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Abstract 

Background Determining the grade and molecular marker status of intramedullary gliomas is important for assess-
ing treatment outcomes and prognosis. Invasive biopsy for pathology usually carries a high risk of tissue damage, 
especially to the spinal cord, and there are currently no non-invasive strategies to identify the pathological type of 
intramedullary gliomas. Therefore, this study aimed to develop a non-invasive machine learning model to assist doc-
tors in identifying the intramedullary glioma grade and mutation status of molecular markers. 

Methods A total of 461 patients from two institutions were included, and their sagittal (SAG) and transverse (TRA) 
T2-weighted magnetic resonance imaging scans and clinical data were acquired preoperatively. We employed a 
transformer-based deep learning model to automatically segment lesions in the SAG and TRA phases and extract 
their radiomics features. Different feature representations were fed into the proposed neural networks and compared 
with those of other mainstream models. 

Results The dice similarity coefficients of the Swin transformer in the SAG and TRA phases were 0.8697 and 0.8738, 
respectively. The results demonstrated that the best performance was obtained in our proposed neural networks 
based on multimodal fusion (SAG-TRA-clinical) features. In the external validation cohort, the areas under the 
receiver operating characteristic curve for graded (WHO I–II or WHO III–IV), alpha thalassemia/mental retardation 
syndrome X-linked (ATRX) status, and tumor protein p53 (P53) status prediction tasks were 0.8431, 0.7622, and 0.7954, 
respectively.
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Conclusions This study reports a novel machine learning strategy that, for the first time, is based on multimodal 
features to predict the ATRX and P53 mutation status and grades of intramedullary gliomas. The generalized applica-
tion of these models could non-invasively provide more tumor-specific pathological information for determining the 
treatment and prognosis of intramedullary gliomas.

Keywords Intramedullary gliomas, Alpha thalassemia/mental retardation syndrome X-linked, Tumor protein p53, 
Multimodal, Machine learning

Background
Intramedullary gliomas (IMGs) are the most common 
primary spinal cord neoplasms, accounting for approxi-
mately 80% of spinal cord tumors and 2–4% of central 
nervous system tumors [1]. The tumor grade and genetic 
and histological characteristics of gliomas are consid-
ered to affect their prognosis and response to treatment. 
The fifth edition of the WHO Classification of Tumors 
of the Central Nervous System (WHO CNS5) promotes 
the application of molecular characteristics for diagno-
sis and grading. In general, pathological examination 
and immunohistochemistry (IHC) during surgery or 
biopsy are required to analyze tumor molecular bio-
markers [2, 3]. Without pathological guidance, therapeu-
tic options for patients who are unsuitable for surgery 
or those who choose nonsurgical therapy may be lim-
ited. Although relatively safe, these invasive examina-
tions can damage the normal brain or spinal cord tissue. 
Owing to the highly dense neural structure of the spinal 
cord, any minor injury may cause permanent damage 
to bodily function [4]. Hence, biopsy is not suitable for 
IMGs, and thus, the demand for alternative non-invasive 
approaches that can offer genetic and histological evi-
dence of IMGs has surged [5].

Accurate classification of IMG preoperatively is crucial 
for physicians to develop an appropriate treatment plan. 
Preoperative magnetic resonance imaging (MRI) remains 
the most widely utilized and efficient technique for 
detecting spinal cord lesions in clinical practice. Increas-
ing evidence has revealed the feasibility of using MRI to 
predict the type of glioma and molecular biomarkers, 
such as IDH1, Ki67, and H3-K27M, via machine learning 
or deep learning method [6–8]. However, only a limited 
number of studies have attempted to predict markers and 
classification of IMGs based on MRI owing to the lack of 
sufficient training in such rare tumors [9, 10].

Although IMGs and brain gliomas are both derived 
from glial cells, the molecular characteristics of primary 
IMGs are significantly different from those of brain gli-
omas [11, 12]. As summarized in the WHO CNS5, the 
mutation-site genotypes of genes such as isocitrate dehy-
drogenase (IDH), tumor protein p53 (P53), and alpha 
thalassemia/mental retardation syndrome X-linked 
(ATRX) are important indicators for the classification 

of gliomas [13]. Despite the commonly mentioned IDH 
mutations in brain gliomas, IDH mutations are rare in 
IMGs. The absence of IDH mutations in the spine can-
not be used to distinguish between grade I and II diffuse 
astrocytomas. Moreover, IDH IHC would be ineffective 
because most IMGs lack the conventional IDH1 p.R132H 
mutation [12]. Hence, determining the mutation status of 
ATRX and P53 in IMGs is especially important.

Methods
Aim
The present study aimed to develop a non-invasive pre-
operative method for predicting IMG grade and muta-
tional status of molecular markers. Towards this goal, 
we retrospectively analyzed the preoperative MRI scans 
of patients with IMGs whose ATRX and P53 muta-
tion statuses were tested by IHC. In the experimental 
design, multiple feature representations and mainstream 
machine learning models were compared to explore the 
superior predictive effect. After exploring the superior 
feature representation of novel machine learning mod-
els, including WHO-Mind, ATRX-Mind, and P53-Mind, 
methods were developed to accurately classify the glioma 
grade and predict the ATRX and P53 mutation statuses 
of IMGs. Additionally, rigorous external validation was 
performed to verify the generalizability of the proposed 
method.

Patient demographic characteristics and data acquisition
This retrospective study was approved by the ethical 
committees of Beijing Tsinghua Changgung Hospital 
(hospital 1) and The First Affiliated Hospital of Zheng-
zhou University (hospital 2) and was conducted in 
accordance with the principles of the Declaration of Hel-
sinki. The requirement for obtaining informed consent 
was waived.

We collected the records of patients from two hos-
pitals (hospital 1: January 2015 to April 2021 and hos-
pital 2: February 2017 to October 2021). The patient 
inclusion criteria were preoperative MRI examination, 
pathological diagnosis of IMGs according to the WHO 
CNS5, and IHC-confirmed ATRX and P53 mutation sta-
tus. Patients who had undergone biopsy, chemotherapy, 
and radiotherapy and those with IMG metastases from 
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brain glioma were excluded. Following the initial patient 
screening, MRI data were evaluated, and the exclusion 
criteria were as follows: absence of sagittal (SAG) and 
transverse (TRA) T2-weighted imaging (T2WI) scans 
and artifacts in the MRI image.

Data on clinical baseline characteristics, including 
age, sex, smoking, alcohol consumption, medical history 
with accompanying diseases, time of onset, preoperative 
McCormick score, and radiological features of tumor-
related lesions, were collected. Moreover, all radiologi-
cal features, including tumor number, axis ratio (tumor/
spinal cord), bleeding, cysts, spinal cord cavity, edema, 
atrophy, and malformation, were independently assessed 
by three neuroradiologists. All of these features were not 
obtainable by radiomic feature extraction. Two experi-
enced pathologists performed the pathological evaluation 
of all gliomas using the WHO CNS5 for glioma grading 
and classification [13]. We classified glioma grades as low 
grade (WHO I–II, benign) and high grade (WHO III–IV, 
malignant), and the mutation status of ATRX and P53 
was determined by IHC.

Patients recruited from hospital 1 were included in the 
primary cohort (n = 332) and were randomly assigned to 
the training set and internal validation set after fivefold 

cross-validation according to the ATRX/P53 mutation 
status and tumor grade. Patients from hospital 2 were 
included in the independent external validation cohort 
(n = 129). A detailed flow diagram of the patient selection 
process is illustrated in Fig. 1.

MRI acquisition and region of interest segmentation
MR data were obtained employing a 3.0-T MR scanner 
(Discovery MR750; GE Healthcare, Milwaukee, WI) in 
hospital 1 and either Siemens (Verio, Prisma, or Skyra; 
Siemens Healthcare, Erlangen, Germany) or Philips 
(Ingenia, Philips Medical System, Best, The Netherlands) 
MR systems in hospital 2. An overview of the parameters 
used to acquire MRI is given in Additional file 1, which 
shows that scans are obtained by scanners from dif-
ferent vendors employing various acquisition settings. 
Identifying the borders of low-grade gliomas is difficult 
on T1-weighted and contrast-enhanced sequences; thus, 
the T2-weighted (T2W) sequence is well accepted for 
identifying abnormal hyperintense signals representing 
gliomas, and tumor regions of interest (ROIs) were delin-
eated on SAG and TRA T2WI separately [14].

Lesions were delineated on both SAG and TRA 
T2WI by two experienced neuroradiologists using the 

Fig. 1 Flow diagram showing the patient selection protocol and inclusion and exclusion criteria. ATRX, alpha thalassemia/mental retardation 
syndrome X-linked; IHC, immunohistochemistry; P53, tumor protein p53; SAG, sagittal; TRA, transverse; WI, weighted imaging
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ITK-SNAP software (www. itksn ap. org). Abnormal hyper-
intense signals on T2W MR images were regarded as 
tumor regions, and the signals of cerebrospinal fluid, spi-
nal cord cavity, and edema were avoided. If the ROI was 
controversial, a senior neuroradiologist performed the 
final determination. T1-weighted images with and with-
out gadolinium enhancement, short T1 inversion recov-
ery, and fluid attenuation inversion recovery images were 
collected for most patients to aid in identifying tumors. 
Only T2WI was used in subsequent studies. Finally, to 
reduce the heterogeneity between different scanners, we 
resampled the T2W images and the corresponding ROI 
mask into a uniform voxel size of 0.5 × 0.5 × 5 mm across 
all patients for radiomic extraction.

Lesion segmentation using deep learning
After preprocessing, deep learning models were pro-
posed to segment lesions, which greatly improved 
future work efficiency. This work selected a deep learn-
ing model method based on the transformer architecture 
(Swin transformer) because of its superiority in multiple 
domains [15, 16]. The Swin transformer adopts a hierar-
chical design containing a total of four stages: each stage 
decreases the resolution of the input feature map and 
expands the perceptual field layer by layer, similar to a 
convolutional neural network. In addition, it is designed 
with patch embedding, which cuts MRI scans into 
patches and embeds them into the model. Although this 
architecture has performed well in several tasks [17, 18], 
its use for segmenting IMGs has not been reported.

Both SAG and TRA images of the primary cohort 
were employed for the training, internal, and external 
validation cohorts for testing. The input channel was 
two dimensional, that is, all MRI sequences were con-
verted into slices and then batch inputted, and the final 
output results were reconstructed in 3D. Transfer learn-
ing was adopted for training, and the pre-trained model 
was swin_transformer_base_patch4_window7_224_
imagenet_1k. The backbone of the model was 
SwinTransformer_base_patch4_window7_224.

Feature extraction and selection
Radiomic features were extracted using the PyRadiomics 
module written in Python 3.7 in accordance with a previ-
ous study [19]. Both the SAG and TRA images extracted 
the following six feature classes: first-order statistics, 
shape, gray-level run-length matrix, gray-level size zone 
matrix, neighboring gray-tone difference matrix, and the 
gray-level dependence matrix. These feature classes used 
six built-in filters (wavelet, square, square root, loga-
rithm, exponential, and gradient filters). All features were 
named by connecting the MRI type, the image type from 
which the feature was extracted, the feature class, and the 

feature name separated by an underscore. For example, 
TRA_original_glrlm_RunEntropy is a feature extracted 
from the TRA T2WI sequence, original image, and glrlm 
feature class, and the feature name is RunEntropy.

For every patient, 1960 radiomic features were 
extracted from SAG and TRA T2WI data, and all radi-
omic features were z transformed for data standardiza-
tion. To avoid interobserver variations during manual 
segmentation, we calculated the intraclass correlation 
coefficient (ICC) for each feature, and only those with 
high stability (ICC > 0.8) were included in the analysis 
[20]. Then, the selected stable features were tested using 
the independent samples t-test or the Mann–Whitney U 
test to select potential important features. Features that 
did not meet the criteria for either of the aforementioned 
tests were excluded. This study adopted the least absolute 
shrinkage and selection operator (LASSO) on the train-
ing cohort to screen significant features with non-zero 
coefficients that can differentiate ATRX and P53 muta-
tion status or glioma grade separately. For the three out-
comes of ATRX, P53, and tumor grade, we used LASSO 
to select features in the TRA, SAG, and TRA + SAG 
groups, respectively. The aforementioned calculation 
methods are available in PyRadiomics 2.2.0 documenta-
tion [21].

Prediction model construction
In this study, three types of deep neural networks 
(DNNs) were constructed based on the data character-
istics of the prediction tasks: WHO-Mind, ATRX-Mind, 
and P53-Mind. WHO-Mind has one input layer, four hid-
den layers, and one output layer. Both ATRX-Mind and 
P53-Mind have one input layer, three hidden layers, and 
one output layer. For each DNN, the ReLU and Adam 
were selected as the activation function and the solver for 
weight optimization, respectively. In addition, the initial 
learning rates and batch sizes were set to 0.01 and 64 in 
all models, respectively. The model architecture and the 
key hyperparameters are summarized in Additional file 2. 
However, the unbalanced nature of the data included in 
this study posed a challenge for model training, as data 
category imbalance may lead to severe overfitting. There-
fore, after dividing the dataset, the Synthetic Minor-
ity Oversampling Technique (SMOTE) was adopted for 
the divided training set to achieve data augmentation. 
Its basic idea is to generate new synthetic samples by 
interpolating between minority class samples, thereby 
balancing the class distribution, and thus improving the 
performance of the classifier.

Specifically, this algorithm analyzes the minority class 
samples and artificially synthesizes new samples based on 
the minority class samples to add to the dataset, thereby 
solving the problem of model overfitting. The algorithm 

http://www.itksnap.org
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first randomly selects a sample from the minority class 
(sample A) and identifies its k nearest neighbors within 
the minority class. Subsequently, a neighbor (sample B) 
is randomly chosen from these k neighbors. The new 
synthetic sample is created on the line segment between 
sample A and sample B. This process is repeated as 
needed until a sufficient number of synthetic minority 
class samples are generated to achieve the desired class 
balance. It is worth noting that SMOTE solely creates 
new samples within the feature space without generat-
ing new class labels. Synthetic samples inherit the class 
label of their parent samples (i.e., sample A and sample 
B). To implement SMOTE in Python 3.7, we utilized the 
imbalanced-learn library, applying the SMOTE algo-
rithm to the training data in order to balance the class 
distribution.

Additionally, considering that some mainstream mod-
els that have been developed obtained good performance 
in related fields [22–24], extreme Gradient Boosting 
(XGBoost), Gradient Boosting Decision Tree (Light-
GBM), and random forest (RF) were also trained and 

tested for comparison. The parameters of the above mod-
els were optimized during the training process using the 
GridSearchCV tool in Scikit-learn 1.1.1. The modeling 
was performed in the Python 3.7 programming environ-
ment, and the core library involved was Scikit-learn 1.1.1.

Experimental setup for the prediction models
The overall process of this study is illustrated in Fig.  2. 
Three tasks (WHO tumor grade, ATRX mutation sta-
tus prediction, and P53 mutation status prediction) 
were included, and each was used to build four machine 
learning models. Moreover, six different feature repre-
sentations were compared to explore the most superior 
model input: SAG radiomics, SAG radiomics with clini-
cal baseline, TRA radiomics, TRA radiomics with clini-
cal baseline, SAG + TRA radiomics, and SAG + TRA 
radiomics with clinical baseline features. In the primary 
cohort, fivefold cross-validation was employed to iden-
tify the best models. Data were randomly divided into 
five equal parts: one was selected for internal validation, 
and the rest were trained. This process was repeated five 

Fig. 2 Illustration of the study process. Stage I includes raw image acquisition (a), manual ROI segmentation (b), and auto ROI segmentation 
(c). Stage II includes feature extraction and selection. From both SAG and TRA images, radiomic features, including first-order statistical, shape, 
texture, and wavelet features, are extracted (d). All extracted features are screened out by ICC to select stable features (e). Informative features are 
then selected using LASSO (f). Stage III includes model construction and validation. Selected clinical and radiomic features are entered into the 
deep neural networks to predict the different tasks (g), and model performance is further tested in the external validation cohort (h). ATRX, alpha 
thalassemia/mental retardation syndrome X-linked; ICC, intraclass correlation coefficient; LASSO, least absolute shrinkage and selection operator; 
P53, tumor protein p53; ROI, region of interest; SAG, sagittal; TRA, transverse
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times. The best-performing models were tested using an 
external validation cohort to verify the generalization 
ability. This work was completed in Windows 10 OS and 
involved computing devices with a CPU AMD Ryzen 7 
5800H (16  GB RAM) and GPU GeForce RTX ™ 3090 
(24 GB RAM).

Statistical analysis
When representing continuous variables, differences 
were assessed using Student’s t-test or the Mann–Whit-
ney U test, as appropriate, and data are represented as 
median with interquartile range. Specifically, because the 
fivefold cross-validation was employed in the primary 
cohort, we also calculated the means and 95% confidence 
intervals (CIs) for the evaluation metrics of the models. 
We adopted the chi-square test to evaluate the differences 
in categorical variables, and the results are presented as 
the number of events and relative frequency (%). The per-
formance of all models was evaluated according to accu-
racy (Acc), sensitivity (Sens), specificity (Spec), F1 scores, 
and receiver operating characteristic (ROC) curves. A 
dice similarity coefficient (DSC) was adopted to evaluate 
the performance of the networks for IMG segmentation. 
All statistical analyses were performed employing R soft-
ware (version 3.6.3, R Foundation for Statistical Comput-
ing, Vienna, Austria). Statistical significance was defined 
as p ≤ 0.05.

Results
Clinicodemographic patient characteristics
A total of 332 patients in hospital 1 (primary cohort) were 
divided into training and internal validation cohorts, and 
127 patients in hospital 2 were enrolled as the independ-
ent external validation cohort. The clinical baseline fea-
tures of the patients and the distribution of ATRX and 
P53 mutation status across the primary and external 
validation cohorts are presented in Additional file  3. In 
the primary cohort, 52 patients (15.7%) had high-grade 
gliomas and 280 patients (84.3%) had low-grade glio-
mas. The external validation cohort included 20 (58.8%) 
patients with high-grade gliomas and 14 (41.2%) patients 
with low-grade gliomas. There were significant differ-
ences in the numbers of ATRX (79/332, 23.8%; 43/127, 
33.9%; p = 0.039) and P53 (72/332, 21.7%; 44/127, 34.6%; 
p = 0.006) mutations between the primary and external 
validation cohorts. Meanwhile, no significant difference 
was found in age, sex, onset month, accompanying dis-
eases, smoking, alcohol consumption, or the McCor-
mick score between the primary and external validation 
cohorts. Regarding the imaging features extracted by 
neuroradiologists, the axis ratio of the tumor in the spi-
nal cord and the proportion of tumor bleeding differed 
significantly between the two hospitals.

Results of lesion segmentation
The Swin transformer model was trained using slices of 
SAG and TRA images and artificially labeled lesions in 
the primary cohort. After 50,000 iterations, the model 
proved to be completely convergent and had no over-
fitting. Therefore, this model was selected for testing at 
this point. In total, 20% of the samples were randomly 
selected from patients as the test set, and the rest were 
used as the training set. In the SAG phase test, the Acc 
and DSC of the automatic segmentation model reached 
0.9929 and 0.8697, respectively. In the TRA phase test, 
the Acc and DSC of the automatic segmentation model 
were 0.9978 and 0.8738, respectively. These results dem-
onstrated that the aforementioned deep learning model 
was relatively satisfactory for the segmentation of lesions 
in this study. Visualization of the automatic segmentation 
of the two phases is demonstrated in Fig. 2c.

Feature extraction and selection
For every patient, 1960 radiomic features were derived, 
and the ICC results showed that 1572 (80.1%) features 
were stable. The selected stable features in the TRA and 
SAG groups are listed in Additional file  4. A total of 
1560, 1554, and 1517 features for the ATRX mutation 
status, P53 mutation status, and WHO tumor grading 
tasks, respectively, passed the scrutiny of the t-test or the 
Mann–Whitney U test. We employed fivefold cross-val-
idation in LASSO for each prediction task to select the 
meaningful features. In the WHO tumor grade predic-
tion task, 24 features were selected in SAG, 6 features in 
TRA, and 20 features in SAG + TRA (Additional file  5). 
In the ATRX mutation status prediction task, 3 features 
were selected in SAG, 39 features in TRA, and 5 features 
in SAG + TRA (Additional file  6). In the P53 mutation 
status prediction task, 21 features were selected in SAG, 
24 features in TRA, and 57 features in SAG + TRA (Addi-
tional file 7). All features selected by LASSO are listed in 
Additional file 8.

Results of prediction models in the primary cohort
Four machine learning models were trained for each 
prediction task, and each model was fed into six feature 
representations. All models were parameter optimized 
in the experiments, which facilitated the performance 
comparison. The results of the WHO tumor grade 
prediction and ROC curves of the proposed models 
are shown in Fig.  3. Among the four models, WHO-
Mind obtained the best average area under the ROC 
curve (AUC; 0.9263), with the AUC higher than that 
of XGBoost (0.8802), LightGBM (0.9079), and RF 
(0.8618), indicating the superiority of the neural net-
work architecture in this prediction task. However, 
inputting radiomics features combined with clinical 
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baseline features was superior to only inputting radi-
omics features, and the best-performing combination 
was SAG + TRA + clinical indicators. Notably, we found 
similar findings in performing the prediction task of 
ATRX and P53 mutation status, which may be due to 
the large variety of features covered by multimodal 
fusion. The results of the ATRX and P53 mutation pre-
dictions for each model are shown in Figs.  4 and 5, 
respectively. The proposed ATRX-Mind and P53-Mind 
models performed better than the compared mod-
els, where the highest AUCs were 0.9281 and 0.9173, 
respectively. To reflect the comprehensiveness of the 
evaluation of the proposed models, their Acc, Sens, 
Spec, and F1 scores were also calculated and summa-
rized in Additional file 9.

Results of prediction models in the external test cohort
The best-performing models (i.e., WHO-Mind, ATRX-
Mind, and P53-Mind) were selected for external testing. 
Multimodal fused feature representations were fed into 
each model, namely, the SAG + TRA + clinical indicators. 
The automatic segmentation effect of the Swin trans-
former is shown in Fig. 6a. This was found to segment the 
lesion area with relative accuracy. The performance of the 
models in each test task is shown in Fig. 6b. WHO-Mind 
reached the highest AUC (0.8431), and both WHO-Mind 
and ATRX-Mind obtained the highest Acc (0.8889). In 
addition, the ROCs of the three models were plotted to 
visualize their generalization performance in more detail 
(Fig.  6c–e). More detailed test results (e.g., Acc, Sens, 
Spec, and F1 scores) are displayed in Additional file 10.

Fig. 3 The fivefold cross-validation results in the WHO prediction task. a The comparison results of the proposed WHO-Mind with the mainstream 
machine learning models. b The receiver operating characteristic (ROC) curves of WHO-Mind when inputting features of the SAG phase (left), TRA 
phase (middle), and SAG combined with TRA phase (right). c The ROC curves of WHO-Mind when the features of the SAG phase-clinical baseline 
(left), TRA phase-clinical baseline (middle), and SAG phase-TRA phase-clinical baseline (right) are inputted. AUC, area under the curve; SAG, sagittal; 
TRA, transverse
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Discussion
Biopsy to obtain tumor tissue for histological examina-
tion in spinal cord tumors is dangerous and not worth-
while because of the high risk. In this study, we developed 
three models that can segment the IMG region automati-
cally and predict the ATRX/P53 mutation status and the 
grade of IMGs based on preoperative sagittal and trans-
verse MRI scans. The prediction models offer a non-
invasive alternative for identifying the tumor grade and 
histopathological characteristics in patients with IMGs.

Many studies have used machine learning methods 
to identify the genetic and histological features of brain 
gliomas [6, 7]. Li et  al. [25] adopted a support vector 
machine model to predict the genetic characteristics 
of ATRX. Given that their method is only effective for 

low-grade gliomas, the tumor grade should be known 
in advance, complicating the use of their method in the 
preoperative period. Gao et al. [7] used multiple machine 
learning-based radiomic approaches to predict the brain 
glioma grade and status of pathologic biomarkers, includ-
ing Ki-67, GFAP, and S100. However, these biomarkers 
are interrelated and are not highly specific to gliomas, 
according to the WHO CNS5. In real-world clinical set-
tings, it is not possible to accurately determine the type 
of glioma preoperatively. Therefore, models must address 
all types of gliomas, including WHO grades I–IV. As 
such, this study consecutively enrolled all types of spinal 
cord gliomas from two centers.

Many studies have focused on predicting IDH muta-
tion and 1p/19q co-deletion status [6]. Although IDH 

Fig. 4 The fivefold cross-validation results in the ATRX genotype prediction task. a The comparison results of the proposed ATRX-Mind with the 
mainstream machine learning models. b The ROC curves of ATRX-Mind when inputting features of the SAG phase (left), TRA phase (middle), and 
SAG combined with TRA phase (right). c The ROC curves of ATRX-Mind when the features of the SAG phase-clinical baseline (left), TRA phase-clinical 
baseline (middle), and SAG phase-TRA phase-clinical baseline (right) are inputted. ATRX, alpha thalassemia/mental retardation syndrome X-linked; 
AUC, area under the curve; ROC, receiver operating characteristic; SAG, sagittal; TRA, transverse
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mutation and 1p/19q co-deletion status are important 
biomarkers for the prognosis and survival of gliomas, we 
did not predict this in our study. On the one hand, IDH 
mutation in IMGs is not as common as in brain gliomas 
and cannot be used to distinguish between grade I pilo-
cytic astrocytoma and grade II diffuse astrocytoma. On 
the other hand, IDH IHC would be ineffective because 
most IMGs lack the conventional IDH1 p.R132H muta-
tion [12]. Furthermore, diffuse astrocytomas with IDH 
mutations are most likely to harbor mutations in ATRX 
and P53 [26], and cIMPACT-NOW Update 2 states 
that a definite loss of ATRX nuclear expression and/
or p53 immunopositivity is sufficient for the diagnosis 
of astrocytoma without the need for a 1p/19q test [27]. 
Therefore, ATRX and P53 mutations are more useful for 

identifying IMGs and are also important clinical behav-
ior indicators. Our models, focusing on ATRX and P53 
mutation status, will bring significant convenience in 
diagnosing IMGs.

Traditional lesion segmentation is performed manually, 
which is time-consuming and labor-intensive. Progress in 
the automatic segmentation of gliomas has been reported 
more frequently [28–31], but only few studies have 
attempted to segment spinal cord tumor automatically 
due to the lack of sufficient training in such rare tumors 
[8, 10]. This study employed a deep learning strategy 
based on transformer architecture to segment IMGs, and 
relatively satisfactory segmentation results were obtained 
(the DSC was 0.8697 for SAG and 0.8738 for TRA). To 
our best knowledge, this study is the first to employ such 

Fig. 5 The fivefold cross-validation results in the P53 genotype prediction task. a The comparison results of the proposed P53-Mind with the 
mainstream machine learning models. b The ROC curves of P53-Mind when inputting features of the SAG phase (left), TRA phase (middle), and 
SAG combined with TRA phase (right). c The ROC curves of P53-Mind when the features of the SAG phase-clinical baseline (left), TRA phase-clinical 
baseline (middle), and SAG phase-TRA phase-clinical baseline (right) are inputted. AUC, area under the curve; P53, tumor protein p53; ROC, receiver 
operating characteristic; SAG, sagittal; TRA, transverse
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a strategy. Although the segmentation results temporarily 
have a certain gap compared with manual annotation, the 
method significantly improves efficiency and facilitates 
end-to-end prediction. We will further improve this algo-
rithm to achieve more accurate automatic segmentation.

Additionally, model performance was compared using 
different combinations of SAG images, TRA images, and 
clinical features. The combination of SAG and TRA fea-
tures exhibited a better discriminatory ability than either 
feature alone, probably because SAG and TRA features 
can form some complementary properties. Most IMGs 
are confined to the spinal cord and grow along the long 
axis of the spinal cord. SAG images can show the great-
est anatomical detail and other tumor-related lesions, 
such as the spinal cord cavity and edema. However, only 
a few scanning slices are obtained from SAG T2WI, typi-
cally 11 slices, which is insufficient for constructing 3D 
tumor models. TRA T2WI scans usually have smaller 
slice spacing, have the advantage of accurately construct-
ing a 3D tumor ROI, and may allow for more accurate 
delineation of the tumor contour during segmentation. 
Additionally, previous research has confirmed that clini-
cal features such as age and sex are related to glioma type 
[32, 33]. Wu et  al. [34] developed a nomogram strategy 
to adopt clinical features in radiomics-based prediction 

models. Fifteen clinical baseline features, including seven 
baseline features and eight radiological signs that are dif-
ficult to represent with the radiomic approach, selected 
by univariate regression and prior clinical experience 
were adopted in our models. Although the SAG + TRA 
radiomics input had already achieved satisfactory per-
formance, the model showed better differentiation ability 
when we added clinical features.

It is important to emphasize that the three proposed 
neural networks showed superior performance to the 
mainstream ensemble learning models in all prediction 
tasks, which was encouraging. This may be related to the 
models’ architecture. Specifically, the neural networks 
proposed in this study underwent extensive pre-experi-
mentation, including setting the number of layers and the 
number of neurons. External tests were also performed 
to verify their generalizability, and the results were sat-
isfactory. For the WHO tumor grade, ATRX mutation 
status, and P53 mutation status prediction tasks, the 
proposed model obtained AUCs of 0.8431, 0.7622, and 
0.7954, respectively, in the external validation set.

Our study has some limitations. First, we selected 
only the commonly used ATRX and P53 biomarkers for 
IMGs from a broad range of biomarkers. The detection of 
other important biomarkers in IMGs, such as Ki-67 and 

Fig. 6 Results of external validation using the proposed models. a The visualization of lesion segmentation using the automatic segmentation 
model in SAG and TRA phases, respectively. b The external validation results adopting the proposed models in different tasks. c–e The ROC curves 
for each model in the prediction tasks. ATRX, alpha thalassemia/mental retardation syndrome X-linked; ROC, receiver operating characteristic; P53, 
tumor protein p53; SAG, sagittal; TRA, transverse; WHO, World Health Organization
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H3 K27M, may also benefit from an automatic machine 
learning approach. Second, our models should input 
more patient characteristics in the future to allow for a 
more comprehensive assessment of patient conditions. 
For example, our models still need input with respect to 
some radiological characteristics, such as the spinal cord 
cavity, edema, and atrophy, which require a priori knowl-
edge assessment by radiologists. Multiple imaging inputs, 
including normal spinal cord and tumor-related lesions, 
may help to extract all radiological characteristics auto-
matically. Third, although our data originated from two 
institutes with one for external validation, a larger dataset 
from multiple institutes is needed to balance the hetero-
geneity in different MR-acquiring machines. Finally, there 
is a degree of imbalance in the proportion of data of dif-
ferent types (e.g., different grades or mutation states) in 
this study. The dataset should be balanced in the future.

Conclusions
We developed the first machine learning strategy to pre-
dict IMG grade and ATRX and P53 mutation status while 
simultaneously automatically segmenting the tumor. 
Neural networks based on multimodal fusion (i.e., the 
SAG phase-TRA phase-clinical baseline) were shown to 
have the best prediction performance. Although further 
validation must be performed in more institutes before 
widespread clinical application, we believe this research 
is a significant attempt at the automatic diagnosis of 
IMGs.

Abbreviations
Acc  Accuracy
ATRX  Alpha thalassemia/mental retardation syndrome X-linked
DNN  Deep neural network
DSC  Dice similarity coefficient
ICC  Intraclass correlation coefficient
IDH  Isocitrate dehydrogenase
IHC  Immunohistochemistry
IMG  Intramedullary glioma
LASSO  Least absolute shrinkage and selection operator
LightGBM  Gradient Boosting Decision Tree
MRI  Magnetic resonance imaging
P53  Tumor protein p53
RF  Random forest
ROC  Receiver operating characteristic
ROI  Region of interest
SAG  Sagittal
T2WI  T2-weighted imaging
TRA   Transverse
XGBoost  Extreme Gradient Boosting

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12916- 023- 02898-4

Additional file 1. MRI parameters per manufacturer. Three MRI scanners, 
namely, GE, Siemens and Philips, were used in this study. Each machine 
has different scanning parameters for sagittal and transverse T2-weighted 

images of the cervical, thoracic, and lumbar vertebrae. This table lists the 
important MRI scanning parameters before image preprocessing.

Additional file 2. Architecture of the proposed models and optimized 
key hyperparameter settings.

Additional file 3. Clinical characteristics of the patients and distribution 
of the ATRX and P53 mutation status across the primary and external 
validation cohorts. ATRX, alpha thalassemia/mental retardation syndrome 
X-linked; IQR, interquartile range; P53, tumor protein p53; WHO, World 
Health Organization.

Additional file 4. Selected stable features in TRA and SAG images. To 
avoid interobserver variations during manual segmentation, we calculated 
the intraclass correlation coefficientfor each feature, and only those with 
high stabilitywere included in the analysis. The above table shows the 
proportion of stable features in each feature class extracted from TRA and 
SAG images. GLDM, gray-level dependence matrix; GLRLM, gray-level run-
length matrix; GLSZM, gray-level size zone matrix; NGTDM, neighboring 
gray-tone difference matrix; SAG, sagittal; TRA, transverse.

Additional file 5. Feature selection with LASSO in the WHO grading task.
Feature selection in the SAG group. Twenty-four features with non-zero 
coefficients were selected using the minimum criteria.LASSO coefficient 
profiles of the features in the SAG group. Each colored line represents the 
coefficient of each feature.Feature selection in the TRA group. Six features 
with non-zero coefficients were selected using the minimum criteria.
LASSO coefficient profiles of the features in the TRA group.Feature selec-
tion in the SAG+TRA group. Twenty features with non-zero coefficients 
were selected using the minimum criteria.LASSO coefficient profiles of 
the features in the SAG+TRA group. LASSO, least absolute shrinkage 
and selection operator; SAG, sagittal; TRA, transverse; WHO, World Health 
Organization.

Additional file 6. Feature selection with LASSO in the ATRX task.Feature 
selection in the SAG group. Three features with non-zero coefficients were 
selected using the minimum criteria.LASSO coefficient profiles of the 
features in the SAG group. Each colored line represents the coefficient of 
each feature.Feature selection in the TRA group. Thirty-nine features with 
non-zero coefficients were selected using the minimum criteria.LASSO 
coefficient profiles of the features in the TRA group.Feature selection 
in the SAG+TRA group. Five features with non-zero coefficients were 
selected using the minimum criteria.LASSO coefficient profiles of the 
features in the SAG+TRA group. ATRX, alpha thalassemia/mental retarda-
tion syndrome X-linked, LASSO, least absolute shrinkage and selection 
operator; SAG, sagittal; TRA, transverse.

Additional file 7. Feature selection with LASSO in the P53 task.Feature 
selection in the SAG group. Twenty-one features with non-zero coef-
ficients were selected using the minimum criteria.LASSO coefficient 
profiles of the features in the SAG group. Each colored line represents the 
coefficient of each feature.Feature selection in the TRA group. Twenty-four 
features with non-zero coefficients were selected using the minimum 
criteria.LASSO coefficient profiles of the features in the TRA group.Feature 
selection in the SAG+TRA group. Fifty-seven features with non-zero 
coefficients were selected using the minimum criteria.LASSO coefficient 
profiles of the features in the SAG+TRA group. LASSO, least absolute 
shrinkage and selection operator; P53, tumor protein p53; SAG, sagittal; 
TRA, transverse.

Additional file 8. Selected radiomics features in each prediction task. In 
the WHO tumor grade prediction task, 24 features in SAG, 6 features in 
TRA, and 20 features in SAG+TRA were selected. In the ATRX prediction 
task, 3 features in SAG, 39 features in TRA, and 5 features in SAG+TRA were 
selected. In the P53 prediction task, 21 features in SAG, 24 features in TRA, 
and 57 features in SAG+TRA were selected. SAG, sagittal; TRA, transverse.

Additional file 9. Detailed results of the 5-fold cross-validation for the 
proposed models using multimodal fusion features in the primary cohort. 
Acc: accuracy, Sens: sensitivity, Spec: specificity. The above results are 
expressed using the mean of 5 experiments and the corresponding 95% 
confidence interval.

Additional file 10. Detailed test results in the external test cohort. Acc: 
accuracy, Sens: sensitivity, Spec: specificity.

https://doi.org/10.1186/s12916-023-02898-4
https://doi.org/10.1186/s12916-023-02898-4


Page 12 of 13Ma et al. BMC Medicine          (2023) 21:198 

Acknowledgements
Not applicable.

Authors’ contributions
Conceiving the study and design: C.M., Y.W., and G.W. Expert radiologist reads: L.J., 
Y.L., D.L., W.M., and K.Y. Collection and curation of the clinical datasets: D.S., C.G., 
Z.M., and H.Z. Surgery/biopsy performance: G. W. and F. G. Image processing and 
programming: C.M., Y.W., P.X., and Y.Z. Data analysis and interpretation: C.M., Y.W., 
and Y.Z. Drafting of the manuscript: C.M., Y.W., and G.W. Critical analysis and manu-
script revision: all authors. The authors read and approved the final manuscript.

Funding
Tsinghua Precision Medicine Foundation [2022ZLB003, 10001020618]; 
National Key Research and Development Program of China [2021YFE0204700]; 
Provincial and ministerial co-construction project of Henan Medical Science 
and Technology Research Plan [SB201901007]; and Beijing Natural Science 
Foundation project [7212007].

Availability of data and materials
The datasets used and/or analyzed during the current study are available from 
the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate
The Ethical Committees of Beijing Tsinghua Changgung Hospital (16149–
0110) and The First Affiliated Hospital of Zhengzhou University (2021-KY-
0156–002) approved this study, and the requirement to obtain informed 
consent was waived.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 School of Clinical Medicine, Tsinghua University, Beijing, China. 2 Department 
of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical 
Medicine, Tsinghua University, Beijing, China. 3 Hepato-Pancreato-Biliary Center, 
Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua 
University, Beijing, China. 4 Department of Neurosurgery, The First Affiliated 
Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China. 
5 Institute for Precision Medicine, Tsinghua University, Beijing, China. 6 State Key 
Laboratory of Low-Dimensional Quantum Physics and Department of Physics, 
Tsinghua University, Collaborative Innovation Center of Quantum Matter 
and Beijing Advanced Innovation Center for Structural Biology, Beijing 100084, 
China. 7 Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical 
University, Beijing 100070, China. 

Received: 31 January 2023   Accepted: 10 May 2023

References
 1. Bruneau M, Riva M, Brotchi J. Primary intramedullary tumors. In: Van 

De Kelft E, editor. Surgery of the spine and spinal cord: a neurosurgical 
approach. Cham: Springer International Publishing; 2016. p. 699–716.

 2. Jackson RJ, Fuller GN, Abi-Said D, Lang FF, Gokaslan ZL, Shi WM, et al. 
Limitations of stereotactic biopsy in the initial management of gliomas. 
Neuro Oncol. 2001;3:193–200.

 3. Kristensen BW, Priesterbach-Ackley LP, Petersen JK, Wesseling P. Molecu-
lar pathology of tumors of the central nervous system. Ann Oncol. 
2019;30:1265–78.

 4. Chen CC, Hsu PW, Erich Wu TW, Lee ST, Chang CN, Wei KC, et al. Stereo-
tactic brain biopsy: single center retrospective analysis of complications. 
Clin Neurol Neurosurg. 2009;111:835–9.

 5. Zhou M, Scott J, Chaudhury B, Hall L, Goldgof D, Yeom KW, et al. 
Radiomics in brain tumor: image assessment, quantitative feature 
descriptors, and machine-learning approaches. AJNR Am J Neuroradiol. 
2018;39:208–16.

 6. Van Der Voort SR, Incekara F, Wijnenga MMJ, Kapsas G, Gahrmann 
R, Schouten JW, et al. Combined molecular subtyping, grading, and 
segmentation of glioma using multi-task deep learning. Neuro Oncol. 
2023;25:279–89.

 7. Gao M, Huang S, Pan X, Liao X, Yang R, Liu J. Machine learning-based 
radiomics predicting tumor grades and expression of multiple pathologic 
biomarkers in gliomas. Front Oncol. 2020;10:1676.

 8. Liu J, Chen F, Pan C, Zhu M, Zhang X, Zhang L, et al. A cascaded 
deep convolutional neural network for joint segmentation and 
genotype prediction of brainstem gliomas. IEEE Trans Biomed Eng. 
2018;65:1943–52.

 9. Pang B, Chai RC, Zhang YW, Chang YZ, Liu W-H, Jia W-Q, et al. A compre-
hensive model including preoperative peripheral blood inflammatory 
markers for prediction of the prognosis of diffuse spinal cord astrocytoma 
following surgery. Eur Spine J. 2021;30(10):2857–66.

 10. Lemay A, Gros C, Zhuo Z, Zhang J, Duan Y, Cohen-Adad J, et al. Automatic 
multiclass intramedullary spinal cord tumor segmentation on MRI with 
deep learning. Neuroimage Clin. 2021;31:102766.

 11. Teng YD, Abd-El-Barr M, Wang L, Hajiali H, Wu L, Zafonte RD. Spinal cord 
astrocytomas: progresses in experimental and clinical investigations for 
developing recovery neurobiology-based novel therapies. Exp Neurol. 
2019;311:135–47.

 12. Lebrun L, Meléndez B, Blanchard O, De Nève N, Van Campenhout C, 
Lelotte J, et al. Clinical, radiological and molecular characterization of 
intramedullary astrocytomas. Acta Neuropathol Commun. 2020;8:128.

 13. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. 
The 2021 WHO classification of tumors of the central nervous system: a 
summary. Neuro Oncol. 2021;23:1231–51.

 14. Kinoshita M, Sakai M, Arita H, Shofuda T, Chiba Y, Kagawa N, et al. 
Introduction of high throughput magnetic resonance T2-weighted 
image texture analysis for WHO grade 2 and 3 gliomas. PLoS ONE. 
2016;11:e0164268.

 15. Wu J, Xu Q, Shen Y, Chen W, Xu K, Qi XR. Swin transformer improves the 
IDH mutation status prediction of gliomas free of MRI-based tumor 
segmentation. J Clin Med. 2022;11:4325.

 16. Yan S, Wang C, Chen W, Lyu J. Swin transformer-based GAN for multi-
modal medical image translation. Front Oncol. 2022;12:942511.

 17. Islam MN, Hasan M, Hossain MK, Alam MGR, Uddin MZ, Soylu A. Vision 
transformer and explainable transfer learning models for auto detec-
tion of kidney cyst, stone and tumor from CT-radiography. Sci Rep. 
2022;12:11440.

 18. Pan X, Gao X, Wang H, Zhang W, Mu Y, He X. Temporal-based Swin trans-
former network for workflow recognition of surgical video. Int J Comput 
Assist Radiol Surg. 2023;18:139–47.

 19. Ma C, Zhang Y, Niyazi T, Wei J, Guocai G, Liu J, et al. Radiomics for predict-
ing hematoma expansion in patients with hypertensive intraparenchy-
mal hematomas. Eur J Radiol. 2019;115:10–5.

 20. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho 
S, et al. Decoding tumour phenotype by noninvasive imaging using a 
quantitative radiomics approach. Nat Commun. 2014;5:4006.

 21. Van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan 
V, et al. Computational radiomics system to decode the radiographic 
phenotype. Cancer Res. 2017;77:e104–7.

 22. Sakai Y, Yang C, Kihira S, Tsankova N, Khan F, Hormigo A, et al. MRI 
radiomic features to predict IDH1 mutation status in gliomas: a 
machine learning approach using gradient tree boosting. Int J Mol Sci. 
2020;21:8004.

 23. Le NQK, Hung TNK, Do DT, Lam LHT, Dang LH, Huynh TT, et al. Radiomics-
based machine learning model for efficiently classifying transcrip-
tome subtypes in glioblastoma patients from MRI. Comput Biol Med. 
2021;132:104320.

 24. Yan Z, Wang J, Dong Q, Zhu L, Lin W, Jiang X. XGBoost algorithm and 
logistic regression to predict the postoperative 5-year outcome in 
patients with glioma. Ann Transl Med. 2022;10:860.

 25. Li Y, Liu X, Qian Z, Sun Z, Xu K, Wang K, et al. Genotype prediction of ATRX 
mutation in lower-grade gliomas using an MRI radiomics signature. Eur 
Radiol. 2018;28:2960–8.



Page 13 of 13Ma et al. BMC Medicine          (2023) 21:198  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 26. Cancer Genome Atlas Research Network, Brat DJ, Verhaak RG, Aldape KD, 
Yung WK, Salama SR, et al. Comprehensive, integrative genomic analysis 
of diffuse lower-grade gliomas. N Engl J Med. 2015;372:2481–98.

 27. Louis DN, Giannini C, Capper D, Paulus W, Figarella-Branger D, Lopes MB, 
et al. cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline 
glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocy-
toma, IDH-mutant. Acta Neuropathol. 2018;135:639–42.

 28. Li SD, Liu JW, Song ZJ. Brain tumor segmentation based on region of 
interest-aided localization and segmentation U-Net. Int J Mach Learn 
Cybern. 2022;13:2435–45.

 29. Khorasani A, Kafieh R, Saboori M, Tavakoli MB. Glioma segmentation with 
DWI weighted images, conventional anatomical images, and post-con-
trast enhancement magnetic resonance imaging images by U-Net. Phys 
Eng Sci Med. 2022;45:925–34.

 30. Yu YM, Du ZF, Yuan CX, Li J. Exploration of CT images based on the BN-
U-net-W network segmentation algorithm in glioma surgery. Contrast 
Media Mol Imaging. 2022;2022:4476412.

 31. Kihira S, Mei XY, Mahmoudi K, Liu Z, Dogra S, Belani P, et al. U-Net 
based segmentation and characterization of gliomas. Cancers (Basel). 
2022;14:4457.

 32. Claus EB, Cannataro VL, Gaffney SG, Townsend JP. Environmental and 
sex-specific molecular signatures of glioma causation. Neuro Oncol. 
2022;24:29–36.

 33. Hyare H, Rice L, Thust S, Nachev P, Jha A, Milic M, et al. Modelling MR 
and clinical features in grade II/III astrocytomas to predict IDH mutation 
status. Eur J Radiol. 2019;114:120–7.

 34. Wu S, Zhang X, Rui W, Sheng Y, Yu Y, Zhang Y, et al. A nomogram strategy 
for identifying the subclassification of IDH mutation and ATRX expression 
loss in lower-grade gliomas. Eur Radiol. 2022;32:3187–98.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Multimodal-based machine learning strategy for accurate and non-invasive prediction of intramedullary glioma grade and mutation status of molecular markers: a retrospective study
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Aim
	Patient demographic characteristics and data acquisition
	MRI acquisition and region of interest segmentation
	Lesion segmentation using deep learning
	Feature extraction and selection
	Prediction model construction
	Experimental setup for the prediction models
	Statistical analysis

	Results
	Clinicodemographic patient characteristics
	Results of lesion segmentation
	Feature extraction and selection
	Results of prediction models in the primary cohort
	Results of prediction models in the external test cohort

	Discussion
	Conclusions
	Anchor 25
	Acknowledgements
	References


