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Abstract 

Background  Current prognostic prediction models of colorectal cancer (CRC) include only the preoperative meas-
urement of tumor markers, with their available repeated postoperative measurements underutilized. CRC prognostic 
prediction models were constructed in this study to clarify whether and to what extent the inclusion of perioperative 
longitudinal measurements of CEA, CA19-9, and CA125 can improve the model performance, and perform a dynamic 
prediction.

Methods  The training and validating cohort included 1453 and 444 CRC patients who underwent curative resection, 
with preoperative measurement and two or more measurements within 12 months after surgery, respectively. Predic-
tion models to predict CRC overall survival were constructed with demographic and clinicopathological variables, by 
incorporating preoperative CEA, CA19-9, and CA125, as well as their perioperative longitudinal measurements.

Results  In internal validation, the model with preoperative CEA, CA19-9, and CA125 outperformed the model includ-
ing CEA only, with the better area under the receiver operating characteristic curves (AUCs: 0.774 vs 0.716), brier 
scores (BSs: 0.057 vs 0.058), and net reclassification improvement (NRI = 33.5%, 95% CI: 12.3 ~ 54.8%) at 36 months 
after surgery. Furthermore, the prediction models, by incorporating longitudinal measurements of CEA, CA19-9, and 
CA125 within 12 months after surgery, had improved prediction accuracy, with higher AUC (0.849) and lower BS 
(0.049). Compared with preoperative models, the model incorporating longitudinal measurements of the three mark-
ers had significant NRI (40.8%, 95% CI: 19.6 to 62.1%) at 36 months after surgery. External validation showed similar 
results to internal validation. The proposed longitudinal prediction model can provide a personalized dynamic predic-
tion for a new patient, with estimated survival probability updated when a new measurement is collected during 
12 months after surgery.

†Chunxia Li and Ke Zhao contributed equally to this work.

*Correspondence:
Dingyun You
youdingyun@qq.com
Zhenhui Li
lizhenhui621@qq.com
Tao Zhang
taozhang@sdu.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-023-02773-2&domain=pdf
http://orcid.org/0000-0003-1048-4443


Page 2 of 13Li et al. BMC Medicine           (2023) 21:63 

Conclusions  Prediction models including longitudinal measurements of CEA, CA19-9, and CA125 have improved 
accuracy in predicting the prognosis of CRC patients. We recommend repeated measurements of CEA, CA19-9, and 
CA125 in the surveillance of CRC prognosis.

Keywords  Colorectal cancer, Perioperative serum tumor markers, Dynamic prediction, Overall survival

Colorectal cancer (CRC) is a common malignancy, with 
high morbidity and mortality [1]. Currently, early colo-
rectal cancer is mainly treated by radical resection, and 
clinicians formulate postoperative monitoring strate-
gies based on the American Joint Committee on Cancer 
(AJCC) staging [2, 3]. However, patients with the same 
AJCC stage were reported to have heterogeneous sur-
vival outcomes [4]. So, for a more precise identification 
of high-risk patients with poor prognoses, individualized 
prognostic prediction is needed [4, 5].

Recently, prediction models with serum tumor mark-
ers, along with demographic and clinicopathological 
variables, have been widely constructed for prognosis 
prediction of CRC. Carcinoembryonic antigen (CEA), 
a recognized tumor marker in CRC [6, 7], has been 
included in prognostic models [4, 5]. In addition to 
CEA, the carbohydrate antigen 19–9 (CA19-9) and car-
bohydrate antigen 125 (CA125) have been reported to 
be associated with the prognosis of CRC [8–11]. How-
ever, whether and to what extent the further inclusion of 
CA19-9 and CA125 can improve the performance of the 
prediction model with CEA has not yet been clarified.

Current prognostic prediction models of CRC include 
only the preoperative measurement of tumor markers 
[5, 12, 13], with available repeated postoperative meas-
urements of these markers underutilized. Studies have 
shown that longitudinal changing patterns of markers 
were prognostic factors independent of preoperative lev-
els [14–16]. Therefore, we suppose that including the lon-
gitudinal measurements of tumor markers may be able to 
improve the prediction accuracy of the prognostic model.

Most of the existing prognostic nomograms for CRC 
are based on static models developed with baseline 
information [5, 13]. Once the model is constructed, 
the predicted risk of an individual will remain con-
stant. However, disease prognosis is a dynamic process. 
Dynamic predictions are necessary, with risk predictions 
updated immediately to reflect the patient’s latest prog-
nosis whenever new measurements of markers become 
available.

In this paper, we constructed prediction models for 
overall survival by random survival forest (RSF) [17], a 
nonparametric method shown to be robust for covari-
ates with nonlinear effects and complex interactions in 
modeling time-to-event data [18–20], to evaluate the 
value of CEA, CA19-9, and CA125 on CRC prognostic 

assessment more intuitively. To better guide the prognos-
tic management of colorectal cancer, a novel longitudinal 
prediction model incorporating prognostic information 
provided by repeated marker measurements will be pro-
posed, and a clinically applicable dynamic prediction tool 
allowing prognostic predictions to be updated with fol-
low-up will be developed.

Methods
Patients
All consecutive CRC patients without neoadjuvant treat-
ment, undergoing curative resection for stage I to III 
colorectal adenocarcinoma between January 2011 and 
February 2019, were retrospectively identified from Yun-
nan Cancer Hospital (YNCH) and the Sixth Affiliated 
Hospital of Sun Yat-sen University (SYSU6). Patients 
with preoperative measurement and two or more meas-
urements within 12 months after surgery were included 
in the construction of the prediction model. The inclu-
sion and exclusion processes are shown in Fig.  1. Base-
line characteristics of patients included and excluded are 
shown in Additional file 1. Data from YNCH were used 
for the construction of prediction models and internal 
validation, and data from SYSU6 were used for external 
validation.

Serum marker determination
Preoperative measurement was defined as the value clos-
est to the time of surgery within 4 weeks before surgery, 
and postoperative measurements were repeatedly meas-
ured after surgery, with different intervals and times for 
individuals. All measurements were made by chemilu-
minescence immunoassay using the COBAS 800 e602 
immunoassay analyzer (Roche Diagnostics, Tokyo, Japan) 
at YNCH, and Alinity immunoassay analyzer (Abbott 
Diagnostics, Chicago, USA) at SYSU6, following World 
Health Organization standard methods (code 73/601).

Covariates
Time-independent variables included preoperative 
CEA, preoperative CA19-9, preoperative CA125, age, 
sex, surgical approach (open resection or laparoscopic 
resection), primary site (colon or rectum), tumor differ-
entiation, TNM stage, lymph node yield, mucinous (col-
loid) type, lymphovascular invasion, perineural invasion, 
and adjuvant chemotherapy. Time-dependent variables 
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included longitudinal measurements of CEA, CA19-9, 
and CA125.

Outcomes
In this retrospective study, the follow-up ended on June 
30, 2020. The endpoint was overall survival (OS). The 
overall survival time was calculated from the date of sur-
gery to the date of death or the last follow-up. Patients 
who were alive until the last follow-up were censored.

Statistical analysis
Continuous variables were described as median [quar-
tile], and categorical variables were described as number 
(percentage). Characteristics across patients in YNCH 
and SYSU6 were compared using the Mann–Whitney U 
test or Student T-test according to the normality assump-
tion for continuous variables, and χ2 test for categorical 
variables. Survival curves for preoperative and the first 
postoperative CEA, CA19-9, and CA125 groups were 
drawn using the OS estimated by Kaplan–Meier, and log-
rank test was performed to determine the overall differ-
ence between groups.

Extraction of trajectory features
Due to the high intra-variability of these tumor markers, 
we set a maximum value for CEA, CA19-9, and CA125 
to facilitate the extraction of trajectory features, which is 
ten times the upper limit of the reference range [21]. The 

log-transformed measurements were used as the longitu-
dinal outcomes.

A functional principal component analysis (FPCA) [22, 
23] is used to extract trajectory patterns of perioperative 
CEA, CA19-9, and CA125. FPCA smooths the sparse 
longitudinal measurements with irregular time intervals 
as functional curves, decomposed as a mean function 
and a summation of products of FPC scores and the cor-
responding eigenfunctions by Karhunen–Loeve expan-
sion. And the calculated individual-specific functional 
principal component (FPC) scores can reflect different 
trajectory patterns. The optimal number of FPCs is deter-
mined based on the AIC criterion. Let Yij and Xij be the 
observed and true longitudinal marker measurements at 
time tij . The FPCA can be described as:

where µ
(
tij
)
 is the smoothed mean function, 

ξik}k=1,...,K  are the FPC scores, {φk
(
tij
)}

l=1,...,K
 are 

the corresponding orthonormal eigenfunctions, ∈ij is a 
measurement error term, and K is the number of FPCs. 
Y can be longitudinal measurements of CEA, CA19-9, or 
CA125.

In consideration of the correlation between the FPC 
scores of CEA, CA19-9, and CA125, multivariate princi-
pal components analysis (MFPCA) [24, 25] was applied 
to characterize the changing patterns of the multivariate 

Yij = Xi

(
tij
)
+ ∈ij = µ

(
tij
)
+

K∑

k=1

ξik φ̂k
(
tij
)
+ ǫij

Fig. 1  Study flowchart
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longitudinal processes. MFPCA indirectly modeled the 
correlations among the three tumor markers via the cor-
relations among their FPC scores.

Construction of prediction models
Random Survival Forest (RSF) is an extension of the ran-
dom forest method for right-censored survival data, con-
structed by aggregating an ensemble of survival trees [17, 
18, 26]. Compared with traditional survival methods, the 
modeling of RSF is more flexible, requiring no restric-
tive assumptions. In consideration of longitudinal mark-
ers with nonlinear trajectories and possible interactions 
among multiple covariates, RSF without the need for 
prior specification is a good choice to develop prediction 
models in this study.

“randomForestSRC” is a comprehensive R pack-
age developed to compute random forests for survival, 
regression, and classification, providing a fast OpenMP 
parallel computing to improve modeling efficiency. RSF 
modeling is easily implementable using the rfsrc func-
tion, which is the main entry point to the “randomFor-
estSRC” package, and users can read the help file in its 
entirety for details.

The random survival forest model was constructed for 
survival prediction. FPC scores as well as demographic 
and clinicopathological variables were all candidate vari-
ables. Variable importance (VIMP) was calculated to 
rank variables based on predictive ability. Five predic-
tion models were developed. The basic model included 
demographic variables (age and sex) and clinicopatho-
logical variables (primary site, surgical approach, tumor 
differentiation, histological type, pathology stage, lymph 
node yield, adjuvant chemotherapy, mucinous (colloid) 
type, lymphovascular invasion, and perineural invasion) 
for prediction. For the preoperative CEA and preopera-
tive CEA&CA19-9&CA125 model, preoperative levels of 
CEA and all three tumor markers were incorporated into 
the basic model. For longitudinal CEA and longitudinal 
CEA&CA19-9&CA125 model, preoperative levels of 
CEA and all three tumor markers, as well as their longitu-
dinal trajectory features within 12 months after surgery, 
were incorporated into the basic model, respectively. In 
addition, a postoperative CEA&CA19-9&CA125 model 
was also constructed, with the first postoperative meas-
urements of CEA, CA19-9, and CA125 incorporated into 
the preoperative CEA&CA19-9&CA125 model.

Evaluation of prediction models
For internal validation, prediction models were vali-
dated with tenfold cross-validation, based on data from 
Yunnan Cancer Hospital. The landmark time was speci-
fied as 12  months after surgery. Survival probability 
was estimated from 18 to 60 months after surgery. Both 

discrimination and calibration were assessed to evalu-
ate the accuracy of the prediction models. Discrimina-
tion was measured by area under the receiver operating 
characteristic curve (AUC) over time, and calibration 
was measured by brier score (BS). Higher AUC and lower 
BS indicate better prediction performance [27]. The net 
reclassification improvement (NRI) [28] and integrated 
discrimination improvement (IDI) [29] were estimated to 
quantify how well a new model reclassifies individuals in 
terms of predicted risk.

External validation was also performed, based on data 
from the Sixth Affiliated Hospital of Sun Yat-sen Univer-
sity. The landmark time was specified as 12 months after 
surgery. Survival probability was estimated at 60 months 
after surgery. Predictive validity was assessed using 
receiver operating characteristic (ROC) curves.

Dynamic prediction
For a target patient, whenever a new marker measure-
ment is obtained, the functional principal component 
scores are re-estimated, so the predicted survival prob-
ability can be updated. Let the observed event time 
T ∗
N = min{TN , CN } , where TN is the true event time, 

and CN is the censoring time independent from  TN . The 
survival probability can be expressed as a conditional 
probability:

where T ∗ is the observed event time, ZN aree the time-
independent covariates, and ξ̂N are the MFPCA scores.

To illustrate the personalized dynamic predictions, 
we set aside three target patients (Patient A, B, and C) 
with CRC of stages I–III and predict their CEA levels 
and future survival probability using the CEA&CA19-
9&CA125 model. The prediction model used for each 
target patient was trained using the data that remained 
in the YNCH after excluding this target patient. And an 
interactive web application was constructed to imple-
ment dynamic prediction of a new CRC patient, based on 
the longitudinal CEA&CA19-9&CA125 model.

All statistical analyses mentioned above were per-
formed using R software (version 3.6.3; http://​www.R-​
proje​ct.​org). FPCA was implemented with package 
“fdapace” (Version 0.5.5), MFPCA was implemented with 
package “MFPCA” (Version 1.3–6), and the RSF model 
was constructed with package “randomForestSRC” (Ver-
sion 2.10.1).

Results
Patient characteristics
Of the 2856 patients who underwent surgery for colorec-
tal cancer without preoperative therapy between January 

π̂N

(
s′|s

)
= p

(
T ∗
N ≥ s′|T ∗

N > s,ZN , ξ̂N

)

http://www.R-project.org
http://www.R-project.org
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2011 and December 2018 at Yunnan Cancer Hospital, 
1453 patients were included, with 9888 measurements 
of tumor markers. Substantially, the clinical character-
istics of patients included and excluded were similar 
(Additional file  1). The YNCH cohort of 1453 patients 
included 861 (59.3%) men, with a median (interquartile 
range [IQR]) age of 58.0 [49.0, 65.0] years (Table 1) and 
a median follow-up time of 44.7  months ([IQR]: 28.8–
63.7  months). During follow-up, a total of 176 patients 
(12.1%) died, with an incidence density of 87.77 per 1000 
person-years.

Of the 549 patients who underwent surgery for colorec-
tal cancer without preoperative therapy between January 

2011 and December 2018 at the Sixth Affiliated Hospi-
tal of Sun Yat-sen University, 444 patients were included, 
with 3694 measurements of tumor markers. The distri-
bution of baseline characteristics of patients included 
was substantially consistent with that of those excluded 
(Additional file  1). The SYSU6 cohort of 444 patients 
included 259 (58.3%) men, with a median (interquartile 
range [IQR]) age of 57.0 [47.0, 63.0] years (Table 1) and 
a median follow-up time of 40.6  months ([IQR]: 37.1–
48.9  months). During follow-up, a total of 33 patients 
(7.4%) died, with an incidence density of 49.99 per 1000 
person-years.

Table 1  Characteristics by the two cohorts of CRC patients

Data are median [IQR], or n (%)

YNCH Yunnan Cancer Hospital, SYSU6 the Sixth Affiliated Hospital of Sun Yat-sen University

Variable YNCH (n = 1453) SYSU6 (n = 444) P value

Preoperative
  Preoperative CEA 3.9 [2.2, 9.0] 3.5 [1.9, 9.5] 0.120

  Preoperative CA19-9 12.6 [7.5, 22.9] 13.0 [6.1, 34.5] 0.054

  Preoperative CA125 12.9 [9.0, 18.7] 11.5 [7.9, 17.4] 0.002

Postoperative
  Postoperative CEA 1.9 [1.2, 2.9] 1.9 [1.2, 2.8] 0.807

  Postoperative CA19-9 9.4 [5.9, 15.9] 7.2 [4.0, 13.5]  < 0.001

  Postoperative CA125 24.5 [16.2, 39.3] 18.1 [11.0, 31.4]  < 0.001

Covariate
  Age 58.0 [49.0, 65.0] 57.0 [47.0, 63.0] 0.055

  Male, n (%) 861 (59.3) 259 (58.3) 0.771

Primary site  < 0.001

    Colon, n (%) 746 (51.3) 341 (76.8)

    Rectum, n (%) 707 (48.7) 103 (23.2)

  Surgical approach  < 0.001

    Laparoscopic resection, n (%) 551 (37.9) 381 (85.8)

    Open resection, n (%) 902 (62.1) 63 (14.2)

  Tumor differentiation  < 0.001

    Well, n (%) 8 (0.6) 74 (16.7)

    Moderate, n (%) 908 (62.5) 246 (55.4)

    Poor-undifferentiated, n (%) 454 (31.2) 124 (27.9)

    Unknown, n (%) 83 (5.7) 0 (0.0)

  AJCC 8th ed. Stage 0.195

    I, n (%) 189 (13.0) 71 (16.0)

    II, n (%) 584 (40.2) 163 (36.7)

    III, n (%) 680 (46.8) 210 (47.3)

  Lymph node yield  < 0.001

    < 12, n (%) 287 (19.8) 36 (8.1)

    ≥ 12, n (%) 1166 (80.2) 408 (91.9)

  Mucinous (colloid) type 98 (6.7) 29 (6.5) 0.961

  Lymphovascular invasion 123 (8.5) 56 (12.6) 0.012

  Perineural invasion 30 (2.1) 83 (18.7)  < 0.001

  Adjuvant chemotherapy 1252 (86.2) 415 (93.5)  < 0.001
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The characteristics of patients by the two cohorts 
are outlined in Table  1. Compared with patients in the 
YNCH, patients in the SYSU6 had higher proportions of 
colon cancer, laparoscopic resection, well tumor differ-
entiation, ≥ 12 lymph node yield, lymphovascular inva-
sion, perineural invasion, and adjuvant chemotherapy. In 
terms of age, gender, pathological stage, and mucinous 
(colloid) type, the two cohorts did not show significant 
differences (Table 1).

Overall, the first postoperative levels of CEA and 
CA19-9 were lower than their preoperative levels, while 
the first postoperative CA125 was higher than preopera-
tive CA125 (Table 1). And patients with elevated preop-
erative or postoperative CEA (> 5  ng/ml), CA19-9 (> 37 
U/ml), and CA125(> 35 U/ml) had poorer overall survival 
compared to those with normal preoperative or post-
operative CEA, CA19-9, and CA125 (Additional File 2: 
Figures S1-S2).

Extraction of longitudinal features
The smoothed curves of longitudinal CEA, CA19-9, 
and CA125 of survived and dead patients are shown in 
Additional File 2: Figure S3. People who died tended to 
have higher postoperative CEA, CA19-9, and CA125 
within 12 months after surgery. In the extraction of tra-
jectory features, the first 6, 6, and 5 principal compo-
nents for longitudinal CEA, CA19-9, and CA125 were 
selected based on Akaike Information Criterion (AIC), 
respectively. Corresponding eigenfunctions are shown 
in Additional File 2: Figure S4. And the first 17 princi-
pal components of the three longitudinal markers were 
selected in MFPCA, with the first five eigenfunctions 

shown in Additional File 2: Figure S5. Additional File 
2: Figure S6 displays the relative importance of the first 
10 important variables ranked by VIMP in the preop-
erative CEA&CA19-9&CA125 model and longitudi-
nal CEA&CA19-9&CA125 model. The first and second 
principal components of the three tumor markers’ peri-
operative measurements were important prognostic pre-
dictors, second only to the pathological stage.

Internal verification of prediction models
The AUCs for the basic model were 0.707 at 24 months, 
0.704 at 36  months, 0.706 at 48  months, and 0.681 at 
60  months. The BSs for the basic model were 0.029 at 
24 months, 0.059 at 36 months, 0.076 at 48 months, and 
0.082 at 60 months (Fig. 2).

The prediction performance of the preoperative CEA 
model was enhanced with the inclusion of preopera-
tive CA19-9 and CA125. At each prediction time (18 to 
60 months after surgery), the preoperative CEA&CA19-
9&CA125 model had higher AUC and lower BS than the 
preoperative CEA model (Fig. 2). Specifically, the AUCs 
for the preoperative CEA and preoperative CEA&CA19-
9&CA125 model were 0.740 vs 0.774 at 24 months, 0.716 
vs 0.774 at 36 months, 0.721 vs 0.767 at 48 months, and 
0.706 vs 0.740 at 60 months. And the BSs for the two pre-
operative models were 0.028 vs 0.028 at 24 months, 0.058 
vs 0.057 at 36 months, 0.075 vs 0.072 at 48 months, and 
0.080 vs 0.078 at 60 months.

Compared with the preoperative CEA model, the pre-
operative CEA-CA19-9-CA125 model had improved 
accuracy in risk estimates. The NRI (95% CI) were 34.05% 
(3.29%, 64.81%) at 24 months, 33.53% (12.28%, 54.78%) at 

Fig. 2  AUC (a) and BS (b) of the prediction models at 18 to 60 months after surgery for internal validation. AUC, area under the receiver operating 
characteristic curve; BS, brier score
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36  months, 36.04% (17.18%, 54.90%) at 48  months, and 
21.47% (2.95%, 39.99%) at 60 months (Table 2). And the 
corresponding IDI (95% CI) were 0.011 (0.001, 0.021), 
0.017 (0.005, 0.029), 0.024 (0.009, 0.039), and 0.020 
(0.006, 0.035) (Table 3).

Similar to preoperative models, the prediction perfor-
mance of the longitudinal CEA model was enhanced with 
the inclusion of longitudinal measurements of CA19-9 
and CA125. Both discrimination and calibration of the 
longitudinal CEA&CA19-9&CA125 model were bet-
ter than that of the longitudinal CEA model (Fig.  2). 

The AUCs for the longitudinal CEA and longitudinal 
CEA&CA19-9&CA125 model were 0.835 vs 0.871 at 
24 months, 0.832 to 0.849 vs 36 months, 0.814 vs 0.832 at 
48 months, and 0.782 vs 0.796 at 60 months. And the BSs 
for the three longitudinal models decreased from 0.026 
to 0.025 at 24 months, from 0.051 to 0.049 at 36 months, 
from 0.066 to 0.065 at 48  months, and from 0.072 to 
0.071 at 60 months.

Compared with the preoperative model, the predic-
tion accuracy of the longitudinal model incorporating the 
repeated measurements of CEA, CA19-9, or CA125 was 

Table 2  Net reclassification improvement of prediction models

Preoperative CEA model included age and sex, primary site, surgical approach, tumor differentiation, histological type, pathology stage, lymph node yield, adjuvant 
chemotherapy, mucinous (colloid) type, lymphovascular invasion and perineural invasion, and preoperative CEA for prediction. Preoperative CEA&CA19-9&CA125 
model included age and sex, primary site, surgical approach, tumor differentiation, histological type, pathology stage, lymph node yield, adjuvant chemotherapy, 
mucinous (colloid) type, lymphovascular invasion and perineural invasion, and preoperative CEA for prediction. Longitudinal CEA&CA19-9&CA125 model further 
included preoperative CA19-9 and CA125 in addition to variables in preoperative CEA&CA19-9&CA125 model

Preoperative CEA&CA19-9&CA125 model vs preoperative CEA model
Percentage of individuals for whom the 
preoperative CEA&CA19-9&CA125 model 
estimates a higher risk than the preoperative 
CEA model

Percentage of individuals for whom the 
preoperative CEA&CA19-9&CA125 model 
estimates a lower risk than the preoperative 
CEA model

Overall net reclassifica-
tion improvement (95% 
confidence interval)

P for net 
reclas-
sification 
improve-
ment

  24 months

    Events 64.29% 35.71% 34.05% (3.29%, 64.81%) 0.015

    Non-events 47.26% 52.74%

  36 months

    Events 59.57% 40.43% 33.53% (12.28%, 54.78%) 0.001

    Non-events 42.81% 57.19%

  48 months

    Events 60.47% 39.53% 36.04% (17.18%, 54.90%) < 0.001

    Non-events 42.45% 57.55%

  60 months

    Events 57.62% 42.38% 21.47% (2.95%, 39.99%) 0.012

    Non-events 46.88% 53.12%

Longitudinal CEA&CA19-9&CA125 model vs preoperative CEA&CA19-9&CA125 model
Percentage of individuals for whom the 
longitudinal CEA&CA19-9&CA125 model 
estimates a higher risk than the preoperative 
CEA&CA19-9&CA125 model

Percentage of individuals for whom the 
longitudinal CEA&CA19-9&CA125 model 
estimates a lower risk than the preoperative 
CEA&CA19-9&CA125 model

Overall net reclassifica-
tion improvement (95% 
confidence interval)

P for net 
reclas-
sification 
improve-
ment

  24 months

    Events 73.81% 26.19% 64.87% (34.11%, 95.63%) < 0.001

    Non-events 41.37% 58.63%

  36 months

    Events 62.77% 37.23% 40.81% (19.56%, 62.06%) < 0.001

    Non-events 42.36% 57.64%

  48 months

    Events 60.47% 39.53% 30.30% (11.44%, 49.16%) 0.001

    Non-events 45.32% 54.68%

  60 months

    Events 56.95% 43.05% 24.76% (6.24%, 43.28%) 0.004

    Non-events 44.57% 55.43%
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improved. The longitudinal CEA model performed better 
than the preoperative CEA model in both AUC and BS 
(Fig. 2). With the further inclusion of longitudinal CEA, 
the AUC for the preoperative CEA model increased 
from 0.740 to 0.835 at 24  months, from 0.716 to 0.832 
at 36  months, from 0.721 to 0.814 at 48  months, and 
from 0.706 to 0.782 at 60 months. And the BS decreased 
from 0.028 to 0.026 at 24 months, from 0.058 to 0.051 at 
36 months, from 0.075 to 0.066 at 48 months, and from 
0.080 to 0.072 at 60  months. Likewise, the longitudinal 
CEA&CA19-9&CA125 model performed better than the 
preoperative CEA&CA19-9&CA125 model in predicting 
the overall survival of CRC patients.

Compared with the preoperative CEA&CA19-
9&CA125 model, the longitudinal CEA&CA19-
9&CA125 model had improved accuracy in risk 
estimates. The NRI (95% CI) were 64.87% (34.11%, 
95.63%) at 24  months, 40.81% (19.56%, 62.06%) at 
36 months, 30.30% (11.44%, 49.16%) at 48 months, and 
24.76% (6.24%, 43.28%) at 60  months (Table  2). And 
the corresponding IDI (95% CI) were 0.062 (0.038, 
0.085), 0.071 (0.045, 0.098), 0.053 (0.030, 0.076), and 
0.040 (0.019, 0.061) (Table  3). In addition, the AUC 
for the postoperative CEA&CA19-9&CA125 model 
was 0.762 at 60  months after surgery, which was 
higher than the preoperative CEA&CA19-9&CA125 

Table 3  Integrated discrimination improvement of prediction models

Preoperative CEA model included age and sex, primary site, surgical approach, tumor differentiation, histological type, pathology stage, lymph node yield, adjuvant 
chemotherapy, mucinous (colloid) type, lymphovascular invasion and perineural invasion, and preoperative CEA for prediction. Preoperative CEA&CA19-9&CA125 
model included age and sex, primary site, surgical approach, tumor differentiation, histological type, pathology stage, lymph node yield, adjuvant chemotherapy, 
mucinous (colloid) type, lymphovascular invasion and perineural invasion, and preoperative CEA for prediction. Longitudinal CEA&CA19-9&CA125 model further 
included preoperative CA19-9 and CA125 in addition to variables in preoperative CEA&CA19-9&CA125 model

Preoperative CEA&CA19-9&CA125 model vs preoperative CEA model
Mean predicted prob-
ability of preoperative 
CEA&CA19-9&CA125 
model

Mean predicted probability of preoperative CEA model Overall integrated dis-
crimination improvement 
(95% confidence interval)

P for 
integrated 
discrimination 
improvement

  24 months

    Events 0.072 0.061 0.011 (0.001, 0.021) 0.016

    Non-events 0.031 0.031

  36 months

    Events 0.159 0.143 0.017 (0.005, 0.029) 0.003

    Non-events 0.074 0.074

  48 months

    Events 0.219 0.197 0.024 (0.009, 0.038) 0.001

    Non-events 0.109 0.111

  60 months

    Events 0.257 0.237 0.020 (0.006, 0.035) 0.004

    Non-events 0.142 0.143

Longitudinal CEA&CA19-9&CA125 model vs preoperative CEA&CA19-9&CA125 model
Mean predicted prob-
ability of longitudinal 
CEA&CA19-9&CA125 
model

Mean predicted probability of preoperative CEA&CA19-
9&CA125 model

Overall integrated dis-
crimination improvement 
(95% confidence interval)

P for 
integrated 
discrimination 
improvement

  24 months

    Events 0.132 0.072 0.062 (0.038, 0.085) < 0.001

    Non-events 0.029 0.031

  36 months

    Events 0.226 0.159 0.071 (0.045, 0.098) < 0.001

    Non-events 0.069 0.074

  48 months

    Events 0.267 0.219 0.053 (0.030, 0.076) < 0.001

    Non-events 0.105 0.109

  60 months

    Events 0.292 0.257 0.040 (0.018, 0.061) < 0.001

    Non-events 0.137 0.142
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model (AUC = 0.740) and lower than the longitudinal 
CEA&CA19-9&CA125 model (AUC = 0.796) (Addi-
tional File 2: Figure S7a).

External verification of prediction models
External validation showed similar results to the above 
internal validation. The ROC curves of the five predic-
tion models, using the YNCH cohort for training and 
the SYSU6 cohort for validation, are shown in Fig. 3. At 
60 months after surgery, the AUCs for the basic model, 
preoperative CEA model, preoperative CEA&CA19-
9&CA125 model, longitudinal CEA model, and lon-
gitudinal CEA&CA19-9&CA125 model were 0.581, 
0.597, 0.620, 0.696, and 0.736. Although the discrimi-
native accuracy of these prediction models reduced 
in external verification, the AUC improved with the 
incorporation of tumor markers and their longitudinal 
information. And the performance of the preoperative, 
postoperative, and longitudinal CEA&CA19-9&CA125 
model was also gradually improved in external valida-
tion, with the AUCs to be 0.620, 0.638, 0.736 (Addi-
tional File 2: Figure S7b).

Personalized dynamic prediction
Patient A, with colon cancer of stage I, survived 
71.6 months after surgery. Patient B, with colon cancer 
of stage II, died 42.57 months after surgery. Patient C, 
with poorly differentiated rectal cancer of stage III, died 
at 15.3 months after surgery. The personalized dynamic 
predictions of patient A, patient B, and patient C are 
displayed in Additional File 2: Figure S8. The CEA level 
estimated by the longitudinal CEA&CA19-9&CA125 
model was close to the observed measurement, and the 
predicted risk was closer to the real situation with the 
gradual inclusion of tumor measurements. Concretely, 
the postoperative CEA of patient A decreased and 
remained at a low level, with a flatter rate of decrease 
of the conditional survival function, while the post-
operative CEA of patient C gradually increased, with 
a steeper rate of decrease of the conditional survival 
function. The CEA of Patient B decreased firstly and 
then increased, with the conditional survival func-
tion decreasing slowly and then rapidly. And the con-
ditional survival function curve of Patient B was lower 
than that of patient A and higher than that of patient C. 

Fig. 3  ROC curves of the prediction models at 60 months after surgery for external validation. AUC, area under the receiver operating characteristic 
curve
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The shiny app of the proposed model has been submit-
ted to github [30], and the command “shiny::runGitHub 
(“Dynamic-prediction-of-overall-survival”, user-
name = “ccckyx”, ref = “main”)” will run it in R.

Discussion
In this study, we constructed prediction models to eval-
uate the prognostic value of serum tumor markers in a 
more intuitive way and found that the predictive per-
formance of CRC prognostic models improved with the 
incorporation of preoperative CEA, CA19-9, and CA125. 
The functional data analysis method was innovatively 
applied to sparse and irregular repeated marker meas-
urements to extract individual-specific longitudinal fea-
tures, and longitudinal models were created, which were 
proven to have better discrimination and calibration than 
preoperative models. The proposed longitudinal predic-
tion model based on MFPCA can provide a personalized 
dynamic prediction for a new patient, with estimated 
survival probability updated when a new measurement 
is collected during 12 months after surgery. The dynamic 
prediction tool developed based on the model had high 
clinical applicability, enabling the repeated measurement 
of perioperative CEA, CA19-9, and CA125 to be fully 
utilized, which will benefit the prognosis assessment and 
treatment management of CRC patients.

The improved prediction accuracy of preoperative 
models with the inclusion of multiple prognostic tumor 
markers was supported by previous studies. It has been 
reported that CRC patients with simultaneously posi-
tive preoperative CEA, CA19-9, and CA125 tended to 
have the highest rate and the shortest survival time for 
death [31] and recurrence [32]. The number of elevated 
preoperative tumor markers was concluded to signifi-
cantly predict the prognosis of patients with stage II and 
III CRC [33]. Recently, attention has been paid to pre-
diction models incorporating multiple tumor markers. 
Tang et al. developed a predictive nomogram to identify 
early recurrence, with CA19-9 and CA125 included. Zhu 
et al. confirmed the clinical implications of CEA, CA19-
9, CA125, and positive lymph node scheme (LODDS) in 
predicting OS of CRC patients and conducted a novel 
nomogram incorporating the three tumor markers and 
LODDS. This novel proposed model performed better 
than the model containing CEA only, consistent with 
our results [13]. However, the extent to which the further 
addition of CA19-9 and CA125 to the model including 
CEA can improve the prediction has not been quantified. 
In our study, based on the random survival forest model, 
two preoperative models including different numbers of 
tumor markers were constructed. Compared with the 
model with only preoperative CEA, the model includ-
ing all three tumor markers has significantly improved 

predictive accuracy. Our results supplement previous 
research, making the prediction improvement of the 
combination of markers more intuitive.

In addition to the preoperative level, the dynamic 
measurements of tumor markers during follow-up after 
surgery also provide important prognostic information. 
The changing patterns of postoperative tumor markers 
are important prognostic predictors [14]. Patients whose 
CEA continues to rise after surgery have a higher risk of 
death or recurrence than those whose CEA declines and 
remains stable [15, 16]. Ma et  al. studied the impact of 
dynamic changes in inflammation and biochemical indi-
cators on the prognosis of perioperative patients and con-
structed a new prognostic model using dynamic changes 
to achieve a more accurate prediction of the overall sur-
vival and disease-free survival of patients with CRC [34]. 
Though this predictive model contains dynamic informa-
tion, limited measurements of indicators were used. And 
few previous studies incorporated dynamic measure-
ments of tumor markers into prognostic models of CRC. 
In our prediction model, the longitudinal changing fea-
tures of perioperative CEA, CA19-9, and CA125 within 
12  months after surgery were expressed as principal 
component scores and included in the survival model for 
dynamic prediction. Compared with the model includ-
ing preoperative levels, the predictive performance of the 
longitudinal model has been greatly improved. Through 
the comparison between the preoperative CEA&CA19-
9&CA125 model and the longitudinal CEA&CA19-
9&CA125 model, the prognostic value of the longitudinal 
changing patterns of the three markers was quantified.

For a specific individual, we expect to update the 
estimate of prognostic risk based on a newly obtained 
measurement of tumor marker, for which a dynamic pre-
diction model is needed. It is worth noting that although 
the longitudinal prediction model incorporating 
repeated measurements of CEA, CA19-9, and CA125 
within 12  months after surgery is not dynamic, it can 
be used for dynamic prediction. That is, dynamic pre-
diction can be achieved by MFPCA-RSF. In the field of 
dynamic prediction, the joint model is a commonly used 
model that can process longitudinal data and survival 
data simultaneously [35]. Based on the joint model, Cao 
et  al. have established a model to dynamically predict 
OS of patients with ovarian cancer, with longitudinal 
CA125 values considered [36]. However, the joint model 
fits longitudinal data using parametric models, whose 
parameter distribution is difficult to determine for lon-
gitudinal markers with complex patterns. Moreover, the 
traditional joint model cannot handle multiple longitu-
dinal data. This limits the application of the joint model 
in our data. The functional data analysis method used 
in this study is non-parametric, making no assumption 
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about the trajectory and being flexible in non-linear situ-
ations. It has been widely used in the feature extraction 
of longitudinal data. Yan et al. applied FPCA to longitu-
dinal measurements of BCR-ABL gene expression levels 
to extract features, and use these features as covariates 
in a Cox proportional hazard model to conduct dynamic 
predictions of chronic myeloid leukemia [23]. And 
Luo et  al. have extended FPCA to multivariate princi-
pal components analysis (MFPCA) and implemented 
dynamic predictions for Alzheimer’s disease and Par-
kinson’s disease [24, 25, 37, 38]. On the other hand, the 
joint model predicts future survival probability based on 
the Cox proportional hazard regression model, requiring 
the data to satisfy the proportional hazard assumption. 
The estimation of Cox model is unstable when there are 
complex interactions between variables. Therefore, we 
chose the RSF model, proven to remain robust in the 
presence of interactions between covariates [20]. How-
ever, FPCA-RSF is poor in interpretability. The meaning 
of the eigenfunctions and corresponding FPCs estimated 
by FPCA and MFPCA is difficult to explain, and the 
effect of the covariates on the survival outcome cannot 
be quantified in RSF [16]. Although we measured varia-
ble importance and found that the principal components 
were important predictors, the contribution of CEA, 
CA19-9, and CA125 to each principal component was 
not clear. MFPCA only focused on the common compo-
nents of CEA, CA19-9, and CA125, with marker-specific 
components ignored [25].

Our study had several strengths. The performance 
improvement, brought by the further inclusion of 
CA19-9 and CA125 in the prognosis prediction model 
with CEA only, quantified the clinical value of simulta-
neous measurements of CEA, CA19-9, and CA125. The 
FPCA and MFPCA methods used to extract longitudinal 
features in our study are flexible, suitable for various and 
nonlinear changing patterns of tumor markers. Different 
from the trajectory analysis methods, the functional data 
analysis method can estimate longitudinal trajectory fea-
tures which are individual-specific and time-varying. By 
extracting individual-specific longitudinal features, lon-
gitudinal prediction models containing more prognos-
tic information were proposed, which allows clinicians 
to make full use of available repeated measurements of 
tumor markers to make more accurate prognostic pre-
dictions. Based on the time dependence of the extracted 
features, the longitudinal model can be used for dynamic 
prediction. For a target patient, the predicted risk can be 
updated timely to reflect the latent prognosis. In addi-
tion to time-dependent variables, time-varying effects 
of time-independent prognostic factors may also con-
tribute to the changed prognosis [21]. And demographic 

and clinicopathological covariates with possible time-
dependent effects have been considered in our study, 
using the random survival forest method which was 
robust when the proportional hazards assumption was 
violated [19].

Our study is subject to the limitations and bias inherent 
in observational retrospective studies. The inclusion cri-
teria were patients who had at least three marker meas-
urements within 12  months after surgery, which may 
lead to selection bias. Besides, the proposed dynamic 
prediction model was constructed and validated using 
data from South China only, and whether the model 
can be applied to a wider population still needs to be 
further verified. A large-scale, multicenter prospective 
cohort study with regular follow-up will provide more 
evidences to validate the model for dynamic prediction 
and increase the impact. In external verification, limited 
by the number of CRC patients in the SYSU6 cohort, we 
only predicted the survival probability at 60 months after 
surgery, to ensure a sufficient number of outcomes. The 
CRC patients in SYSU6 had a low mortality rate, related 
to the high economic and medical level of Guangdong 
province. Despite the differences between patients in 
YNCH and SYSU6, our proposed dynamic prediction 
model constructed using data from YNCH performed 
well for patients in SYSU6, indicating that the model had 
certain stability and extrapolation. MSI status is a well-
known factor associated with the prognosis of colorectal 
cancer [39]. However, since MSI status was not widely 
detected until 2017 in Yunnan province with backward 
economic conditions, it had a high missing rate in the 
current study, and it was not considered when construct-
ing our models. An exploratory analysis based on avail-
able MSI data showed that the predictive performance 
of prediction models including MSI status had a trend of 
improvement with the incorporation of CEA, CA19-9, 
and CA125 (Additional File 2: Figure S9). However, the 
value of including CEA, CA19-9, and CA125 in predic-
tion models with MSI status needs to be further clari-
fied in a large cohort. It should be mentioned that the 
proposed model is not suitable for patients with stage IV 
colorectal cancer. Patients with stage I–III and IV CRC 
receive different treatment regimens, with stage I–III 
patients mainly treated with surgical resection and stage 
IV patients mainly treated with chemotherapy and tar-
geted therapy, resulting in heterogeneity in their chang-
ing patterns of tumor markers. Therefore, to reduce the 
complexity of prediction models, stage IV patients were 
not included in this study. However, the development of 
dynamic prediction models for stage IV CRC patients 
is also valuable and should be studied specifically in the 
future.
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Conclusions
In conclusion, the predictive performance of CRC prog-
nostic models improved with the incorporation of pre-
operative CEA, CA19-9, and CA125, as well as their 
perioperative longitudinal measurements. The longitudi-
nal measurements of CEA, CA19-9, and CA125 are rec-
ommended to predict the prognosis of CRC patients.
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