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Abstract 

Background  A large proportion of pulmonary embolism (PE) heritability remains unexplained, particularly among 
the East Asian (EAS) population. Our study aims to expand the genetic architecture of PE and reveal more genetic 
determinants in Han Chinese.

Methods  We conducted the first genome-wide association study (GWAS) of PE in Han Chinese, then performed the 
GWAS meta-analysis based on the discovery and replication stages. To validate the effect of the risk allele, qPCR and 
Western blotting experiments were used to investigate possible changes in gene expression. Mendelian randomiza-
tion (MR) analysis was employed to implicate pathogenic mechanisms, and a polygenic risk score (PRS) for PE risk 
prediction was generated.

Results  After meta-analysis of the discovery dataset (622 cases, 8853 controls) and replication dataset (646 cases, 
8810 controls), GWAS identified 3 independent loci associated with PE, including the reported loci FGG rs2066865 
(p-value = 3.81 × 10−14), ABO rs582094 (p-value = 1.16 × 10−10) and newly reported locus FABP2 rs1799883 
(p-value = 7.59 × 10−17). Previously reported 10 variants were successfully replicated in our cohort. Functional 
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experiments confirmed that FABP2-A163G(rs1799883) promoted the transcription and protein expression of FABP2. 
Meanwhile, MR analysis revealed that high LDL-C and TC levels were associated with an increased risk of PE. Individu-
als with the top 10% of PRS had over a fivefold increased risk for PE compared to the general population.

Conclusions  We identified FABP2, related to the transport of long-chain fatty acids, contributing to the risk of PE and 
provided more evidence for the essential role of metabolic pathways in PE development.

Keywords  Pulmonary embolism, GWAS, Han Chinese

Background
Pulmonary embolism (PE) is a complex and multifacto-
rial disease, together with deep vein thrombosis (DVT), 
commonly referred as venous thromboembolism (VTE). 
Twin studies have estimated the heritability of VTE to be 
approximately 50%, indicating that genetic factors may 
play a significant role in the pathogenesis of the disease 
[1]. Over the past decades, family and population stud-
ies have discovered dozens of variants across the genome 
that contribute to the genetic risk of PE or VTE [2, 3]. 
The largest meta-analysis of genome-wide association 
study (GWAS) for VTE has identified 34 independent 
genetic signals [4]. Most of the reported associated loci 
regulate the coagulation and anticoagulation functions 
[4, 5], which are vital disease-causing mechanisms in PE. 
Additionally, platelet, inflammation and erythrocytes 
have also been associated with the risk [4]. However, we 
still have limited knowledge of the genetic architecture of 
PE, leaving a large proportion of heritability unexplained 
[6, 7].

The global disease burden of PE has been stead-
ily increasing in the past decade, affecting 100–200 per 
100,000 individuals in western countries. Nevertheless, 
the prevalence of PE in EAS is 1/3–1/5 of that in EUR 
[8]. Little is known about the genetic and other factors 
accounting for PE prevalence between East Asians (EAS) 
and European ancestry (EUR). Studies have suggested 
that ancestry-specific allele frequencies may explain the 
differences [9]. Genetic studies with diverse populations 
are valuable for identifying more genetic risk factors of 
PE and maximizing the relevance of findings across pop-
ulations [10]. However, there have been few genetic stud-
ies for PE among EAS.

Genetic studies of VTE have been performed in sub-
jects with EUR or African American (AA) ancestry. 
However, due to varying minor allele frequencies (MAF) 
across different populations, some of the associated vari-
ants identified in one population may not be replicated 
in another population. For example, rs6025 in F5 (Factor 
V Leiden, FVL), the well-known leading single nucleo-
tide polymorphism (SNP) in EUR VTE patients, has been 
rarely reported among EAS, with a MAF reported to be 
0.024 in EUR and 0 in EAS [11–13]. Similarly, variants in 
THBD have been reported to be associated with VTE in 

AA but not in EUR [14–16]. Such inconsistency makes 
it unreliable to generalize the genetic findings from EUR 
to other populations. Direct application of the PE risk 
assessment models with genetic factors discovered in 
the EUR may lead to inaccurate estimates of the actual 
PE risk among EAS, exacerbating health disparities in 
diverse populations [17, 18].

Till now, there is no solid evidence of the PE risk 
assessment base on genetic study in EAS. To accelerate 
our understanding of the genetic basis for PE in EAS, we 
performed a large-scale genome-wide association study 
in the Han Chinese population and developed a popula-
tion-specific polygenic risk score (PRS) to identify sub-
populations at higher risk of PE.

Methods
Study design and participants
DNA samples and phenotype data were collected from 
a Han descent population (Additional File 1: Fig. S1). 
All samples were collected from the China Pulmonary 
Thromboembolism Registry Study (CURES), recruited 
from 2016 to 2020 [19]. We identified patients with our 
inclusion criteria, while ancestry-matched controls were 
obtained in collaboration with WeGene [20].

This study was conducted under the human and ethi-
cal research principles of The Ministry of Science and 
Technology, People’s Republic of China (Regulation of 
the Administration of Human Genetic Resources, July 
1, 2019). All the participants provided informed con-
sent and agreed to participate in this research under a 
protocol approved by the Ethical Committee of China-
Japan Friendship Hospital (Cases) and WeGene (Con-
trols). The study’s ethical approval was obtained from the 
Ethics Committee in China-Japan Friendship Hospital 
(2016-SSW-7).

Genotyping and genome‑wide quality‑control procedures
DNA of cases and controls were extracted from whole 
blood or saliva samples. All participants were genotyped 
at WeGene Lab using a customized Illumina WeGene V2 
Array by Illumina iScan System, which contained roughly 
700,000 markers covering the whole genome. The cus-
tomized array was originally designed from the Infinium 
Global Screening Array BeadChip, which specifically 



Page 3 of 13Zhang et al. BMC Medicine          (2023) 21:153 	

included around 560,000 genome-wide backbone mark-
ers for optimized genome-wide association studies in 
the Chinese population and other markers for clinical 
research and quality control. Genotype imputation was 
conducted using ChinaMAP (http://​www.​mbiob​ank.​
com/​login/?​next=%​2Fimp​utati​on%​2F), an online impu-
tation server for East Asian population genotype impu-
tation [21, 22]. Genotype calling was performed using 
Illumina GenomeStudio software. Quality control was 
performed before further analyses. Individuals were 
excluded based on gender mismatches, disproportion-
ate levels of individual missingness (> 0.05), evidence of 
relatedness (removing one from each pair within 2nd-
degree identified by KING [23], inbreeding coefficient 
above 0.2 or below − 0.2), and being of non-Han Chinese. 
The patients of discovery dataset were recruited from 
2016 to 2018, while the patients of replication dataset 
were recruited from 2018 to 2020. The top ten principal 
components (PCs) were calculated using GCTA [24].

Genome‑wide association testing, and meta‑analysis
For each phase, all genotyped variants passing quality 
control on autosomal chromosomes were tested for asso-
ciation with PE through logistic regression adjusting for 
age, sex, and top ten principal components (PCs) using 
PLINK [25]. The genome-wide significance threshold was 
set at p-value < 5 × 10−8. Association summary statistics 
were combined for variants common to discovery stage 
and replication stage, and then for variants common to 
all two phases, in fixed effects models using METAL [26]. 
Cochran’s Q statistic was used to test for heterogeneity 
and the I2 statistic was used to quantify variation due to 
heterogeneity. To visualize the results, a Manhattan plot 
and a quantile–quantile (Q-Q) plot were generated using 
the R package “qqman.” A regional association plot for 
the genomic region within 500 Kb of the top hit was gen-
erated using LocusZoom software [27], and a forest plot 
for the most significant SNP association was generated 
using revman.

Gene‑based testing analysis
Gene-based testing was performed using FUMA [28, 29] 
software. Input SNPs were mapped to 15,756 protein-
coding genes, so we set 3.17 × 10−6 as the Bonferroni-cor-
rected significance threshold (0.05/15756 = 3.173 × 10−6). 
The python package assocplots was used to produce 
Manhattan plots and QQ-plots [30].

Cellular experiments
Cells and reagents
The HEK293T cells (ATCC, CRL-3216, LabWecom, 
China) were maintained in DMEM (11,965,092, Gibco, 
America) supplemented with 10% FBS (10099141C, 

Gibco, America) and Penicillin–Streptomycin 
(15,140,163, Gibco, America) with indicated proportion.

Plasmids and antibodies
The GFP-Tagged full-length target gene (Wild Type, WT) 
and its mutant type (MT) were constructed into eukary-
otic expression PEGFP-N1, respectively. Recombinant 
PEGFP-N1s encoding the target gene and its MT were 
constructed by PCR-based amplification of cDNA from 
the sequence. The WT and MT cDNA of the target gene 
were subcloned into the eukaryotic expression PEGFP-
N1, respectively. The antibody to GFP (AE012, human-
specific) was purchased from Abclonal.

Plasmid transfection and immunofluorescence assay
HEK293T cells were cultured and then seeded in 
6-well plates and the cell density was 350,000 per well. 
After overnight incubation, cells were transfected with 
PEGFP-N1, target gene-WT and target gene-MT, respec-
tively. Plasmids were pre-incubated with Opti-MEM™ 
(31,985,070, GIbco, America) and jetPRIME® Transfec-
tion Reagent (114–15, Polyplus, France) as instructed on 
the manual. After 72  h, fluorescence microscopy were 
used to assess the transfection efficiency.

Western blot analysis
Western blotting was performed as described previ-
ously [31]. Briefly, cells were lysed with lysis buffer (1% 
TritonX 100, 20  mM Tris–HCl pH 8.0, 250  mM NaCl, 
3 mM EDTA pH 8.0), 3 mM EGTA (pH 8.0) with the pH 
adjusted to 7.6, and complete protease inhibitor cocktail 
(CW2200, CWBIO, China) on ice for 30  min. Lysates 
were eluted by boiling 10  min with 2 Χ sample buffer 
(100 mM Tris–HCl, pH 6.8, 2% SDS, 10% glycerol, 0.1% 
bromophenol blue, 1% β-mercaptoethanol) and were 
separated by 10% SDS/PAGE, followed by examination 
of expression levels of the indicated proteins. β-Tubulin 
served as an internal control.

Quantitative PCR analysis
Gene expression was analyzed by three-step q-RT–PCR 
(qPCR). Total RNA were extracted from HEK293T 
cells transfected plasmids using TRIzol reagent (T9424, 
Sigma, Germany). Following the manufacturer’s instruc-
tions, RNA were reverse-transcribed in a 20 μl reaction 
volume (42 °C, 30 min; 95 °C, 5 min) using a QuantiTect 
Reverse Transcription Kit (KR118, TIANGEN, China). 
cDNA was then amplified using a SYBR Green I Master 
mix (FP205, TIANGEN, China) and the ABI 7500 Fast 
Real Time PCR system (ABI, America). All tests were 
carried out on duplicate reaction mixtures in 96-well 
plates. The relative expression of the gene of interest was 

http://www.mbiobank.com/login/?next=%2Fimputation%2F
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determined using the 2–ΔΔCt method, with GAPDH as the 
internal control.

Mendelian randomization(MR) analysis
In order to detect the cause relationship between PE and 
lipoprotein associated triat, we performed two-sample 
Mendelian randomization (MR) analysis. Summary sta-
tistics for exposure were obtained from Biobank Japan 
Project (http://​jenger.​riken.​jp/​en/), which contained 
individuals of similar EAS ancestry as Chinese popula-
tion to avoid population stratification. We estimated the 
causal effect of exposure on outcome using two‐sam-
ple MR method. The inverse variance weighted (IVW) 
method [32] was used in the main MR analyses, and 
the maximum likelihood weighted median and penal-
ized weighted median [33] approaches were employed 
as sensitivity analysis. MR-Egger [34] method was used 
to detect the directional pleiotropy according to the 
intercept of weighted linear regression of the SNP‐out-
come coefficients on SNP‐exposure coefficients. Results 
were considered statistically significant at p-value < 0.017 
(0.05/3). The MR analysis was performed using the Two-
SampleMR [35] package and MR-PRESSO [33] package 
in R software (version 3.4).

Heritability and LD‑score regression
LDSC v.1.0.1 was used to calculate the heritability on the 
liability scale [36].

Polygenic risk score analysis
We derived the PRS from PE associated variants in the 
Han Chinese population. The PRS training cohort includ-
ing cases and controls of discovery stage, and the PRS 

testing cohort including cases and controls of replication 
stage. PRSs of the test cohort were calculated using the 
Polygenic Risk Score software (PRSice-2) [37], based on 
the summary statistics of the training group. The per-
formance of a series of cutoff of PE association p-values 
for selection of SNP markers was assessed by the Area 
Under the Curve (AUC) for ROC. The p-value cutoff 
with the largest AUC was adopted. According to the 
PRS, individuals were divided into seven intervals from 
low to high (< 10th, 10–20th, 20–30th, 30–70th, 70–80th, 
80–90th, < 90th), and the odds ratio of each interval rela-
tive to the baseline data (30–70th) is calculated. Finally, 
we used PLINK to calculate the performance of other 
PRS available in the literature in the testing cohort and 
compared them with our PRS.

Results
GWAS and replication analysis
In the discovery stage, we consecutively recruited 624 
cases (Fig.  1). 622 PE cases passed QC and were ana-
lyzed, of which the mean (+ / − SD) age was 62 (+ / − 19) 
years old, and 323 (52%) were male. A total number of 
8853 controls were collected. Although there are statisti-
cally significant differences (p-value < 0.05) in age and sex 
between cases and controls, the association results are 
unlikely to be biased as the susceptible variants are gen-
erally independent regardless of age and sex.

In replication stage, 647 acute PE cases and 8820 con-
trols were included as additional independent sam-
ples. Six hundred forty-six PE cases and 8810 controls 
passed QC and were analyzed. The mean (+ / − SD) age  
was 62 (+ / − 15) years old, and 341 (53%) were male in 
the case group. The characteristics of the participants 

Fig. 1  Study workflow

http://jenger.riken.jp/en/
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were presented in Table  1. Only FABP2 rs1799883 
and FGG rs2066865 reached genome-wide signifi-
cance in the discovery stage. We then performed the 
GWAS meta-analysis based on the discovery and 
replication stage. Finally, we identified 16 genome-
wide significant variants in the meta-analysis, where 
FGG rs2066865 (p-value = 3.81 × 10−14) and ABO 
rs582094 (p-value = 1.16 × 10−10) were known loci 

in the coagulation pathway, and FABP2 rs1799883 
(p-value = 7.59 × 10−17) was newly reported (Figs.  2 and 
3). The three variants were independent of each other 
and the leading SNPs are in strong linkage disequilib-
rium with considerable imputed variants of similar sta-
tistical associations (Table  2, Additional File 1: Fig. S1), 
the remaining 13 loci were neither genome-wide signifi-
cant in the discovery stage nor previously known to be 

Table 1  Demographic, clinical characteristics, and risk factors of the patients included

BMI Body mass index, PE Pulmonary embolism, SD Standard deviation

Characteristics Discovery stage Replication stage

Case Control Case Control

N = 622 N = 8853 N = 646 N = 8810

Demographic characteristics
  Age, year, mean (SD) 62 (19) 59 (9) 62 (15) 59 (8)

  Male, n (%) 323 (52) 4041 (46) 341 (53) 4041 (46)

  BMI, kg/m2, mean (SD) 24.4 (3.9) - 24.5 (3.6) -

  PE alone, n (%) 331 (53) - 340 (53) -

  PE combined DVT, n (%) 291 (47) - 306 (47) -

Complications and risk factors - -

  Cardiovascular disease, n (%) 311 (50) - 311 (48) -

  Chronic pulmonary disease, n (%) 105 (17) - 118 (18) -

  Cancer, n (%) 60 (10) - 62 (10) -

  Metabolic and endocrine diseases, n (%) 108 (17) - 101 (16) -

  Smoking history, n (%) 198 (32) - 182 (28) -

N = 218 N = 220

Thrombophilia test - -

  Plasma antithrombin activity < 70%, n/N (%) 32 (15) - 32 (15) -

  Plasma protein S activity < 60%, n/N (%) 36 (17) - 42 (19) -

  Plasma protein C activity < 70%, n/N, n/N (%) 42 (19) - 49 (22) -

Fig. 2  Manhattan plot and QQ plot of GWAS meta-analysis. A Manhattan plot of the results from meta-analysis. The y-axis represents –
log10(p-values) for the association of variants with VTE using a logistic regression model. The horizontal line represents the threshold for 
genome-wide significance. Representative loci with genome-wide significance are labeled. B QQ plot of the results from meta-analysis. λGC denotes 
the genomic inflation factor. The x- and y-axes represent expected and observed − log10(p-values), respectively
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associated with VTE (Additional File 2: Table  S1, Addi-
tional File 2: Table  S2). PCA (Additional File 1: Fig. S2) 
and QQ plot (Fig. 2) showed no population stratification 
and inflation of test statistics (λGC = 1.053).

Replication of associations peviously identified loci in EAS 
population
We compiled VTE susceptibility SNPs from the pevi-
ous GWAS literature and assessed the associations of 22 
previously reported VTE associated variants in our Han 
Chinese samples [3, 16, 38–46]. For 10 out of 22 variants, 
the association signals were successfully replicated at the 
Bonferroni-corrected significance level of 2.27 × 10−3 
(0.05/22). The most significant SNP was rs505922 near 
ABO, with p-value of 3.81 × 10−14 and odds ratio (OR, 

95% confidence interval [CI]) of 1.31 (1.20–1.42). Nine 
additional SNPs, at five gene, also reached the thresh-
old for significance. These were rs657152, rs630014 and 
rs687289 near ABO, rs6825454 and rs2070011 near 
FGA, rs2066865 and rs6536024 near FGG, rs4253399 
near F11, and rs13084580 near CSRNP1. Other previ-
ously reported candidate genes (F2, F5, PROS1, PROCR, 
NME7, SLC44A2, THBD, SMAP1/B3GAT2, PEPD, GP6) 
for recurrent VTE showed no or very weak association in 
our cohort (Additional File 2: Table S3).

Gene‑based analysis
We further performed a gene-based analysis using func-
tional mapping and annotation (FUMA) MAGMA 
to prioritize candidate genes associated with PE. 

Fig. 3  Forest plots for 3 loci associated with pulmonary embolism. Study cohorts, sample sizes (case and control), and estimated odds ratios 
(OR) for A rs1799883, B rs2066865, and C rs582094.The vertical line corresponds to the null hypothesis (OR = 1). The horizontal lines and square 
brackets indicate 95% confidence intervals (95% CI). Areas of the boxes are proportional to the weight of the study. Diamonds represent combined 
estimates for fixed‐effect analysis. The heterogeneity index, I2 (0–1) was also measured which quantifies the proportion of the total variation due to 
heterogeneity. All statistical tests were two-sided and no adjustments were made for multiple comparisons
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After aggregating the association signal of all SNPs 
in each gene, we identified two genes (FABP2 and 
FGG) reaching the Bonferroni-corrected threshold 
(p-value < 3.17 × 10−6), and FGG was previously known 
to be associated with PE (p-value = 1.45 × 10−6) (Addi-
tional File 1: Fig. S3, Additional File 2: Table  S4). How-
ever, we noted that ABO is annotated as a “processed 
transcript” in the database and, therefore, it was not 
incorporated into this analysis.

FABP2‑A163G promotes gene transcription and protein 
expression of FABP2
To explore the influence of the variant on FABP2 expres-
sion, PEGFP-N1, FABP2-WT, FABP2-A163G plasmids 
were transfected into HEK293T cells, and the qPCR 
results suggested that FABP2-A163G promoted FABP2 
transcription compared to FABP2-WT (Fig.  4A, Addi-
tional File 1: Fig. S4).

To further examine the effect on FABP2 protein expres-
sion, the whole cell lysate from HEK293T cells trans-
fected with EGFP-N1, FABP2-WT, and FABP2-A163G 
plasmids were harvested. Western blotting results sug-
gested that FABP2-A163G markedly promoted FABP2 
protein expression compared to FABP2-WT (Fig. 4B, C).

Mendelian randomization (MR) of metabolism phenotypes 
and PE
Our GWAS analysis has implicated a strong relationship 
between FABP2 polymorphism and PE. FABP2 polymor-
phism is known to be significantly associated with serum 
total cholesterol and LDL-C [47], which is also proven 
by our data (Additional File 1: Fig. S5). Previous studies 
[4, 38] have implied that lipid metabolic traits may be 
involved in PE pathogenesis. To further investigate the 
potential causal relationship, we conducted MR analysis 

of PE and 3 metabolic related phenotypes: total choles-
terol (TC), triglycerides (TG), and low-density lipopro-
tein-cholesterol (LDL-C). The results indicated that high 
TC, and LDL-C levels were associated with increased risk 
of PE while TG was not causally related with the risk of 
PE (TC: OR = 1.42; 95% CI = 1.24–1.61; p-value < 0. 001; 
LDL-C: OR = 1.21; 95% CI = 1.13–1.29; p-value < 0. 001; 
TG: p-value = 0.357). Results from maximal likelihood 
and MR-PRESSO analysis were consistent with IVW 
(Additional File 1: Fig. S6).

Heritability and LD‑score regression
Using LDSC and common variants outside of the HLA 
region, we found that the estimated heritability of PE was 
comparable between EAS and EUR (0.16 ± 0.03). The LD 
score regression generated an intercept of 1.01 ± 0.01 
with a p-value = 0.152.

PRS analysis
We generated a 288-variant (Additional File 2: Table S5) 
PRS under a penalized regression framework using dis-
coverage stage as the training set and replication stage 
as the testing set. The receiver operating characteristic 
curve (ROC) in the testing set achieved an area under 
the curve (AUC) of 0.765 (Additional File 1: Fig. S7). The 
distributions of standardized PRS for cases and controls 
in the testing data were illustrated in Fig.  5A. Individu-
als in the top 10% group of PRS had a 5.08-fold of PE risk 
relative to the general population (30th–70th quantile) 
(Fig.  5B, Additional File 2: Table  S6). Our 288-variant 
PRS had a better performance than three publicly avail-
able genome-wide PRSs in the testing set (Additional File 
1: Fig. S8).

Fig. 4  FABP2 mutant enhanced itself expression compared to WT by qPCR and Western-blot experiments. A qPCR results showed effects on 
transcription level of FABP2 by transfected Vector, WT and MT-A163G plasmids. B, C Western Blots results showed effects on protein expression 
level of FABP2 by transfected vector, WT, MT-A163G plasmids. WT, wildtype; MT-A163G, mutation type with FABP2; *P < 0.05; **P < 0.01; ***P < 0.001; 
****P < 0.0001; ns, not significant
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Discussion
As most large-scale genetic studies of VTE have been 
conducted in EUR ancestry [4, 45, 48, 49], we performed 
the first GWAS in the Han Chinese population to expand 
the genetic landscape of PE. We identified three genome-
wide significant loci, of which two were known to be 
associated with PE (FGG, ABO). Another locus at FABP2 
reached the significance threshold both in the discov-
ery stage and meta-analysis. The risk allele at the FABP2 
locus (rs1799883) is reported as a functional variant to 
increase the gene expression by qPCR and Western-blot 
expreriments. The results showed that the carriers of 
that mutation have higher blood TC and LDL-C [50]. We 
further performed MR analysis and found that increased 
levels of LDC-C and TC were associated with a higher 
risk of PE, which implied the inhibition of LDL-C and TC 
to be a potential measure of PE prevention.

Some significant loci for the risk of VTE have been 
reported in European ancestry in the past but have not 
been validated in the Asian population, we attempted to 
replicate the previously known loci identified among the 
EUR population in the current study. In our study, 10 of 
the 22 leading variants were replicated, located on FGG, 
F11, ABO, CSRNP1, and FGA. The lack of replication in 
the current study might be partially attributed to insuf-
ficient power and diverse LD patterns across ancestries 
rather than different biological effects. These findings 
further emphasize the importance of including diverse 
ancestral groups in genomic studies to maximize the 
power for detecting disease associations.

Fatty acid binding proteins (FABPs) are key proteins in 
lipid transport. FABP2 can traffic lipids from the intesti-
nal lumen to enterocytes and bind superfluous fatty acids 
to maintain a steady pool of fatty acids in the epithe-
lium. FABP2 polymorphism is known to be significantly 

associated with serum total cholesterol and LDL-C [47]. 
Based on the above evidence, we speculate that variants 
in FABP2 may contribute to PE through lipid metabo-
lism function. Our findings were consistent with previous 
studies on the role of metabolic traits in PE [51], which 
is the first time to be verified among the EAS popula-
tion. Lipid-lowering drugs for prevention or even adjunc-
tive therapy of PE have been proposed in many clinical 
trials [52]. For example, statins contribute to PE pre-
vention through anti-inflammatory and LDL-lowering 
effects [53]. Proprotein convertase subtilisin/kexin type 
(PCSK9) inhibitor has also been identified to lower the 
risk of VTE by LDL reduction [54]. Our study provided a 
shred of robust evidence that lipid-lowering therapy may 
also be considered to prevent PE occurrence in the EAS 
population.

In addition to FABP2, FGG, and ABO, there were also 
13 loci reaching genome-wide significance in the meta-
analysis. However, these loci did not achieve genome-
wide significance in the discovery stage, nor had they 
been previously identified as PE-associated variants. 
There was currently insufficient evidence to support the 
reliability of those association results so we put empha-
sis on the three loci (FABP2, FGG, and ABO). More East 
Asian cohorts are needed to verify the associated loci in 
the future.

PRS has been widely used in the prediction of common 
diseases, and the PRS model for VTE had been validated 
in European ancestry. The early genetic risk model of 
VTE mainly focused on two loci, rs6025 and rs1799963.
The Caprini risk assessment model, primarily relying on 
these two loci, is extensively utilized to predict VTE risk 
[17]. However, these two variants are almost absent in 
the EAS population. With the entry into the GWAS era, 
more loci were used for risk stratification, Crous-Bou 

Fig. 5  Ancestry-specific polygenic risk score (PRS) distribution and odds ratio of PRS quantiles. A Density distribution of the standardized PRS in 
cases and controls. AUC, area under the receiver operating characteristic curve. B Odds ratio of samples divided into different quantile bins using 
PRS with the 30–70% quantile chosen as the reference. Error bars indicate the 95% confidence interval
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et al. established a new risk model based on the 16 SNPs 
and found that the risk of VTE in patients with high PRS 
score was 2.02 times that of patients with low PRS score, 
and achieved better results [55]. Klarin generated a 297 
variant polygenic risk score to predict VTE events among 
patients [45]. Previous research has indicated a reduced 
accuracy of PRS models when transferred across ances-
tries [18]. We, therefore, constructed a 288-variant PRS 
obtained from the EAS population for PE risk prediction. 
The PRS incorporated population-specific variants and 
outperformed in EAS population with an AUC of 0.765. 
Individuals in the top 10% group of PRS had a 5.08-fold 
of PE risk relative to the general population (30th–70th 
quantile). However, the model needs further validation in 
independent datasets with larger sample sizes.

As GWAS have uncovered hundreds of common 
genetic variants involved in PE susceptibility, our study 
shed new light on the genetic architecture of PE among 
Han Chinese population. Nevertheless, like most com-
plex diseases, the common variants discovered in GWAS 
only explain a fraction of total disease heritability. The 
rare variants across the whole genome could also play an 
important role in disease development[56]. Therefore, 
large-scale sequencing studies of PE in the EAS popula-
tion are needed to measure the relationship between rare 
variants and PE risk.

There are several limitations in the current study. Since 
associations do not imply causation, further research is 
required to clarify the functional consequences of these 
novel signals in PE development. We acknowledge the 
imbalance of sample size and age and sex differences 
between cases and controls. However, we employed 
PLINK firth logistic regression with age and sex as covar-
iates in GWAS analysis to control for type-I error issues. 
Considering the potential risk of inducing biased and 
spurious associations, we opted not to perform whole 
genome imputation. Instead, we restricted our imputa-
tion to the genomic regions within + / − 500kbp of the 
FABP2, FGG, and ABO loci, which constituted the main 
findings of our study. While we acknowledge that this 
approach may have led to the neglection of genetic sig-
nals, we held that these loci exhibited sound reliability. 
We look forward to expanding our analysis by incorpo-
rating more extensive genetic data in future studies.

Nevertheless, our study represents the first multicenter 
PE genetic study in diverse areas across China, which is 
a good representative of the Han Chinese population. 
We revealed through extensive genetic analyses that 
FABP2 polymorphism is associated with PE risk and the 
lipid-metabolic pathways are crucial in the PE develop-
ment. Although more studies are needed to confirm the 
value of FABP2, the inhibition of FABP2 is promising to 
benefit from early intervention in reducing the risk of 

thrombosis. Our study also demonstrated the utility of 
applying a population-specific PRS model for PE risk pre-
diction. The clinical use of PRS has the potential to rec-
ognize high-risk patients and improve health outcomes 
through eventual routine implementation as clinical 
biomarkers.

Conclusions
In conclusion, this is the first large-scale genetic PE study 
in EAS. We identified novel risk loci of FABP2 to expand 
the global genetic architecture of PE. MR analysis high-
lighted the importance of lipid-metabolic pathways in PE 
development. Pharmacological agents modulating blood 
lipids could be considered in the future for Chinese peo-
ple to prevent PE. Moreover, we established a popula-
tion-specific PRS model with improved performance in 
the EAS population compared to models trained from 
EUR data. Our study emphasizes the value of investi-
gating diverse ancestral populations in genomic studies, 
especially for those ethnic groups that are less studied in 
the global population.
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