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Abstract

Background Evidence from observational studies and clinical trials suggests that the gut microbiota is associated
with cancer. However, the causal association between gut microbiota and cancer remains to be determined.

Methods We first identified two sets of gut microbiota based on phylum, class, order, family, and genus level infor-
mation, and cancer data were obtained from the IEU Open GWAS project. We then performed two-sample Mendelian
randomisation (MR) to determine whether the gut microbiota is causally associated with eight cancer types. Further-
more, we performed a bi-directional MR analysis to examine the direction of the causal relations.

Results We identified 11 causal relationships between genetic liability in the gut microbiome and cancer, including
those involving the genus Bifidobacterium. We found 17 strong associations between genetic liability in the gut micro-
biome and cancer. Moreover, we found 24 associations between genetic liability in the gut microbiome and cancer

using multiple datasets.

Conclusions Our MR analysis revealed that the gut microbiota was causally associated with cancers and may be use-
ful in providing new insights for further mechanistic and clinical studies of microbiota-mediated cancer.
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Background

Gut microbiota residing in the gastrointestinal tract can
be considered a potential environmental factor influenc-
ing human life. Currently, the gut microbiota has been
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implicated as a risk or preventive factor for a variety of
diseases, including cancers, and is closely associated with
the onset of colorectal cancer (CRC) [1]. Conversely,
it has been pointed out that cancer also affects the gut
microbiota in mice, which could induce gut microbiota
disorders and cancer growth [2].

In contrast to observational studies, randomised
controlled trials of gut microbiota could potentially
help establish a causal relationship. Unfortunately,
owing to the influence of objective factors, such as
technology and research methods, the screening of
strains involved in early diagnosis and prognosis still
has great limitations. Consequently, most of the cur-
rent research conclusions are based on observation of
the composition and changes in the gut microbiota in
patients’ faeces and on the results of trials in which gut
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microbiota were transplanted into gnotobiotic mice,
which are influenced by a variety of factors, such as
diet and antibiotic use [3—6]. In summary, whether the
associations between the gut microbiota and cancers
are causal and the direction of the causal associations
are still unknown. It is thus important to explore the
causal relationship between the gut microbiota and
cancers.

Genome-wide association studies (GWASs) have
tested millions of genetic variants across the genomes
of many individuals to identify genotype—phenotype
associations and have revolutionised the field of com-
plex disease genetics over the past decade [7]. GWASs
provide an agnostic approach for investigating the
genetic basis of complex diseases. As of October 2022,
the GWAS Catalog contained 6041 publications and
427,870 associations. In oncology, over 450 genetic
variants associated with increased risks of common
cancers have been identified. The clinical application
of GWAS data has been providing opportunities for
cancer prevention [8].

Mendelian randomisation (MR) analysis exploits the
inherent properties of common genetic variations for
a modifiable environmental exposure of interest and
has become a widely used approach to explore the
potential causal relationships between environmen-
tal exposures and diseases [9-11]. Two-sample MR
analysis can utilise single-nucleotide polymorphism
(SNP)-exposure and SNP-outcome associations from
independent GWASs and combine them into a sin-
gle causal estimate. As the number of GWASs on gut
microbiota and diseases has increased rapidly [12,
13], large-scale summary statistics have become more
widely available, allowing for two-sample MR analysis
with significantly improved statistical power.

In the present study, we investigated the causal rela-
tionship between gut microbiota and a broad range of
cancers by conducting a comprehensive two-sample
MR analysis of eight cancers derived from the IEU
Open GWAS project, including breast cancer, colo-
rectal cancer, ovarian cancer, head and neck cancer,
lung cancer, endometrial cancer, and prostate cancer.
By applying a bi-directional MR approach, we can
explore whether gut microbiota casually affects cancer
risk and we can also examine whether the genetic pre-
disposition to cancer risk causally influences the gut
microbiota. Based on these, we tried to clarify the role
of the gut microbiota in cancer development to even-
tually help to develop new treatment strategies, such
as probiotic therapy, dietary modulations, and faecal
microbiota transplantation (FMT) [14].
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Methods

Exposure data

SNPs related to the human gut microbiome composi-
tion were selected as instrumental variables (IVs) from
a GWAS dataset of the international consortium MiBio-
Gen [13]. This was a multi-ethnic large-scale GWAS that
coordinated 16S ribosomal RNA gene sequencing pro-
files and genotyping data from 18,340 participants from
24 cohorts from the USA, Canada, Israel, South Korea,
Germany, Denmark, the Netherlands, Belgium, Sweden,
Finland, and the UK to explore the association between
autosomal human genetic variants and the gut micro-
biome. A total of 211 taxa (131 genera, 35 families, 20
orders, 16 classes, and 9 phyla) were included.

Outcome data

We downloaded all traits reported in the IEU Open
GWAS project https://gwas.mrcieu.ac.uk/ (updated to
2022.04.06, N = 40,427) and derived all cancer-related
GWAS summary-level data. After screening the dataset
and excluding duplicate studies, non-malignant tumours,
and non-European ancestry, the GWAS summary-level
data for the associations between genetic variants and
cancers included those from the UK Biobank [15], the
International Lung Cancer Consortium (ILCCO) [16,
17], the Prostate Cancer Association Group to Investigate
Cancer Associated Alterations in the Genome (PRAC-
TICA-L) consortium [18], the Medical Research Coun-
cil-Integrative Epidemiology Unit (MRC-IEU) [19], the
Ovarian Cancer Association Consortium (OCAC) [20],
the Oncoarray oral cavity and oropharyngeal cancer [21],
the Breast Cancer Association Consortium (BCAC) [22],
FINNGEN [23], and Neale Lab (http://www.nealelab.is/
uk-biobank/). Detailed information is provided in Addi-
tional file 1: Table S1.

Instrumental variable selection

The flowchart of the study is presented in Fig. 1. Briefly,
the gut microbiota served as the exposure, whereas can-
cer served as the outcome.

Bacterial taxa were analysed at five levels (phylum,
class, order, family, and genus), and a distinct taxon was
defined as a feature. To ensure the authenticity and accu-
racy of the conclusions on the causal link between the gut
microbiome and cancer risk, the following quality control
steps were used to select the optimal IVs. First, SNPs that
were significantly related to the gut microbiome were
selected as the IVs. Two thresholds were used to select
the IVs. The first threshold selected SNPs less than the
genome-wide statistical significance threshold (5 x 1078
to serve as IVs. Unfortunately, after we selected SNPs,
only a small number of gut microbiota were selected as
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(R?<0.01, window size=500kb)

Remove potential pleiotropic SNPs by
MR-PRESSO method

MR analyses

Sensitivity analyses and reverse MR analyses

Fig. 1 Study design and workflow

IVs, and to explore more relations between cancers and
gut microbiota to obtain more comprehensive results,
we used the second threshold that identified SNPs that
were smaller than the locus-wide significance level (1
x 107°) and selected them as the second IVs set to find
more potential causal associations. Second, the minor
allele frequency (MAF) threshold of the variants of
interest was 0.01. Third, one of the principles of the MR
approach is that there is no linkage disequilibrium (LD)
among the included IVs, as the presence of strong LD
might result in biased results. In the current study, the
clumping process (R* < 0.01 and clumping distance =
10,000 kb) was conducted to assess the LD between the
included SNPs. Fourth, an important step in MR is to
ensure that the effects of the SNPs on the exposure corre-
spond to the same allele as the effects on the outcome. To

avoid distortion of strand orientation or allele coding, we
deleted palindromic SNPs (e.g. with A/T or G/C alleles).
During the harmonisation process, we aligned the alleles
to the human genome reference sequence (build 37) and
removed ambiguous and duplicated SNPs.

We applied MR-PRESSO and MR-Egger regression
tests to monitor the potential horizontal pleiotropy effect.
For each SNP, the MR-PRESSO outlier test calculated a
p-value for its pleiotropy significance, whereas the MR-
PRESSO global test calculated a p-value for overall hori-
zontal pleiotropy. SNPs were sorted in ascending order in
terms of their MR-PRESSO outlier test p-values and were
then removed one by one. The MR-PRESSO global test
was performed on the remaining SNPs each time an SNP
was removed from the list. Recursion was repeated until
the p-value for the global test was insignificant (p > 0.05).
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The list of SNPs remaining after removing pleiotropic
SNPs was used for the subsequent MR analysis.

MR analysis

We performed an MR analysis to investigate the causal
relationship between microbiome features and common
cancers. For features containing only one IV, the Wald
ratio test was used to estimate the association between
the identified IV and each cancer [24]. Five popular MR
methods were used for features containing multiple IVs:
inverse-variance weighted (IVW) test [25], weighted
mode [26], MR-Egger regression [27], weighted median
estimator (WME) [28], and MR-PRESSO [29]. The IVW
method is reported to be slightly more powerful than
the others under certain conditions [28]; therefore, the
results with more than one IV were mainly based on the
IVW method, with the other four methods serving as
complements.

Additionally, we established a multiple testing sig-
nificance threshold at each feature level (phylum, class,
order, family, and genus), defined as p < 0.05/n (where
n is the effective number of independent bacterial taxa
at the corresponding taxonomic level). To assess the
robustness of the results, several sensitivity analyses were
performed. Leave-one-out analysis was performed to
determine whether the causal signal was driven by a sin-
gle SNP. This approach compares the variance explained
by the IVs for both the exposure and outcome. If the I'Vs
explain a greater variance in the exposure than that in the
outcome, then the identified causal association could be
considered directionally credible [30]. Furthermore, we
calculated F statistics to evaluate weak instrument bias
[31]. An F-value less than 10 indicated a weak instrument
and was excluded.

All statistical analyses were performed using the R
packages: two-sample MR [17] and MR-PRESSO [29].

Heterogeneity

We performed a test for heterogeneity using Cochran’s
Q statistics and the two-sample MR package between
instruments. A Q larger than the number of instruments
minus one provides evidence for heterogeneity and inva-
lid instruments, or Q statistics significant at a p-value <
0.05 can imply the presence of heterogeneity [32, 33].

Reverse MR analysis

To explore whether cancers have any causal impact on
the identified significant bacterial genera, we also per-
formed a reverse MR analysis (i.e. cancers as the expo-
sure and the identified causal bacterial genus as the
outcome) using SNPs that are associated with cancers
as IVs. We used the MR Steiger directionality test [30] to
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examine whether exposure was directionally causal for
the outcome.

Results

SNP selection

First, we identified 91, 307, 289, 310, and 397 SNPs asso-
ciated with gut microbiota at the phylum, class, order,
family, and genus levels, respectively, at a significance
level of p < 5 x 1078, We identified 228, 499,488, 811, and
1374 SNPs at the phylum, class, order, family, and genus
levels, respectively, at a significance level of p < 1 x 107°,
After a series of quality control steps, 277 (genome-wide
statistical significance threshold, p < 1 x 107%) and 23
(genome-wide statistical significance threshold, p < 5 x
10~%) SNPs were selected as IVs.

The F statistics of the I'Vs were all largely > 10 (Addi-
tional file 2: Table. S2), indicating no evidence of weak
instrument bias, and no evidence of pleiotropic effects
was detected by the MR-PRESSO global test (p > 0.05).
Eventually, after removing pleiotropic SNPs identified by
the MR-PRESSO outlier test and the MR-Egger regres-
sion, there was no evidence of horizontal pleiotropy of
the IVs (both MR-PRESSO global test p > 0.05 and MR-
Egger regression p > 0.05).

Bacterial genera containing multiple SNPs were tested
using the four MR methods to consider multiple testing
corrections. In the set of SNPs less than the genome-wide
statistical significance threshold (5 x 10~%) that served as
IVs, the significance threshold for various taxa levels was
set to the following: phylum p =5 x 1072 (0.05/1), class p
=5 x 1072 (0.05/1), order p = 2.5 x 1072 (0.05/2), fam-
ily p = 1.25 x 1072 (0.05/4), and genus p = 4.54 x 1073
(0.05/11). In the set of SNPs less than the genome-wide
statistical significance threshold (1 x 107°) that served as
IVs, the significance threshold for various taxa levels was
set to the following: phylum p = 5.55 x 1072 (0.05/9),
class p = 3.33 x 1073 (0.05/15), order p = 2.5 x 1072
(0.05/15), family p = 2.08 x 1072 (0.05/24), and genus p
= 6.25 x 10™* (0.05/80).

Causal effects of gut microbiota on the development

of eight cancer types

Breast cancer

In the set of IVs (p < 5 x 107%), we found that the phy-
lum Actinobacteria (odds ratio (OR) = 1.011, 95% CI =
1.001-1.020, p = 1.75 x 1072, Wald ratio) was causally
associated with breast cancer, and class Actinobacteria
was causally associated with patients with breast can-
cer; the causal association between class Actinobacteria
and breast cancer was identified in the Neale Lab (OR
= 1.010, 95% CI = 1.003-1.018, p = 5.62 x 1073, Wald
ratio), UK Biobank (OR = 1.012, 95% CI = 1.001-1.022,
p =258 x 1072, IVW), and MRC-IEU (OR = 1.006, 95%
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CI = 1.000-1.012, p = 3.32 x 1072, Wald ratio). In addi-
tion, the genus Ruminococcaceae UCG013 was also caus-
ally associated with breast cancer (OR = 0.983, 95% CI =
0.972-0.994, p = 4.35 x 1073, Wald ratio). Surprisingly,
the family Bifidobacteriaceae and order Bifidobacteri-
ales were also causally associated with breast cancer (OR
= 1.010, 95% CI = 1.002-1.017, p = 5.62 x 1073, Wald
ratio); therefore, we performed an MR analysis in the UK
Biobank database, which showed a similar result (OR
= 1.009, 95% CI = 1.000-1.018, p = 3.57 x 1072, Wald
ratio) (Table 1, Fig. 2).

We identified more gut microbiota related to breast
cancer in the other set of IVs (p < 1 x 107°), and we also
found that the genus Ruminococcus gnavus was caus-
ally associated with breast cancer (OR = 1.466, 95% CI
= 1.251-1.718, p = 2.15x107% IVW), especially ER™
breast cancer (OR = 1.549, 95% CI = 1.285-1.866, p =
4.27 x 1078 IVW); the genus Oscillibacter was causally
associated with ER— breast cancer (OR = 2.045, 95% CI
= 1.393-3.002, p = 2.58 x 10~ IVW) (Table 2, Fig. 3).

Lung cancer

In the set of IVs (p < 5 x 107%), we found that the phy-
lum Actinobacteria (OR = 1.005, 95% CI = 1.000-1.010,
p = 242 x 1072, Wald ratio) and class Actinobacteria
(OR = 1.004, 95% CI = 1.000-1.008, p = 3.12 x 1072
Wald ratio) were causally associated with lung cancer.
The genus Tyzzerella3 was causally associated with lung
adenocarcinoma (OR = 4.486, 95% CI = 1.641-12.263, p
=3.43 x 1073, Wald ratio) (Table 1, Fig. 2).

We identified more gut microbiota related to lung can-
cer in the other set of IVs (p < 1 x 107°), and we found
that the order Lactobacillales was causally associated
with squamous cell lung cancer (OR = 3.181, 95% CI =
1.517-6.666, p = 2.17 x 1073, IVW) and small cell lung
cancer (OR = 68.83, 95% CI = 4.182-1132.79, p = 3.06
x 1073, IVW), while the order Burkholderiales (OR =
0.553, 95% CI = 0.375-0.815, p = 2.75 x 1073, IVW) was
causally associated with lung cancer (Table 2, Fig. 4).

Colorectal cancer

In the set of IVs (p < 5 x 107%), we found that the genus
Tyzzerella3 (OR = 0.991, 95% CI = 0.987-0.996, p = 5.43
x 107% Wald ratio) and the genus Ruminococcustorques-
group (OR = 1.014, 95% CI = 1.005-1.023, p = 1.63 x
103, Wald ratio) were causally associated with colorectal
cancer (Table 1, Fig. 2).

In determining more gut microbiota related to colorec-
tal cancer in the other set of IVs (p < 1 x 107°), we found
that the order Verrucomicrobiales, class Verrucomicro-
biae, and family Verrucomicrobiaceae (OR = 1.013, 95%
CI = 1.004-1.021, p = 1.98 x 1073, Wald ratio) were
causally associated with colorectal cancer. In addition,
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the order Desulfovibrionales (OR =1.015, 95% CI =
1.005-1.025, p = 2.98 x 1073, Wald ratio) and class Del-
taproteobacteria (OR = 1.015, 95% CI = 1.005-1.026, p
=2.98 x 1073, Wald ratio) were causally associated with
colorectal cancer (Table 2, Fig. 4).

Prostate cancer

In the set of IVs (p < 5 x 107%), we found that the genus
Ruminococcustorquesgroup (OR = 0.350, 95% CI =
0.171-0.718, p = 4.21 x 1073, Wald ratio) was causally
associated with prostate cancer (Table 1, Fig. 5).

In identifying more gut microbiota related to prostate
cancer in the other set of IVs (p < 1x107°), we found
the class Verrucomicrobiae, family Verrucomicrobiaceae,
order Verrucomicrobiales (OR = 0.964, 95% CI = 0.943—
0.985, p = 8.72 x 10~*% Wald ratio), genus Terrisporobac-
ter (OR = 0.381, 95% CI = 0.237-0.612, p = 6.78x107°,
Wald ratio), genus Roseburia (OR = 1.727, 95% CI =
1.276-2.337, p = 3.98 x 10~* Wald ratio), and class Alp-
haproteobacteria (OR = 1.289, 95% CI = 1.104-1.505, p
= 1.28 x 1073, Wald ratio) to be causally associated with
prostate cancer (Table 2, Fig. 4).

Gastric cancer

In the set of IVs (p < 5 x 107%), we found that the family
Peptostreptococcaceae (OR = 12.516, 95% CI = 2.049—
76.43, p = 6.19 x 1073, Wald ratio) was causally associ-
ated with gastric cancer (Table 1, Fig. 5).

However, in identifying more gut microbiota related
to gastric cancer in the other set of IVs (p < 1 x 107°),
we found no genetic liability to gut microbiota that was
causally associated with gastric cancer after the Bonfer-
roni test (Table 2, Fig. 4).

Head and neck cancer

In the set of IVs (p < 5 x 1078), we found that the order
Gastranaerophilales was causally associated with oro-
pharyngeal cancer (OR = 0.277, 95% CI = 0.094-0.811, p
= 1.92 x 1072, Wald ratio), and the phylum Actinobacte-
ria (OR = 0.041, 95% CI = 0.002-0.676, p = 2.53 x 1072,
Wald ratio) and class Actinobacteria (OR = 0.131, 95% CI
= 0.019-0.910, p = 3.99 x 1072 Wald ratio) were caus-
ally associated with oral cavity cancer (Table 1, Fig. 5).

In identifying more gut microbiota related to head
and neck cancer in the other set of IVs (p < 1x 107%), we
found that the genus Ruminococcusl was causally asso-
ciated with head and neck cancer (OR = 1.008, 95% CI
= 1.004-1.013, p = 1.98 x 10%, Wald ratio), especially
oral and oropharyngeal cancers (OR = 1.007, 95% CI
= 1.003-1.011, p = 3.71 x 10~%, Wald ratio) (Table 2,
Fig. 4).
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Gut microbiota GWAS outcome ID N OR 95%Cl P value
Breast cancer
Phylum Actinobacteria ukb-a-55 1 _— 1.011 1.001-1.020 0.01750
Class Actinobacteria ukb-a-55 1 —_— 1.01  1.003-1.018 0.00562
Class Actinobacteria ieu-b-4810 2 e 1.012 1.001-1.022 0.02580
Class Actinobacteria ukb-b-16890 1 —— 1.006 1.000-1.012 0.03320
Family Bifidobacteriaceae ukb-a-55 1 _— 1.01 1.002-1.017 0.00562
Order Bifidobacteriales ukb-a-55 1 —_— 1.01 1.002-1.017 0.00562
Genus RuminococcaceaeUCG013 ukb-a-55 1 —_— 0.983 0.972-0.994 0.00435
Lung cancer
Phylum Actinobacteria ieu-b-4954 1 —— 1.005 1.000-1.010 0.02420
Class Actinobacteria ieu-b-4954 1 — 1.004 1.000-1.008 0.03120
Colorectal cancer
Genus Tyzzerella3 ieu-b-4965 1 —— 0.991 0.987-0.996 0.00054
GenusRuminococcustorquesgroup ieu-b-4965 1 —_— 1.014  1.005-1.023 0.00163

6.97 1'.05

Fig. 2 Mendelian randomisation results of causal effects between gut microbiome and cancer risk (p < 5 x 107%)

Endometrial cancer

In the set of IVs (p < 5 x 107%), we found that genetic
liability to the gut microbiota was not causally associ-
ated with endometrial cancer, as per the Bonferroni
test.

When determining more gut microbiota related
to endometrial cancer in the other set of IVs (p < 1 x
107%), we found that the class Gammaproteobacteria
was causally associated with endometrial cancer (OR =
0.9936, 95% CI = 0.989-0.997, p = 8.43 x 10~*% Wald
ratio) (Table 2, Fig. 4).

Ovarian cancer

In the set of IVs (p < 5 x 107%), we did not find any
genetic liability to the gut microbiota that was caus-
ally associated with ovarian cancer after the Bonferroni
test.

When identifying more gut microbiota related to
ovarian cancer in the other set of IVs (p < 1x10°°), we
found that the genus Ruminiclostridium 6 was caus-
ally associated with a low malignant potential in serous
ovarian cancer (OR = 11.869, 95% CI = 3.178-44.327,
p =2.33 x 107%, Wald ratio) (Table 2, Fig. 4).

Potential causal associations between the gut microbiota
and cancers

Moreover, we found some potential causal associations
between the gut microbiota and cancers. Those results
were found in at least two different datasets in the set

of IVs (p < 1x107°), with p < 0.05, but did not pass the
Bonferroni test. Detailed information is provided in
Additional file 3: Table S3.

The genus Ruminococcaceae UCGO013, genus Rumino-
coccaceae NK4A214 group, genus Oxalobacter, genus
Holdemanella, genus Eubacterium eligens group, and
class Alphaproteobacteria were highly associated with
breast cancer. The order Selenomonadales, genus Turici-
bacter, genus Ruminococcusl, genus Ruminococcaceae
UCGO014, genus Odoribacter, genus Dorea, and class
Negativicutes were highly associated with head and neck
cancer. The genus Eubacterium coprostanoligenes group,
genus Parasutterella, genus Ruminococcaceae UCGO003,
and order Lactobacillales were highly associated with
lung cancer. The family Verrucomicrobiaceae, class Ver-
rucomicrobiae, order Verrucomicrobiales, genus Ter-
risporobacter, genus Roseburia, and genus Akkermansia
were highly associated with prostate cancer. The genus
Adlercreutzia was highly associated with prostate and
endometrial cancer.

Sensitivity analyses

The MR-Egger, weighted mode, simple mode, and
weighted median methods yielded similar causal esti-
mates for magnitude and direction. We found no evi-
dence of horizontal pleiotropy for gut microbiota in
cancers with p > 0.05 when using the MR-Egger regres-
sion intercept approach. MR-PRESSO analysis revealed
no outliers in the results. In addition, the results of the
Cochrane Q statistics showed no significant heterogene-
ity (p > 0.05).
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Gut microbiota id.outcome N P value OR 95%Cl
Breast cancer
genus RuminococcaceaeUCG013 ukb-a-55 1 . 436x10-3 098 0.973-0.995
genus RuminococcaceaeUCGO013 ieu-b-4810 2 - 1.81x10-2 0.98 0.964-0.997
genus RuminococcaceaeUCGO013 ukb-b-16890 1 . 4.46x10-2 0.99 0.981-0.999
genus RuminococcaceaeNK4A214group ieu-b-4810 4 - 1.52x10-2 0.98 0.972-0.997
genus Oxalobacter ieu-b-4810 8 L 4.19x10-2 1 0.990-0.999
genus Holdemanella ebi-a-GCST004988 1 —_— 3.49x10-2 0.84 0.706-0.987
genus Eubacteriumeligensgroup ukb-b-16890 1 = 3.25x10-2 0.99 0.981-0.999
genus Eubacteriumeligensgroup ieu-a-1129 1 e 4.40x10-2 0.75 0.568-0.992
class Alphaproteobacteria ukb-a-55 2 = 1.29x10-2 0.99 0.982-0.998
class Alphaproteobacteria ieu-b-4810 4 - 4.38x10-2 0.98 0.954-0.999
ER+ Breast cancer
genus RuminococcaceaeUCGO013 ieu-a-1133 1 3.56x10-2 1.53 1.029-2.283
genus RuminococcaceaeNK4A214group ieu-a-1134 3 3.22x10-2 2.02 1.061-3.832
genus Oxalobacter ieu-a-1134 4 —_— 4.14x10-2 0.75 0.566-0.989
genus Holdemanella ieu-a-1133 1 —_— 2.37x10-2 0.69 0.498-0.951
ER- Breast cancer
class Alphaproteobacteria ieu-a-1135 2 1.72x10-2 146 1.069-1.989

04 25
Fig. 3 Mendelian randomisation results of causal effects between gut microbiome and breast cancer risk (p < 1 x 107°)
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Fig. 4 Mendelian randomisation results of causal effects between gut microbiome and other cancer risks (p < 1 x 107°)

Bi-directional causal effects between gut microbiota

and cancer risk

To evaluate any reverse causation effects, we used can-
cer as exposure and gut microbiota as outcome, and 211
SNPs associated with cancers extracted from previous
GWAS were used as IVs (Table 3). Based on the Bonfer-
roni test, the significance threshold for various taxa levels

was set to p = 6.25 x 1072 (0.05/8), and we found that
lung adenocarcinoma was causally associated with the
genus Tyzzerella3 (p = 1.02 x 1073, IVW), which indi-
cates a bi-directional causal effect between lung ade-
nocarcinoma and the genus Tyzzerella3. A summary
network for a better understanding of the relationship
between gut microbiota and cancer is presented in Fig. 6.
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Gut microbiota GWAS outcome ID N OR 95%ClI P value
Lung adenocarcinoma
Genus Tyzzerella3 finn-b-C3_NSCLC_ADENO_EXALLC 1 —e 4486 1.641-12263 0.03430
Prostate cancer
Genus Ruminococcustorquesgroup  fiNN-b-C3_PROSTATE_EXALLC 1 — 0.35  0.171-0.718  0.00421
Gastric cancer
Family Peptostreptococcaceae finn-b-C3_STOMACH_EXALLC 1 ———=——— 12516 2.049-7643 0.00619
Oropharyngeal cancer
Order Gastranaerophilales ieu-b-97 1 —_— 0277  0.094-0.811  0.01920
Oral cavity cancer
Phylum Actinobacteria ieu-b-95 1 0.041 0.002-0.676  0.02530

ieu-b-95 1 —_— 0.131 0.019-0.910  0.03990

Class Actinobacteria

T

0.0022)00;000‘8&01‘6&0‘310‘062 01125 '025'0.5 1' 2‘ 4 'B '20 30 60
Fig. 5 Mendelian randomisation results of causal effects between gut microbiome and cancer risk (continue) (p < 5 x 1078

Table 3 Bi-directional MR results of the causal effects between gut microbiome and cancer risk (p < 5x 1078

Cancer type (exposure) Gut microbiota Method  Number g SE p-value Correct Steiger p-value
(outcome) of SNPs causal
direction
ProstateCancer GenusRoseburia VW 23 —086 037 197x107% True 149%10712
OropharyngealCancer GenusTuricibacter Wald ratio 1 7916 3311 1.68x1072 True 869x107°
Non-SmallCell Lung Cancer GenusTyzzerella3 Wald ratio 1 —016 006 1.14x107% True 448%107°
Non-SmallCell Lung Cancer GenusParasutterella Wald ratio 1 0.11 004 804x1073 True 3.19x1077
Non-SmallCell Lung Cancer GenusTyzzerella3 Wald ratio 1 —016 006 1.14x107% True 448%107°
Non-SmallCell Lung Cancer GenusParasutterella Wald ratio 1 0.12 004 803x107% True 3.19x1077
LungCancer OrderLactobacillales VW 2 —1406 652 3.10x1073 False 0.46
LungCancer Orderlactobacillales VW 2 —1442 651 267x107% False 048
LungAdenocarcinoma GenusTyzzerella3 VW 2 —017 005 1.02x1073 True 155%107°
ER+Breast Cancer GenusEubacterium eli- VW 7 —004 002 480x107% True 1.05% 107
Gens Group
BreastCancer GenusOxalobacter VW 47 0.08 004 251x107° True 6.01x107%
Discussion A growing number of studies have found a possible

To the best of our knowledge, this is the first MR study to
investigate whether gut microbiota is causally associated
with cancers, which we think is a longitudinal microbi-
ome study antecedent to human cancer. Robustly associ-
ated gene variants were identified in the largest GWAS
of the gut microbiota. Based on comprehensive genetic
data from over 450,000 European individuals, we found
genetic liability to some gut microbiota causally associ-
ated with cancers. Surprisingly, the genetic liability to the
family Bifidobacteriaceae and order Bifidobacteriales was
causally associated with breast cancer. We also identified
some gut microbiota that might be potential risk factors
for cancer. These results could have implications for pub-
lic health interventions aimed at reducing cancer risk.

link between the gut microbiota selected in our study
and other cancers. For instance, Ruminococcus plays an
important role in the digestion of resistant starch [34].
However, a previous study found that Ruminococcus
gnavus is associated with Crohn’s disease [35] and Rumi-
nococcus gnavus was identified as a signature taxon for
patients with hepatocellular carcinoma infected with
hepatitis B and/or hepatitis C viruses [36]. The abundance
of members from Peptostreptococcaceae was increased
in patients with intrahepatic cholangiocarcinoma (ICC)
compared to that in patients with hepatocellular carci-
noma or liver cirrhosis and healthy individuals. Patients
with vascular invasion (VI) had a greater abundance of
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Fig. 6 The causal relationships between gut microbiota and cancers by Mendelian randomisation analysis

the family Ruminococcaceae than did patients with ICC
without VI [37].

Actinobacteria, including 15 species of Bifidobacte-
rium, decreased with age, and the overall richness or
number of unique Bifidobacterium species present in an
individual steadily declined throughout their life [38]. A
previous study showed that Actinobacteria was present
in a relatively high proportion of breast cancer tissue
samples [39]. Meanwhile, some absolute numbers of Bifi-
dobacterium were significantly different according to the
clinical stages of cancer [40, 41], which suggests that the
microbiome may be involved in the progression of breast
cancer [41]. Recent studies have reported a higher abun-
dance of Bifidobacterium in the tissues of patients with
colorectal adenomas [42, 43] and advanced pancreatic
cancer in mice [44], whereas other studies have reported
that Bifidobacterium correlates with an increased anti-
PD-L1 therapeutic response [45, 46]. One study showed
that Bifidobacteria might be potential pathogens [47],
which indicated that although Bifidobacterium is gener-
ally considered beneficial, specific species and strains
of Bifidobacterium may have varying effects on human
health [48]. As shown in our results, our MR results
suggested that the phylum Actinobacteria and class Act-
inobacteria are risk factors for breast cancer and lung
cancer but are protective factors for oral cavity cancer.
The family Bifidobacteriaceae and order Bifidobacteri-
ales are also risk factors for breast cancer, while the genus
Ruminococcaceae UCGO013 is a protective factor against
breast cancer. The genus Tyzzerella3 is a risk factor for
lung adenocarcinoma, but a protective factor against
colorectal cancer. The genus Ruminococcustorquesgroup
is a risk factor for colorectal cancer, but a protective fac-
tor against prostate cancer. The family Peptostreptococ-
caceae is a risk factor for gastric cancer, and the order

Gastranaerophilales is a risk factor for oropharyngeal
cancer. In summary, different species may have divergent
effects on the tumour microenvironment [45].

Experimental models have suggested that gut micro-
biota can promote the induction and/or development of
tumour formation through multiple mechanisms [49].
However, the exact mechanism by which the gut micro-
biota causes cancer has not been determined. Therefore,
a mechanistic analysis of our results is required for fur-
ther investigation.

Studies have determined whether the gut microbes
are “beneficial” or “harmful” by comparing the relative
abundance of gut microbiota between healthy people
and patients. Engstrand and Graham suggested that the
relative abundance of the dominant microbiota in the gut
microbiota may not be a risk factor for cancers, but may
represent a bystander effect [50] as well as a carcinogenic
factor.

Many dietary components can influence cancer via
targeting gut microbiota [51]. Nowadays, the preva-
lence of obesity is significantly increasing in develop-
ing countries such as China where people are adapting
to high-fat diet [52, 53]. High-fat diet is dominated by
carbohydrate and fat and lacks plant-based dietary fibre
[54]. The consequence of this is that high-fat diet popu-
lations showed lower bacterial diversity compared with
those of traditional rural population [55]. Obesity is cor-
related with excessive fat dietary intake. The positive
association between obesity and cancers has been veri-
fied by several studies [56—58]. So apart from the genetic
factors influencing on cancer risk, behaviour and lifestyle
can also play an important role in cancer development.
In the future, exploring the relationship of diet and can-
cer through gut microbiota may offer new insights to
cancer treatment [59]. In consideration of the complex
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relationships between diet, gut microbiota, and cancers
[60, 61], more studies and mediation MR analysis are
needed to discover the association and mechanism in
detail [62].

A GWAS is unlikely to explain all the heritability of
complex traits [63]. As linkage disequilibrium pat-
terns vary across ethnic groups, it is not suitable for
non-European populations in the past [63, 64]. With
the development of a new generation of high-density
arrays and the accumulation of more sequencing data
from more diverse populations, this problem may have
been improved [65]. Nowadays, clinical prediction
by GWASs might also prove to be especially useful in
small isolated populations where deleterious variants
with strong effects have increased to a high frequency
[66]. A previous study revealed that variants that are
significantly correlated with each other tend to be in
linkage disequilibrium or even form haplotypes [67].
Although we can find causal relations between variants
and disease, it is difficult to identify causal variations
from multiple variants located on the same haplotype
[68]. Variable penetrance and variable expressivity are
the common cause for the observation where individu-
als carrying the same variant display highly variable
symptoms [69]. A case—control analysis of autism and
cancer cohorts suggested that modified penetrance of
coding variants by cis-regulatory variation contrib-
utes to disease risk [70]. Although knowledge of indi-
vidual’s genetic risk can improve readiness to adopt a
healthier lifestyle, human behavior is complex [71, 72].
Both the environment and genes can influence disease
symptoms. In addition to the separate effects of geno-
type and environmental factors, the effects of environ-
mental factors on different individuals will be affected
by genotype. Meanwhile, the role of genetic factors also
depends on environmental influences [73, 74]. We used
the MR approach to eliminate some confounders that
are commonly observed in epidemiological studies.
Moreover, our SNPs were strongly associated with gut
microbiota and were compared with multiple cancer
databases. Moreover, the reverse MR analysis and sen-
sitivity analysis showed no pleiotropy or heterogeneity,
which indicates that our results are statistically robust.

Nevertheless, our study had several limitations. First,
while the majority of patients in the GWAS summary
data used in our study were European, only a small num-
ber of the gut microbiota data were taken from other
races, which may lead to bias estimates and affect uni-
versality. Second, the bacterial taxa were only analysed at
the order or family level. If the GWASs had used more
advanced shotgun metagenomic sequencing analyses, the
results would be more specific and accurate. Third, due
to our strict thresholds, many of the genetic liabilities
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of the gut microbiota were excluded at the IV selection
stage, which may result in some results being missed.
Recent research proposed that future research should
take an integrative approach that uses multiple omics
platforms to improve understanding of the pathogen-
esis of disease in the context of the complex interactions
between genes and the environment over time [74].

Conclusions

In summary, we comprehensively assessed the causal
association between the gut microbiota and a series of
cancers. Our results suggest that there are four posi-
tive causal directions and one negative causal direction
with breast cancer, three positive causal directions and
one negative causal direction with lung cancer, two posi-
tive causal directions and four negative causal directions
with prostate cancer, one positive causal direction with
gastric cancer, one positive causal direction with ovarian
cancer, one negative causal direction with endometrial
cancer, six positive causal directions and one negative
causal direction with colorectal cancer, and one posi-
tive causal direction and three negative causal directions
with colorectal cancer. In addition, we found potential
causal associations between the gut microbiota and can-
cer. This study may provide new insights into the mecha-
nisms of gut microbiota-mediated cancer development.
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