disorder burdens, with a general-
ized additive model (GAM). Next, we focused on issues 
of poor generalizability by extending our examination to 
methodological issues that caused overfitting in previous 
psychiatric machine learning studies, which facilitated to 

uncover potential pitfalls that may undermine generaliza-
bility. Finally, we utilized the results of our meta-research 
review to propose a 5-star standardized rating system 
for assessing psychiatric machine learning quality con-
sidering five domains: sample representativeness, cross-
validation method, validation scheme for generalization 
assessment, report transparency, and data/model avail-
ability. Associations of study quality scores with publica-
tion year, psychiatric category, and model performance 
were then established.

Methods
The proposal and protocol for the current study have 
been pre-registered at Open Science Framework to 
endorse transparency.

Search strategy for literature
We searched eligible literature in accordance with 
PRISMA 2020 statement (Preferred Reporting Items 
for Systematic reviews and Meta-Analyses, see Addi-
tional file 1: Fig. S2). We retrieved literature at the Pub-
Med database, with the following predefined criterion: 
(1) published from 1990 to 2021 (Jul); (2) peer-reviewed 
English-written article in journals or in conferences; (3) 
building machine learning models for diagnosis (classi-
fication) towards psychiatric disorders with neuroimag-
ing-based biomarkers. By using Boolean codes and DSM 
classifications, we retrieved a total of 41,980 records 
from forty-eight 2nd level psychiatric categories. All 
records were input into Endnote X9 software for initial 
inspection and further underwent duplicate removal by 
using self-made code in Excel suits. Eligible papers were 
screened strictly following the inclusion and exclusion 
criteria detailed underneath. Furthermore, to obviate 
missing eligible records, we hand-inspected the reference 
list for the newest articles (2021).

We implemented a three-stage validation to ensure the 
correctness of all the processes. Stage 1: one reviewer 
was required to perform all the works (e.g., literature 
searching, data extraction, and data coding) by stand-
ard pipeline. Stage 2: a completely independent reviewer 
was asked to conduct all the works mentioned above for 
cross-check validation. Stage 3: another independent 
senior reviewer was designated to check the disparities of 
results between Stage 1 and Stage 2. If there were incon-
gruences in records, the third reviewers should redo 
this process independently to determine which one was 
correct.

Inclusion and exclusion
We included studies by the following criteria: (1) machine 
learning models were built to diagnose (classify) psychi-
atric patients (defined by DSM-5) from healthy control 
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by neuroimaging-based biomarkers; (2) the ground-truth 
definition for patients was in accordance with clini-
cal diagnoses performed by qualified staffs (e.g., clinical 
psychiatrists, DSM-5 or ICD-10); (3) fundamental infor-
mation was given, such as bibliometric information, clas-
sifier, model performance, and sample size for both the 
training set and testing set. More details can be found in 
Additional file 1: Fig. S1.

We excluded studies that provided no original machine 
learning models and non-peer-reviewed results, includ-
ing reviews, abstract reports, meta-analyses, perspec-
tives, comments, and pre-printing papers. Furthermore, 
studies would be ruled out if they build models by non-
machine learning algorithms or reported model per-
formance with non-quantitative metrics. In addition, 
researches training machine learning models by non-
neuroimaging-based features (e.g., genetics and blood 
markers) or in nonhuman participants were excluded 
in the current study. As aforementioned, we also dis-
carded eligible studies if the patients’ group had not yet 
been diagnosed by qualified institutes or medical staff. 
Finally, studies aimed at non-diagnostic prediction (e.g., 
prognostic prediction and regressive prediction) were 
removed for formal analysis.

Data extraction and coding
To ensure transparency and reproducibility, we extracted 
and coded data by referring to guidelines, including 
PRISMA [36], CHARMS checklist [37] (CHecklist for 
critical Appraisal and data extraction for systematic 
Reviews of prediction Modeling Studies), and TRIPOD 
[38] (Transparent Reporting of a multivariable predic-
tion model for Individual Prognosis Or Diagnosis) state-
ment. As mentioned above, the three-stage validation 
was adopted here to ensure the correctness of these data. 
We coded eligible studies from two parts, with one for 
metainformation (e.g., publication year, affiliation, and 
countries for first author and journals) and another one 
for the scientific contexts of machine learning models 
(e.g., sample population, model performance, toolkit, 
feature selection methods, data availability, and sample 
size). Full contexts on data extraction and coding can be 
found in Additional file 1: Fig. S1.

Data resources
Less (more) economic developed countries (LEDC and 
MEDC) were defined by using the United Nations Devel-
opment Programme (UNDP) criteria and International 
Monetary Fund (IMF, 2020) classification [39, 40]. Fol-
lowing that, a total of 34 countries or regions have been 
classified as MEDC, such as the USA, Germany, the UK, 
Japan, and Korea. Data for national development metrics 
derived from World Bank (WB)-World Development 

Indicators (2021), including Gross Domestic Product 
(GDP), Human Development Index (HDI), total gov-
ernment expenditure on public education (GEE), and 
research and development expenditure (R & D). In addi-
tion, we extracted data recording mental health disease 
burden (MHDB) and prevalence of psychiatric diseases 
from the Global Burden of Disease Study 2019 (GBD 
2019) and the Global Health Data Exchange (GHDx) 
database. Finally, we obtained metrics for evaluating 
journal impacts by Journal Citation Reports of Clarivate 
™ (2020).

Geospatial models
We built a global geospatial distribution model by pack-
ages of R, including the “ggplot2” and “maptools”. The 
global geospatial map was defined by 251 countries or 
regions, which was validated by EasyShu suits. Further-
more, the geospatial maps for the USA, Germany, and 
the UK have been built by public dataset (CSDN commu-
nities). In addition, the geospatial pattern of China was 
built by the EasyShu software 3.2.2 for interactive visuali-
zation. Given the overlapping dataset, the global map vis-
ualizing the results of this geospatial model in the present 
study may be highly similar (but not equal) to the one in 
our previous work [22].

Sampling inequality coefficient
To quantify sampling bias and geospatial pattern for 
sampled population, we estimated sampling inequality 
based on the Dagum-Gini algorithm [41]. We estimated 
the Gini coefficient with Dagum-Gini algorithm by fit-
ting multiple Lorenz curves, with absolutely high values 
for high sampling inequality. Specifically, we defined a 
relatively total sample size into each grid cell (e.g., each 
state in a country or each country in the world) based 
on extracted data in these eligible studies. Furthermore, 
the sub-modules were set by economic classification (i.e., 
MEDC and LEDC). Lastly, the Dagum-Gini model was 
used to decompose contribution from module-between 
variance, module-between-net variance, and intensity of 
transvariation. In this vein, we could estimate the Gini 
coefficient by adjusting the geospatial pattern and rela-
tive economic gap for a given economic entity, which 
improved statistical rigors by controlling unexpected var-
iances. To validate the robustness of the Gini coefficient, 
we also calculated the Theil index based on the informa-
tion entropy algorithm.

Case–control skewness
We calculated case–control skewness to estimate the 
extent to which the sample size between patients and the 
healthy control (HC) group was unbalanced, with a high 
value for high case–control skewness. We estimated the 
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ratio of the number of patients to HC when the sample 
size in the patient group was larger than the HC group 
and vice versa, which was used as a metric to quantify the 
case–control skewness.

Statistics
To examine the monotonic increasing trends for time-
series data, we capitalized on the non-parametric Mann–
Kendall Trend by using the R package [42]. Furthermore, 
we built both ARIMA (autoregressive integrated moving 
average) model and LSTM (long short-term memory) 
model to perform time-series prediction for the incre-
mental trends of the number of relevant studies during 
the future decade, which were implemented by Deep 
Learning Toolbox embedded in MATLAB 2020b (Math-
Works ® Inc.). Both models were trained by data split 
from 90% in the whole dataset and were tested in the 
remaining 10% dataset. Notably, we tested this model 
with real-world data using the actual number of relevant 
studies at the end of 2021 (Dec. 30) (see Fig. 1b).

Given the failure in fulfilling the prerequisites of 
parametric estimation, the Spearman rank model 
was defaulted for correlation analysis in the current 
study. Also, the parametric models for validating these 

correlations have been built as well. Furthermore, the 
95% confidence interval (CI) has been estimated by using 
Bootstrapping process at n = 1,000. Equivalent Bayes-
ian analytic models have been constructed as well for 
providing additional statistical evidence. We used the 
Jeffreys-Zellner-Siow Bayes factor (BF) with prior Cauchy 
distribution (r = 0.34), with BF > 3 for strong evidence. To 
examine the non-linear associations of these variables 
of interest, we have built the generalized additive model 
(GAM) with natural shape-free spline functions by R 
package (“mgcv”). To obviate overfitting, the shape-free 
splines (i.e., smooth function) were used in these models. 
Finally, metrics of model performance (i.e., classification 
accuracy) for each study were precision-weighted rather 
than the original ones as reported.

Checklist for quantitative assessment on quality
We evaluated study quality in terms of the following five 
facets that were integrated from these meta-analytic find-
ings: sampling representativeness (item 1: sample size 
and sites), model performance estimation (item 2: CV 
scheme), model generalizability (item 3: external valida-
tion), reporting transparency (item 4: reports for model 
performance) and model reproducibility (item 5: data/

Fig. 1  Trends for research aiming at neuropsychiatric diagnostic prediction (classification) during the recent three decades (1990–2020). A 
illustrates the growth of the number of studies concerning neuropsychiatric classification from 1995 to 2020. B shows a prediction of the number of 
relevant studies for future decades based on both the autoregressive integrated moving average (ARIMA) model and the long short-term memory 
(LSTM) model. The number of relevant studies in 2021 was used as a testing set in the real world. We trained these models with data from 1990 to 
2020 and tested them by using real data in 2021 to show the well generalizability. The models predicted the number of relevant studies would be 
increased to 114.13, and we found that the actual number of these publications in 2021 was 119. C presents trends for each psychiatric category 
during 1990–2021 (June). D shows the frequencies of first-author affiliation for all the included studies. E mapped the number of countries for the 
first affiliation in these included studies by using R packages “maptools” and “ggplot2”. F illustrates which journals prefer to publish these studies. 
The top–bottom rank for these journals was determined by the number of these studies adjusted by the total number of publications per year. The 
length of the bar shows the proportion of one journal including these studies on all the journals
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model availability). By ExpertScape™ rank and peer rec-
ommendations, we attempted to reach out to peer experts 
in multidisciplinary domains to examine the validity of 
this checklist, including data/computer science, psychia-
try, neuroscience, psychology, clinical science, and open 
science. To this end, we have received concerns or advice 
for item classification and scoring criteria from three 
independent experts, and have performed four rounds 
of revision to form a final 5-star rating system called 
“Neuroimaging-based Machine Learning Model Assess-
ment Checklist for Psychiatry” (N-ML-MAP-P). Three-
stage validation was used to ensure assessment quality as 
well. Scores for one study would be reevaluated by a third 
independent scorer once the absolute difference between 
two scorers was larger than 2 points.

Results
General information
Four hundred and seventy-six studies with 118,137 par-
ticipants from the 41,980 papers were eligible in this 
meta-research review (see Methods). These studies 
covered 66.67% (14/21) psychiatric disorders defined 
by the DSM-5 classification [43]. Diagnostic machine 
learning classifiers were mostly for schizophrenia (SZ, 
24.57%, 117/476), autism spectrum disorder (ASD, 
20.79%, 99/476), and attention deficit/hyperactivity dis-
order (ADHD, 17.85%, 85/476). To probe whether such 
research interests converged with the healthcare needs, 
we examined the association between the total number 
of machine learning studies concerning each psychiat-
ric disorder and their prevalence/disease burdens (Data 
source: Global Health Data Exchange, GHDx) [44, 45]. 
Our findings indicated that there was no significant asso-
ciation between the number of studies related to differ-
ent psychiatric disorders and their real-world prevalence 
(rho =  − 0.24, p = 0.47; BF01 = 1.4, moderate evidence 
strength for supporting the null hypothesis). Further-
more, we found no significant association between the 
number of these studies for psychiatric disorders and 
corresponding DALYs (i.e., disability-adjusted life-years)/
YLDs (i.e., years lived with disability) that reflected dis-
ease burden (DALYs, rho =  − 0.05, p = 0.89; BF01 = 2.5; 
YLDs, rho =  − 0.06, p = 0.89; BF01 = 2.6, moderate evi-
dence strength for null association). Based on World 
Bank (WB) and International Monetary Fund (IMF 2021) 
classification, populations sampled in these studies were 
from 39 upper-middle-income to high-income countries, 
leaving population from the remaining 84.46% (212/251) 
countries in the globe unenrolled. In addition, 59.45% 
(283/476) of these studies used domestically-collected 
samples, while 31.10% (148/476) reused open-access 
datasets (e.g., ABIDE and ADHD-200).

Historical trends
The total number of psychiatric machine learning stud-
ies for diagnostic classification on psychiatric disor-
ders increased markedly in the past 30  years (z = 5.81, 
p = 6.41 × 10 −9, Cohen d = 1.82, Mann-Kendell test) (see 
Fig. 1a and Additional file 1: Fig. S3). Based on time-series 
prediction models, we predicted a persistent increment 
for the number of studies pursuing brain imaging-based 
diagnostic classification for psychiatric disorders in the 
future decade (e.g., k = 229.65 in 2030, 95% CI: 106.85–
352.44) (see Fig. 1b and the “ Methods” section).

Despite the accelerated increase in the number of psy-
chiatric machine learning studies, the increase rate for 
different psychiatric disorders was found to be different: 
the number of existing studies on SZ, ASD, ADHD, major 
depression disorder (MDD), and bipolar disorder (BP) is 
significantly larger than that on other high-disease-bur-
den categories (e.g., eating disorder and intellectual dis-
ability) (see Fig.  1c). To quantify the increment pattern 
for different psychiatric categories, we capitalized on 
increment curve models. We found that increase speeds 
for machine learning models regarding neuropsychiat-
ric diagnoses towards SZ (b = 2.40, 95% CI: 2.05–2.74, 
p < 0.01) and ASD (b = 2.64, 95% CI: 2.25–3.02, p < 0.01) 
were significantly faster than others (see Additional file 1: 
Fig. S3 and Tab. S1).

Interestingly, a quite number of first authors of these 
studies (46.42%, 221/476) seemed to be trained in com-
puter and data science instead of psychiatry or neuro-
science (see Fig.  1d). Institutes from China, the USA, 
Canada, Korea, and the UK contributed mostly for the 
total number of these machine learning studies (see 
Fig. 1e). Moreover, by adjusting the total publications per 
year, we found that these studies were mostly published 
in journals with a special scope on neuroimaging, such as 
Human Brain Mapping and Neuroimaging: Clinical (see 
Fig. 1f and Additional file 1: Tab. S2-S3).

Sampling bias and sampling inequality
Geospatial pattern of sampling bias
Geospatial maps were generated to visualize the dis-
tribution of the sampled populations (i.e., the number 
of participants). We found that the sample populations 
covered only the minority upper-middle-income and 
high-income countries (UHIC) worldwide (nUHIC coun-

tries = 32; 12.74%). Even in UHIC, across-country imbal-
ance in sample population was striking (total sample 
size: nChinese = 14,869, nAmericans = 12,024, nGermans = 4, 330; 
see Fig. 2a and Additional file 1: Tab. S4). Moreover, we 
found a likewise prominent within-country imbalance 
of sample populations (see Fig. 2b, Additional file 1: Tab. 
S5-S8 and Additional file 1: Fig. S4-S5). Furthermore, as 
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for continents-based classification, populations of these 
machine learning models were largely enrolled from Asia 
(44.67%, adjusted by total population) and North Amer-
ica (26.76%, adjusted by total population). Notably, in the 
current meta-research review, no machine learning mod-
els were observed to train classifiers by samples in Africa 
despite its large population.

We examined whether the size of the sample popula-
tion in these models could be determined by the national 
economic level. Results showed a strikingly positive 
association between nation-wide GDP (Gross Domestic 
Product, Data source: IMF 2021) and total sample size all 

over the globe (r = 0.65, 95% CI: 0.40–0.81, conditions-
adjusted, p < 0.001; BF10 = 1.10 × 103, Strong evidence) 
(see Fig. 3a). Supporting that, such association was found 
within China (r = 0.47, 95% CI: 0.02–0.76, p < 0.05, con-
ditions-adjusted; BF10 = 1.93, moderate evidence) and the 
USA (r = 0.47, 95% CI: 0.10–0.73, p < 0.05, conditions-
adjusted; BF10 = 3.72, Strong evidence), respectively (see 
Fig. 3b–c).

Sampling inequality
To quantitatively evaluate such sampling bias, the new 
concept, sampling inequality, was introduced, which 

Fig. 2  Geospatial model for sample population regarding ML models towards neuropsychiatric classification in the world (A) and USA (B). Both 
maps were built by 1st administrative grid cell, with each country/region for the globe (251 countries/regions) and state for the USA (51 states). For 
better readability, we re-scaled the sample size by log-transformation. Sample size for a portion of countries/regions has been shown in these maps. 
A panel was depicted similarly to the Fig. 2A in our previous article [22], because of the overlapping datasets between them
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reflects both the sample-size gap and the geospatial bias 
for the sampled populations reported in existing psy-
chiatric machine learning studies. We used sampling 
Gini coefficient (G, ranged from 0 to 1.0) based on the 
Dagum-Gini algorithm, to quantify the degree of sam-
pling bias (see Methods). We found severe sampling ine-
quality in samples of prior psychiatric machine learning 
studies (G = 0.81, p < 0.01, permutation test, see Fig. 3d). 
Furthermore, based on IMF classification, we grouped 
global countries into More Economically Developed 
Country (MEDC) bloc and Less Economically Devel-
oped Country (LEDC) bloc and found a significant differ-
ence in the sampling inequality between them: sampling 
Gini coefficient in LEDC was threefold (GLEDC = 0.94, 
GMEDC = 0.33, p < 0.01, permutation test) higher than 
that in MEDC. In addition, we also examined within-
country sampling inequality. Results showed a weak 
sampling inequality in China (G = 0.47) and the USA 

(G = 0.58), but severe inequality in Germany (G = 0.78), 
the UK (G = 0.87), Spain (G = 0.91), and Iran (G = 0.92) 
(see Fig.  3d and Additional file  1: Tab. S9). Further-
more, we found a relatively lower sampling inequality in 
Europe compared with other continents (GEurope = 0.63; 
see Fig. 3e and Additional file 1: Tab. S10-S11). Notably, a 
significantly positive association between these sampling 
Gini coefficients and averaged classification accuracy was 
uncovered (r = 0.60, p = 0.04, one-tailed; permutation test 
at n = 10,000), which possibly implied potential inflated 
estimates for model performance because of such sam-
pling inequality.

To examine whether sampling inequality was fur-
ther increased by economic gap, that was, individuals 
(patients) living in richer countries (areas) were more 
likely to be recruited in building rich-areas-machine 
learning-specific models, a generalized additive model 
(GAM) with natural shape-free spline function was 

Fig. 3  Sampling bias and sampling inequalities in these trained ML models. A provides a scatter plot for the association between GDP and sample 
size for 32 counties/regions in the globe. B offers a scatter plot showing the association between GDP and sample size for 20 provinces within 
China. (C) shows the association between GDP and sample size for 25 states within the USA. (D) plots Gini sampling coefficients for the top 10% 
countries with large sample sizes to train ML models in existing studies, with high Gini value for high sampling inequality. LEDC and MEDC were 
categorized by World Bank (WB) and International Monetary Fund (IMF) classification. E illustrates the sampling bias and Gini coefficients for each 
continent. The left panel shows the proportion of the total sample size for training ML models in existing studies on the total sample population for 
each continent. The right panel shows the Gini coefficient for each continent
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constructed. Interestingly, the GDP of these countries 
allows for an accurate prediction of the sampling ine-
quality values (β =  − 2.75, S.E = 0.85, t = 4.75, p < 0.001, 
R2

adj = 0.40; r =  − 0.84, 95% CI: − 0.41 to − 0.97, p < 0.01; 
BF10 = 13.57, strong posterior evidence), with higher 
national income for weaker sampling inequality. The 
apparent presence of sampling bias and high sam-
pling economic inequality for the reviewed psychiatric 
machine learning studies may resonate with generaliza-
tion failure that was widely concerned in the field.

Methodological considerations on generalizability
Sample size, validation, technical shifting, and case–control 
skewness
We extended the investigations of sampling bias and 
sampling inequality to an analysis of other methodologi-
cal facets that may likely lead to overfitting and hence 
magnify the generalization errors. A significant correla-
tion was found between the sample size in psychiatric 
machine learning studies and publication year in the last 

three decades (r(total) = 0.75, 95% CI: 0.22–0.93, p = 0.013; 
BF10 = 5.83, Strong evidence) (see Fig. 4a and Additional 
file  1: Tab. S12-S14). Despite improvement over time, 
we observed a strikingly biased distribution skewing 
to a small sample size (n < 200) in these machine learn-
ing models (73.10%, 348/476) (see Fig. 4b and Additional 
file 1: Tab. S15).

In addition, we found a prominently positive associa-
tion between the ratio of using k-fold cross-validation 
(CV) scheme and publication year in recent dec-
ades (r = 0.82, 95% CI: 0.40–0.95 p < 0.01; BF10 = 15.80, 
Strong evidence) (see Additional file  1: Tab. S16-S17). 
As repeated recommendations by didactic technical 
papers [8, 10, 34, 46], adopting a k-fold CV to validate 
model performance could outperform popular LOOCV 
methods in terms of model variance and biases. We 
thus examined model performance between them by 
precision-weighted method [47] that could adjust the 
effects of sample size and between-study heterogeneity. 
Results showed that model performance estimated by 

Fig. 4  Methodological considerations for existing ML models towards psychiatric diagnosis. A illustrates increment trends for sample size during 
the recent three decades by Gaussian kernel density plots. Labeling 2011 sums up all the sample size from 1990 to 2011. B shows the counts for 
subgroups by dividing these studies according to sample size. C plots the trends of using cross-validation (CV) schemes by accounting counts 
from all the included studies during the recent three decades. D shows model performance comparisons between independent-sample validation 
and within-sample validation. The non-parametric W test was used for statistical inferences, with *** for p < .00. Precision-weighted accuracy was 
estimated by Woo et al. E depicts Gardner-Altman estimation for the classification accuracy comparison between population-within sample and 
population-across sample. Black dot indicated the point estimate for the mean difference (delta) of the two groups, and the shadow areas showed 
the distribution estimated by delta. F presents a frequency plot to show case–control skewness
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LOOCV was prominently higher than k-fold CV (Acc 
LOOCV = 80.35%, Acc k-fold = 76.66%, precision-adjusted, 
w = 20,752, p < 0.001, Cohen d = 0.31; BF10 = 2289, strong 
evidence) (see Fig.  4c). Details for other methodologi-
cal considerations can be found at Additional file 1: Tab. 
S18-22.

As for independent-sample validation, we found a sig-
nificantly positive association between the ratio of vali-
dating model performance in the independent sample 
(site) and publication year in recent decades (r = 0.88, 
95% CI: 0.63–0.97 p < 0.01; BF10 = 234.93, Strong evi-
dence). Nevertheless, the majority of these machine 
learning studies (84.24%, 401/476) still lacked validation 
for model generalizability in the independent sample(s). 
Furthermore, we found that the classification perfor-
mance of these models tested in the independent samples 
was more “conservative” than those tested in the inter-
nal samples (Acc independent-sample validation = 72.71%, Acc 
others = 77.75%, precision-adjusted, w = 3,041, p < 0.001, 
Cohen d = 0.32; BF10 = 29.43, Strong evidence) (see 
Fig.  4d and Additional file  1: Tab. S23). To directly test 
the impact of sampling bias on model generalizability, we 
compared the model performance between cross-coun-
try samples (i.e., training model in a sample from one 
country and testing model in a sample from other coun-
tries) and within-country (i.e., training and testing model 
in sample within the same countries) sample. Results 
showed that model performance was more “conservative” 
in the cross-country sample than in the within-country 
sample (Acc cross-country sample = 72.83%, Acc within-control 

sample = 82.69%, precision-adjusted, w = 2,008, p < 0.001, 
Cohen d = 0.54; BF10 = 150.90, Strong evidence; see 
Fig. 4e).

Furthermore, we specifically examined the shift of 
mainstream neuroimaging modalities and features of 
these models in recent decades. Results showed that the 
(functional) MRI was still the mainstream neuroimag-
ing technique to build these models over the last three 
decades (i.e., averaged 73.70% of these models for (func-
tional) MRI, 21.57% for EEG/ERP, 2.69% for fNIRs, 2.02% 
for MEG and 0.21% for PET). Despite that, the increasing 
trend of using multi-modalities in training these neuro-
imaging-based ML models was observed, from 3.22% to 
19.19% of these models over time. In addition, with the 
developments of ML techniques, the ratio of using deep 
learning models or complicated parameterized models to 
“shallow learning models” was increasing during recent 
decades, particularly after 2019 (i.e., 0% in 2012, 10.40% 
in 2016, and 32.32% in 2020). As for the strategy of fea-
ture selection, we found an increase in the applications of 
algorithmic techniques than of pre-engineered selections 
in building these models (i.e., 0% before 2012, and aver-
aged 30.90% after 2012). Nevertheless, no changes were 

found for the shift of paradigm from a single-snapshot 
case–control cohort to repetitive scanning of the same 
participants in these models. While the shifting of main 
neuroimaging modalities, model complexity, and feature 
selection strategy was observed over time, we found no 
prominent trends of model performance (i.e., precision-
weighted accuracy) over time (Accuracy: 84.43%, 95% CI: 
81.84–87.88% at 2011; 84.38%, 95% CI: 80.79–87.86% at 
2015; 84.78%, 95% CI: 82.82–87.49% at 2020). Full results 
for these findings can be found in Additional file 1: Fig. 
S6-S8.

Finally, by calculating the standardized case–control 
ratio (see the “Methods” section), we observed a case–
control skewness (i.e., the number of patients is larger 
than healthy control, and vice  versa) in a quarter of all 
the included studies (25.37%, 121/476) (see Fig. 4f ). The 
case–control skewness was significantly (but weakly) 
associated with the reported classification accuracy, 
which may imply inflated accuracy due to the imbalanced 
case–control distribution in the data (r = 0.15, 95% CI: 
0.04–0.27, p < 0.05; BF10 = 2.04, moderate evidence).

Technical transparency and reproducibility
We further determined whether existing studies provided 
sufficiently transparent reports to evaluate potential 
overfitting and reproducibility. We found that only one 
fifth of them (23.94%, 114/476) fulfilled the minimum 
requirements for reporting model results (i.e. balanced 
accuracy, sensitivity, specificity, and area under curve) by 
the criterion as proposed by Poldrack [8, 48] (see Fig. 5a).

As for the model reproducibility, only 12.25% (58/476) 
of studies shared trained classifiers (full-length codes). 
Furthermore, only 19.12% (91/476) studies claimed to 
provide available original data. Notably, we manually 
checked the validity of these resources as these studies 
stated, one-by-one, but found that only a small portion of 
trained classifiers (32.27%, 19/58) or data (15.38%, 14/91) 
were actually available/accessible (see Fig.  5b). Thus, 
incomplete reports for model results and poor technical 
reproducibility may be one of the sources to hamper the 
assessment of generalizability, and hence, the “generaliza-
tion crisis” remains.

Five‑star quality rating system
To promote the establishment of an unbiased, fair, and 
generalizable diagnostic model, we proposed a 5-star 
quality rating system called “Neuroimaging-based 
Machine Learning Model Assessments Checklist for 
Psychiatry (N-ML-MAP-P)” by integrating these meta-
research findings aforementioned and up-to-date guide-
lines that provided by multidisciplinary experts (see 
Methods). This rating system incorporated five elements, 
including sample representativeness, CV methods, 
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independent-sample validations, reports for model per-
formance, and data/model availability (see Fig. 6a).

Based on this N-ML-MAP-P rating system, we 
found that overall quality scores for these models have 
increased consistently over the last decade (r = 0.77, 95% 
CI: 0.25–0.99, p < 0.01; BF10 = 7.04, strong evidence), 
demonstrating that study quality for machine learning 
models on psychiatric diagnosis has been increasingly 
improved (see Fig.  6b). In addition, we also examined 
study quality for each item and revealed that ratings for 
sample size, CV methods, independent validation, and 
reporting transparency have been gradually improved 
(see Additional file  1: Tab. S24). However, we found no 
prominent increase in quality scores on technical (data 
and model) availability (see Additional file  1: Tab. S25). 
Furthermore, we found a considerably strong positive 
correlation between the number of disorder-specific 
studies and their quality scores (r = 0.69, 95% CI: 0.13–
0.88, p < 0.05; BF10 = 4.10, strong evidence), with relatively 
high quality for machine learning studies concerning SZ, 
ASD, and ADHD.

Despite the increase, the overall quality scores 
remained relatively low in the vast majority of these mod-
els (see Fig. 6c–d). Intriguingly, we found a weak but sta-
tistically significant association between journal impact 
factors/journal citation indicator (JIF/JCI) and the scores 
of model quality rated by N-ML-MAP-P assessment 
(r(JIF) = 0.18, 95% CI: 0.08–0.30, p < 0.001; BF10 = 41.90, 
strong evidence; r(JCI) = 0.15, 95% CI: 0.06–0.25, p < 0.01; 
BF10 = 8.60, strong evidence) (see Fig.  6e). Furthermore, 

we also observed a weakly negative association between 
the JIF/JCI and model performance (r =  − 0.19, 95% 
CI: − 0.10 to − 0.28, p < 0.001; BF10 = 4697.67, strong evi-
dence) (see Fig. 6f ).

In summary, our purpose-built N-ML-MAP-P system 
for quantitatively assessing the quality of these mod-
els revealed prominent improvements for them over 
time, possibly indicating that efforts made by scientific 
communities [8, 10, 49] to address overfitting issues 
in diagnostic machine learning models for psychiatric 
conditions may be effective. However, existing machine 
learning studies may still face several challenges, e.g., low 
overall quality and poor technical reproducibility, which 
still characterize a majority of these studies. A full list of 
these models can be found in Additional file 2 [50–510].

Discussion
We conducted a pre-registered meta-research review and 
quantitative appraisal to clarify generalizability and even 
quality in existing machine learning models on neuroim-
aging-based psychiatric diagnosis (k = 476) from insights 
into sampling issues, methodological flaws, and techni-
cal availability/transparency. By doing so, we quantified a 
severe sampling economic inequality in existing machine 
learning models. By further determining methodological 
issues, we found that sample-size limitation, improper 
CV methods, lack of independent-sample validation, and 
case–control skewness still contributed to an inflation 
of model performance. Furthermore, we found a poor 
technical availability/transparency which may in turn 

Fig. 5  Reporting transparency and technical (data and model) availability. A presents patterns of reporting model performance across sensitivity, 
specificity, balanced accuracy, and area under curve (AUC) by a Venn plot. B sums up the proportion of having actual model availability, data 
availability, and datasets
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critically hamper mechanisms to examine generalizability 
for these models. Based on these findings, we developed 
a checklist to quantitatively assess the quality of existing 

machine learning models. We found that despite increas-
ing improvement, the overall quality of the vast majority 
of these machine learning models was still low (88.68% 

Fig. 6  Neuroimaging-based machine learning model assessment checklist for psychiatry (N-ML-MAP-P). A provides details for five items and 
scoring criteria in this checklist for evaluating the study quality of all the included studies. B presents a scatter plot for showing the trends of 
improving study quality during the recent decade (2011–2021). C shows the overall study quality for each psychiatric category in existing studies. 
This plot is ranked by total quality score, and bars indicate standard error (S.E.). C provides a frequency plot for overall quality scores. D shows the 
trajectories of study quality for different affiliations, including data/computer science, neuroscience, psychiatry, and others. E draws a scatter plot 
showing the association between journal quality (i.e., journal impact factor, JIC) and overall quality scores. D provides a scatter plot to show the 
association of overall quality scores with model accuracy as reported in these studies
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models were rated at low quality in existing literature). 
Taken together, the results indicated that ameliorating 
sampling inequality and improving the model quality 
may facilitate to build of unbiased and generalizable clas-
sifiers in future clinical practices.

One critical finding that warrants further discus-
sion is the severe global sampling inequality in existing 
machine learning models. Despite rapid proliferation, 
we found that the samples were predominately recruited 
from upper-middle-income and high-income countries 
(444/476 models, 93.28%). Also, we observed regional 
sampling inequalities, with the Gini coefficient in LEDC 
being 3-fold higher than that in MEDC. To make mat-
ters worse, both sampling inequalities were found to be 
enlarged by regional economic gaps. Despite support-
ing the descriptive observation to previous studies [22, 
35, 511], the present study provided unique statistical 
evidence to clearly reveal the severity of sampling bias 
of these extant models in the globe or across countries 
(regions), which advanced our knowledge to make the 
sampling bias quantitatively comparable rather previ-
ously conceptional concern. Beyond that, the predictive 
role of national (regional) economic level on these sam-
pling biases has been quantitatively verified, possibly 
indicating a sampling economic inequality in the neuro-
imaging-based ML-aid diagnosis. For instance, in China, 
machine learning models were predominately trained by 
samples from mid-eastern Chinese with high incomes, 
whereas there was no evidence to validate whether these 
trained machine learning models could be generalized 
for western Chinese with lower incomes. Notably, it is 
the same case with predictive models, recent works have 
revealed generalization failure  for cross-ethnicity/race 
samples in neuroimaging-based predictive models [512, 
513]. Compared to previous studies using qualitative 
inferences or conclusions [514, 515], we provided prelim-
inary evidence to quantify the extent to which sampling 
inequality impacted model generalizability, this result 
may imply how much sampling inequality should be lim-
ited to built generalizable neuroimaging-based diagnostic 
classifiers. As a didactic example recently, Marek and col-
leagues (2022) have provided a quantitatively empirical 
evidence that thousands of subjects are needed to attain 
reliable brain-behavior associations, although the inten-
sive discussions or concerns for the high overfitting in 
neuroimaging-based models with small sample sizes have 
been debated for a long-lasting time [10, 34, 46, 516]. 
Thus, by quantitatively revealing the association of sam-
pling issues to inflated classification accuracy, the present 
study may provide valuable insights into how to increase 
sampling equality enough to achieve good model gener-
alizability in future empirical studies. To tackle this issue, 
diversifying sample representation (i.e., racial balance or 

socioeconomic balance) in neuroimaging-based predic-
tive models has been increasingly advocated [517, 518]. 
That is, existing “population-specific models” trained 
with less or even no samples in LEDC and Africa prac-
tically questioned their generalizability across intersec-
tional populations. More importantly, besides common 
sense for the disadvantages of global economic gaps in 
science development, “leaving the poor ones out” in 
training machine learning models may not only render 
poor generalizability to psychiatric diagnostic models 
but also exacerbate global inequalities in clinical health-
care. Relating to this consideration, future studies could 
explore whether and how economic gaps contribute to 
biases in clinically diagnostic measures, such as neuro-
imaging-based precision diagnosis in high-income coun-
tries, as opposed to more subjective symptom-dependent 
diagnosis in low-income countries. This investigation 
could further our understanding of how economic dis-
parities impact the inequalities in the development and 
implementation of diagnostic basis. Nonetheless, another 
insightful viewpoint worthy to note was that an overly 
board emphasis on generalizability may impede clinical 
applications of these machine learning models in specific 
medical systems (e.g., healthcare) [519, 520], with high 
generalizability at the expense of optimal model perfor-
mance within specific cohorts. In other words, despite 
poor geospatial or socioeconomic generalizability, these 
machine learning models posing high performance 
within specific contexts (e.g., machine learning model 
trained by data in the A hospital could accurately predict 
patients within A hospital rather than other ones) may be 
still reliable into a given clinical practice.

Another factor contributing to poor generalizabil-
ity was rooted in methodological issues. We found that, 
with consistent efforts made by scientific communi-
ties [8, 521], the ratio of using k-fold CV in estimating 
model performance gradually increased during recent 
decades, which may partly mirror effective controls for 
overestimation on diagnostic accuracy that was caused 
by flawed CV scheme [23, 34]. However, the LOOCV 
was still used widely (40.33%) in recent decades, which 
may overfit models compared to those using k-fold CV 
(precision-weighted classification Acc level-one-subject-one CV, 
80.35%; Acc k-fold CV, 76.66%, p < 0.001). Thus, although 
the repeated technical recommendations and calls may 
be effective in changing our practices to rectify model 
overfitting, this issue has not been fully addressed to date 
[522, 523]. Compared to the CV method, testing model 
performance in external (independent) samples could 
provide more accurate estimates for interpretability and 
generalizability [524, 525]. Nevertheless, only 15.76% 
models were validated in the independent sample (s). 
More importantly, we observed that model performance 
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may be highly overestimated in within-country inde-
pendent samples compared to cross-country ones (pre-
cision-weighted classification Acc cross-country, 72.83%; 
Acc within-country, 82.69%, p < 0.001). Thus, not only “inde-
pendent-sample” validation but also the well-established 
“intersectional-population-cross” validation is demanded 
to strengthen generalizability in future studies [526]. 
Moreover, few machine learning models (< 5%) provided 
adequate technical availability, which diluted our confi-
dence for the generalizability and reproducibility of these 
models, especially in the “big data” era [527]. On balance, 
we found that methodological flaws of these machine 
learning models were increasingly ameliorated to prompt 
model generalizability in recent decades, but sample 
limitation, improper CV methods, lack of “cross-popu-
lation” independent-sample validation, and poor techni-
cal availability still exposed these models to high risks of 
overfitting.

In the current study, we proposed a quantitative frame-
work for evaluating the quality of these models, covering 
sample, CV, independent-sample validation, transpar-
ency, and technical availability. We found that the overall 
quality of these models increasingly improved over time. 
As aforementioned, some didactic methodological papers 
[8, 9, 23] have considerably contributed to prompting the 
scientific communities to rectify these methodological 
flaws in machine learning models. Furthermore, report-
ing benchmarks or guidelines were also developed to 
increase the transparency of information for accurately 
evaluating model performance in recent years [38, 528]. 
However, despite encouraging improvements, the low-
quality machine learning models seem to still dominate 
this field, as we observed in the current study that single-
site samples and poor data/model availability remained 
largely unchanged [15]. Together, the findings may imply 
that existing machine learning models are not as solid as 
claimed in terms of generalizability and reproducibility in 
clinical practices in their current form. It is noteworthy 
that the high-quality models that were rated in the cur-
rent study have not yet been tested for generalizability. 
Thus, testing the generalizability or reproducibility of 
these models from originally trained samples to different 
populations (e.g., countries, ethnics, income-levels) could 
be a more reliable and valid way to validate the generaliz-
ability in future studies.

To tackle these generalizability issues, here we rec-
ommended several practical tips. Beyond sample size, 
recruiting a diverse, economically-equal, case–con-
trol balanced, and representative sample is one of the 
best avenues to obviate sampling biases. Technically 
speaking, the cross-ethnicity/race or cross-country 
independent sample should be prepared for the gen-
eralizability test. At least, the nest k-fold CV method 

is clearly warranted. Moreover, we also recommend 
transparent and unfolded reports for model perfor-
mance facilitating to take these models into clinical 
insights. In addition, improving the data/modal avail-
ability for these models is one of the ways to provide 
venues to validate clinical applicability. To conceptu-
alize and streamline these recommendations, we have 
preliminary built the “Reporting guideline for neuroim-
aging-based machine learning studies for psychiatry” 
(RNIMP 2020) checklist and diagram (see Additional 
file 3: Tab. S1-2); this suit is developed by encapsulating 
the above tips and currently promising benchmarks [8, 
23].

This study warrants several limitations. First, we nar-
rowed the research scope into diagnosis but not all the 
categories were sampled evenly. Predictive machine 
learning models for psychiatric conditions included (at 
least) three forms of prediction: diagnosis (i.e., predict-
ing the current psychiatric condition), prognosis (i.e., 
predicting outcome in future onsets), and prediction 
(i.e., predicting response or outcome for a given treat-
ment) [529]. Second, this study may not cover all eligi-
ble data, especially in literature that was published in 
African areas or written in non-English languages, as 
data were screened from English-written peer-reviewed 
papers. Therefore, we stress that all the findings are 
grounded on these studies, instead of completely rep-
resenting the real-world situation. Third, the current 
study did not probe into the model generalizability 
from biological insights, but focused on sampling bias 
and methodological issues only. Thus, it left room to 
be uncovered in future works. Fourth, we empirically 
inferred the academic training experiences of the first 
authors by their affiliation. However, such assumptions 
may not be solid. Extending these conclusions from this 
section to elsewhere should be more prudent. Fifthly, 
the present study has not thoroughly analyzed the fac-
tors that contribute to the changes in the methodologi-
cal and technical underpinnings of machine learning 
models for psychiatric diagnosis. For instance, the 
increased sample size in these models over the last dec-
ades may be attributed to the improvements of imag-
ing techniques/infrastructures, the developments of 
machine learning knowledge, and the decrease of data 
costs, which are not explored in the current study. In 
other words, future studies could reap huge fruits from 
delving into the specific roles of these factors in the 
advances of these models, particularly in sample size. 
Lastly, given that the neuroimaging-based signatures 
are not practically applicable for diagnosing all psychi-
atric conditions, the statistics for unbalanced devel-
opments and qualities across these DSM categories 
should be explained more prudently.
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Conclusions
On balance, we provided meta-research evidence to 
quantitatively verify the sampling economic inequal-
ity in existing machine learning models for psychiatric 
diagnosis. Such biases may incur poor generalizability 
that impedes their clinical translations. Furthermore, we 
found that the methodological flaws have been increas-
ingly ameliorated because of repeated efforts made by 
these technical papers and recommendations. Nonethe-
less, in the present study, we stretched views to find that 
these limitations including small sample size, flawed CV 
method (i.e., LOOCV), no independent-sample valida-
tion, case–control skewness, and poor technical avail-
ability still remained, and have demonstrated quantitative 
associations of such limitations to inflated model per-
formance, which may hence indicate model overfitting. 
In addition, poor reporting transparency and technical 
availability were also observed as a hurdle to translate 
these models into real-world clinical actions. Finally, we 
extended to develop a 5-star rating system to provide a 
purpose-built and quantitative quality assessment of 
existing machine learning models and found that the 
overall quality of a vast majority of them may still be low. 
In conclusion, while these models showed a promising 
direction and well-established contributions in this field, 
it is suggested that enhancing sampling equality, meth-
odological rigor, and technical availability/reproducibility 
may be helpful to build an unbiased, fair, and generaliz-
able classifier in neuroimaging-based machine learning-
aid diagnostics of psychiatric conditions.
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LEDC (MEDC)	� Less (more) economic developed countries
LOOCV	� Leave-one-out cross-validation
LSTM	� Long short-term memory
MDD	� Major depressive disorder
MHDB	� Mental health disease burden
ML	� Machine learning
OSF	� Open Science Framework
R & D	� Research and Development expenditure
ROB	� Risk of bias
SZ	� Schizophrenia
UHIC	� High-income countries
WB	� World Bank
WEIRD	� Western, Educated, Industrialized, Rich, and Democratic
YLDs	� Years lived with disability
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