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Abstract 

Background Evidence from observational studies and clinical trials suggests that the gut microbiota is associated 
with cancer. However, the causal association between gut microbiota and cancer remains to be determined.

Methods We first identified two sets of gut microbiota based on phylum, class, order, family, and genus level infor-
mation, and cancer data were obtained from the IEU Open GWAS project. We then performed two-sample Mendelian 
randomisation (MR) to determine whether the gut microbiota is causally associated with eight cancer types. Further-
more, we performed a bi-directional MR analysis to examine the direction of the causal relations.

Results We identified 11 causal relationships between genetic liability in the gut microbiome and cancer, including 
those involving the genus Bifidobacterium. We found 17 strong associations between genetic liability in the gut micro-
biome and cancer. Moreover, we found 24 associations between genetic liability in the gut microbiome and cancer 
using multiple datasets.

Conclusions Our MR analysis revealed that the gut microbiota was causally associated with cancers and may be use-
ful in providing new insights for further mechanistic and clinical studies of microbiota-mediated cancer.
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Background
Gut microbiota residing in the gastrointestinal tract can 
be considered a potential environmental factor influenc-
ing human life. Currently, the gut microbiota has been 

implicated as a risk or preventive factor for a variety of 
diseases, including cancers, and is closely associated with 
the onset of colorectal cancer (CRC) [1]. Conversely, 
it has been pointed out that cancer also affects the gut 
microbiota in mice, which could induce gut microbiota 
disorders and cancer growth [2].

In contrast to observational studies, randomised 
controlled trials of gut microbiota could potentially 
help establish a causal relationship. Unfortunately, 
owing to the influence of objective factors, such as 
technology and research methods, the screening of 
strains involved in early diagnosis and prognosis still 
has great limitations. Consequently, most of the cur-
rent research conclusions are based on observation of 
the composition and changes in the gut microbiota in 
patients’ faeces and on the results of trials in which gut 
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microbiota were transplanted into gnotobiotic mice, 
which are influenced by a variety of factors, such as 
diet and antibiotic use [3–6]. In summary, whether the 
associations between the gut microbiota and cancers 
are causal and the direction of the causal associations 
are still unknown. It is thus important to explore the 
causal relationship between the gut microbiota and 
cancers.

Genome-wide association studies (GWASs) have 
tested millions of genetic variants across the genomes 
of many individuals to identify genotype–phenotype 
associations and have revolutionised the field of com-
plex disease genetics over the past decade [7]. GWASs 
provide an agnostic approach for investigating the 
genetic basis of complex diseases. As of October 2022, 
the GWAS Catalog contained 6041 publications and 
427,870 associations. In oncology, over 450 genetic 
variants associated with increased risks of common 
cancers have been identified. The clinical application 
of GWAS data has been providing opportunities for 
cancer prevention [8].

Mendelian randomisation (MR) analysis exploits the 
inherent properties of common genetic variations for 
a modifiable environmental exposure of interest and 
has become a widely used approach to explore the 
potential causal relationships between environmen-
tal exposures and diseases [9–11]. Two-sample MR 
analysis can utilise single-nucleotide polymorphism 
(SNP)-exposure and SNP-outcome associations from 
independent GWASs and combine them into a sin-
gle causal estimate. As the number of GWASs on gut 
microbiota and diseases has increased rapidly [12, 
13], large-scale summary statistics have become more 
widely available, allowing for two-sample MR analysis 
with significantly improved statistical power.

In the present study, we investigated the causal rela-
tionship between gut microbiota and a broad range of 
cancers by conducting a comprehensive two-sample 
MR analysis of eight cancers derived from the IEU 
Open GWAS project, including breast cancer, colo-
rectal cancer, ovarian cancer, head and neck cancer, 
lung cancer, endometrial cancer, and prostate cancer. 
By applying a bi-directional MR approach, we can 
explore whether gut microbiota casually affects cancer 
risk and we can also examine whether the genetic pre-
disposition to cancer risk causally influences the gut 
microbiota. Based on these, we tried to clarify the role 
of the gut microbiota in cancer development to even-
tually help to develop new treatment strategies, such 
as probiotic therapy, dietary modulations, and faecal 
microbiota transplantation (FMT) [14].

Methods
Exposure data
SNPs related to the human gut microbiome composi-
tion were selected as instrumental variables (IVs) from 
a GWAS dataset of the international consortium MiBio-
Gen [13]. This was a multi-ethnic large-scale GWAS that 
coordinated 16S ribosomal RNA gene sequencing pro-
files and genotyping data from 18,340 participants from 
24 cohorts from the USA, Canada, Israel, South Korea, 
Germany, Denmark, the Netherlands, Belgium, Sweden, 
Finland, and the UK to explore the association between 
autosomal human genetic variants and the gut micro-
biome. A total of 211 taxa (131 genera, 35 families, 20 
orders, 16 classes, and 9 phyla) were included.

Outcome data
We downloaded all traits reported in the IEU Open 
GWAS project https:// gwas. mrcieu. ac. uk/ (updated to 
2022.04.06, N = 40,427) and derived all cancer-related 
GWAS summary-level data. After screening the dataset 
and excluding duplicate studies, non-malignant tumours, 
and non-European ancestry, the GWAS summary-level 
data for the associations between genetic variants and 
cancers included those from the UK Biobank [15], the 
International Lung Cancer Consortium (ILCCO) [16, 
17], the Prostate Cancer Association Group to Investigate 
Cancer Associated Alterations in the Genome (PRAC-
TICA-L) consortium [18], the Medical Research Coun-
cil-Integrative Epidemiology Unit (MRC-IEU) [19], the 
Ovarian Cancer Association Consortium (OCAC) [20], 
the Oncoarray oral cavity and oropharyngeal cancer [21], 
the Breast Cancer Association Consortium (BCAC) [22], 
FINNGEN [23], and Neale Lab (http:// www. neale lab. is/ 
uk- bioba nk/). Detailed information is provided in Addi-
tional file 1: Table S1.

Instrumental variable selection
The flowchart of the study is presented in Fig. 1. Briefly, 
the gut microbiota served as the exposure, whereas can-
cer served as the outcome.

Bacterial taxa were analysed at five levels (phylum, 
class, order, family, and genus), and a distinct taxon was 
defined as a feature. To ensure the authenticity and accu-
racy of the conclusions on the causal link between the gut 
microbiome and cancer risk, the following quality control 
steps were used to select the optimal IVs. First, SNPs that 
were significantly related to the gut microbiome were 
selected as the IVs. Two thresholds were used to select 
the IVs. The first threshold selected SNPs less than the 
genome-wide statistical significance threshold (5 ×  10−8) 
to serve as IVs. Unfortunately, after we selected SNPs, 
only a small number of gut microbiota were selected as 

https://gwas.mrcieu.ac.uk/
http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
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IVs, and to explore more relations between cancers and 
gut microbiota to obtain more comprehensive results, 
we used the second threshold that identified SNPs that 
were smaller than the locus-wide significance level (1 
×  10−6) and selected them as the second IVs set to find 
more potential causal associations. Second, the minor 
allele frequency (MAF) threshold of the variants of 
interest was 0.01. Third, one of the principles of the MR 
approach is that there is no linkage disequilibrium (LD) 
among the included IVs, as the presence of strong LD 
might result in biased results. In the current study, the 
clumping process (R2 < 0.01 and clumping distance = 
10,000 kb) was conducted to assess the LD between the 
included SNPs. Fourth, an important step in MR is to 
ensure that the effects of the SNPs on the exposure corre-
spond to the same allele as the effects on the outcome. To 

avoid distortion of strand orientation or allele coding, we 
deleted palindromic SNPs (e.g. with A/T or G/C alleles). 
During the harmonisation process, we aligned the alleles 
to the human genome reference sequence (build 37) and 
removed ambiguous and duplicated SNPs.

We applied MR-PRESSO and MR-Egger regression 
tests to monitor the potential horizontal pleiotropy effect. 
For each SNP, the MR-PRESSO outlier test calculated a 
p-value for its pleiotropy significance, whereas the MR-
PRESSO global test calculated a p-value for overall hori-
zontal pleiotropy. SNPs were sorted in ascending order in 
terms of their MR-PRESSO outlier test p-values and were 
then removed one by one. The MR-PRESSO global test 
was performed on the remaining SNPs each time an SNP 
was removed from the list. Recursion was repeated until 
the p-value for the global test was insignificant (p > 0.05). 

Fig. 1 Study design and workflow
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The list of SNPs remaining after removing pleiotropic 
SNPs was used for the subsequent MR analysis.

MR analysis
We performed an MR analysis to investigate the causal 
relationship between microbiome features and common 
cancers. For features containing only one IV, the Wald 
ratio test was used to estimate the association between 
the identified IV and each cancer [24]. Five popular MR 
methods were used for features containing multiple IVs: 
inverse-variance weighted (IVW) test [25], weighted 
mode [26], MR-Egger regression [27], weighted median 
estimator (WME) [28], and MR-PRESSO [29]. The IVW 
method is reported to be slightly more powerful than 
the others under certain conditions [28]; therefore, the 
results with more than one IV were mainly based on the 
IVW method, with the other four methods serving as 
complements.

Additionally, we established a multiple testing sig-
nificance threshold at each feature level (phylum, class, 
order, family, and genus), defined as p < 0.05/n (where 
n is the effective number of independent bacterial taxa 
at the corresponding taxonomic level). To assess the 
robustness of the results, several sensitivity analyses were 
performed. Leave-one-out analysis was performed to 
determine whether the causal signal was driven by a sin-
gle SNP. This approach compares the variance explained 
by the IVs for both the exposure and outcome. If the IVs 
explain a greater variance in the exposure than that in the 
outcome, then the identified causal association could be 
considered directionally credible [30]. Furthermore, we 
calculated F statistics to evaluate weak instrument bias 
[31]. An F-value less than 10 indicated a weak instrument 
and was excluded.

All statistical analyses were performed using the R 
packages: two-sample MR [17] and MR-PRESSO [29].

Heterogeneity
We performed a test for heterogeneity using Cochran’s 
Q statistics and the two-sample MR package between 
instruments. A Q larger than the number of instruments 
minus one provides evidence for heterogeneity and inva-
lid instruments, or Q statistics significant at a p-value < 
0.05 can imply the presence of heterogeneity [32, 33].

Reverse MR analysis
To explore whether cancers have any causal impact on 
the identified significant bacterial genera, we also per-
formed a reverse MR analysis (i.e. cancers as the expo-
sure and the identified causal bacterial genus as the 
outcome) using SNPs that are associated with cancers 
as IVs. We used the MR Steiger directionality test [30] to 

examine whether exposure was directionally causal for 
the outcome.

Results
SNP selection
First, we identified 91, 307, 289, 310, and 397 SNPs asso-
ciated with gut microbiota at the phylum, class, order, 
family, and genus levels, respectively, at a significance 
level of p < 5 ×  10−8. We identified 228, 499,488, 811, and 
1374 SNPs at the phylum, class, order, family, and genus 
levels, respectively, at a significance level of p < 1 ×  10−6. 
After a series of quality control steps, 277 (genome-wide 
statistical significance threshold, p < 1 ×  10−6) and 23 
(genome-wide statistical significance threshold, p < 5 × 
 10−8) SNPs were selected as IVs.

The F statistics of the IVs were all largely > 10 (Addi-
tional file  2: Table. S2), indicating no evidence of weak 
instrument bias, and no evidence of pleiotropic effects 
was detected by the MR-PRESSO global test (p > 0.05). 
Eventually, after removing pleiotropic SNPs identified by 
the MR-PRESSO outlier test and the MR-Egger regres-
sion, there was no evidence of horizontal pleiotropy of 
the IVs (both MR-PRESSO global test p > 0.05 and MR-
Egger regression p > 0.05).

Bacterial genera containing multiple SNPs were tested 
using the four MR methods to consider multiple testing 
corrections. In the set of SNPs less than the genome-wide 
statistical significance threshold (5 ×  10−8) that served as 
IVs, the significance threshold for various taxa levels was 
set to the following: phylum p = 5 ×  10−2 (0.05/1), class p 
= 5 ×  10−2 (0.05/1), order p = 2.5 ×  10−2 (0.05/2), fam-
ily p = 1.25 ×  10−2 (0.05/4), and genus p = 4.54 ×  10−3 
(0.05/11). In the set of SNPs less than the genome-wide 
statistical significance threshold (1 ×  10−6) that served as 
IVs, the significance threshold for various taxa levels was 
set to the following: phylum p = 5.55 ×  10−3 (0.05/9), 
class p = 3.33 ×  10−3 (0.05/15), order p = 2.5 ×  10−2 
(0.05/15), family p = 2.08 ×  10−3 (0.05/24), and genus p 
= 6.25 ×  10−4 (0.05/80).

Causal effects of gut microbiota on the development 
of eight cancer types
Breast cancer
In the set of IVs (p < 5 ×  10−8), we found that the phy-
lum Actinobacteria  (odds ratio (OR) = 1.011, 95% CI = 
1.001–1.020, p = 1.75 ×  10−2, Wald ratio) was causally 
associated with breast cancer, and class Actinobacteria 
was causally associated with patients with breast can-
cer; the causal association between class Actinobacteria 
and breast cancer was identified in the Neale Lab (OR 
= 1.010, 95% CI = 1.003–1.018, p = 5.62 ×  10−3, Wald 
ratio), UK Biobank (OR = 1.012, 95% CI = 1.001–1.022, 
p = 2.58 ×  10−2, IVW), and MRC-IEU (OR = 1.006, 95% 
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CI = 1.000–1.012, p = 3.32 ×  10−2, Wald ratio). In addi-
tion, the genus Ruminococcaceae UCG013 was also caus-
ally associated with breast cancer (OR = 0.983, 95% CI = 
0.972–0.994, p = 4.35 ×  10−3, Wald ratio). Surprisingly, 
the family Bifidobacteriaceae and order Bifidobacteri-
ales were also causally associated with breast cancer (OR 
= 1.010, 95% CI = 1.002–1.017, p = 5.62 ×  10−3, Wald 
ratio); therefore, we performed an MR analysis in the UK 
Biobank database, which showed a similar result (OR 
= 1.009, 95% CI = 1.000–1.018, p = 3.57 ×  10−2, Wald 
ratio) (Table 1, Fig. 2).

We identified more gut microbiota related to breast 
cancer in the other set of IVs (p < 1 ×  10−6), and we also 
found that the genus Ruminococcus gnavus was caus-
ally associated with breast cancer (OR = 1.466, 95% CI 
= 1.251–1.718, p = 2.15×10−6, IVW), especially  ER+ 
breast cancer (OR = 1.549, 95% CI = 1.285–1.866, p = 
4.27 ×  10−6, IVW); the genus Oscillibacter was causally 
associated with ER− breast cancer (OR = 2.045, 95% CI 
= 1.393–3.002, p = 2.58 ×  10−4, IVW) (Table 2, Fig. 3).

Lung cancer
In the set of IVs (p < 5 ×  10−8), we found that the phy-
lum Actinobacteria (OR = 1.005, 95% CI = 1.000–1.010, 
p = 2.42 ×  10−2, Wald ratio) and class Actinobacteria 
(OR = 1.004, 95% CI = 1.000–1.008, p = 3.12 ×  10−2, 
Wald ratio) were causally associated with lung cancer. 
The genus Tyzzerella3 was causally associated with lung 
adenocarcinoma (OR = 4.486, 95% CI = 1.641–12.263, p 
= 3.43 ×  10−3, Wald ratio) (Table 1, Fig. 2).

We identified more gut microbiota related to lung can-
cer in the other set of IVs (p < 1 ×  10−6), and we found 
that the order Lactobacillales was causally associated 
with squamous cell lung cancer (OR = 3.181, 95% CI = 
1.517–6.666, p = 2.17 ×  10−3, IVW) and small cell lung 
cancer (OR = 68.83, 95% CI = 4.182–1132.79, p = 3.06 
×  10−3, IVW), while the order Burkholderiales (OR = 
0.553, 95% CI = 0.375–0.815, p = 2.75 ×  10−3, IVW) was 
causally associated with lung cancer (Table 2, Fig. 4).

Colorectal cancer
In the set of IVs (p < 5 ×  10−8), we found that the genus 
Tyzzerella3 (OR = 0.991, 95% CI = 0.987–0.996, p = 5.43 
×  10−4, Wald ratio) and the genus Ruminococcustorques-
group (OR = 1.014, 95% CI = 1.005–1.023, p = 1.63 × 
 10−3, Wald ratio) were causally associated with colorectal 
cancer (Table 1, Fig. 2).

In determining more gut microbiota related to colorec-
tal cancer in the other set of IVs (p < 1 ×  10−6), we found 
that the order Verrucomicrobiales, class Verrucomicro-
biae, and family Verrucomicrobiaceae (OR = 1.013, 95% 
CI = 1.004–1.021, p = 1.98 ×  10−3, Wald ratio) were 
causally associated with colorectal cancer. In addition, 

the order Desulfovibrionales (OR =1.015, 95% CI = 
1.005–1.025, p = 2.98 ×  10−3, Wald ratio) and class Del-
taproteobacteria (OR = 1.015, 95% CI = 1.005–1.026, p 
= 2.98 ×  10−3, Wald ratio) were causally associated with 
colorectal cancer (Table 2, Fig. 4).

Prostate cancer
In the set of IVs (p < 5 ×  10−8), we found that the genus 
Ruminococcustorquesgroup (OR = 0.350, 95% CI = 
0.171–0.718, p = 4.21 ×  10−3, Wald ratio) was causally 
associated with prostate cancer (Table 1, Fig. 5).

In identifying more gut microbiota related to prostate 
cancer in the other set of IVs (p < 1×10−6), we found 
the class Verrucomicrobiae, family Verrucomicrobiaceae, 
order Verrucomicrobiales (OR = 0.964, 95% CI = 0.943–
0.985, p = 8.72 ×  10−4, Wald ratio), genus Terrisporobac-
ter (OR = 0.381, 95% CI = 0.237–0.612, p = 6.78×10−5, 
Wald ratio), genus Roseburia (OR = 1.727, 95% CI = 
1.276–2.337, p = 3.98 ×  10−4, Wald ratio), and class Alp-
haproteobacteria (OR = 1.289, 95% CI = 1.104–1.505, p 
= 1.28 ×  10−3, Wald ratio) to be causally associated with 
prostate cancer (Table 2, Fig. 4).

Gastric cancer
In the set of IVs (p < 5 ×  10−8), we found that the family 
Peptostreptococcaceae (OR = 12.516, 95% CI = 2.049–
76.43, p = 6.19 ×  10−3, Wald ratio) was causally associ-
ated with gastric cancer (Table 1, Fig. 5).

However, in identifying more gut microbiota related 
to gastric cancer in the other set of IVs (p < 1 ×  10−6), 
we found no genetic liability to gut microbiota that was 
causally associated with gastric cancer after the Bonfer-
roni test (Table 2, Fig. 4).

Head and neck cancer
In the set of IVs (p < 5 ×  10−8), we found that the order 
Gastranaerophilales was causally associated with oro-
pharyngeal cancer (OR = 0.277, 95% CI = 0.094–0.811, p 
= 1.92 ×  10−2, Wald ratio), and the phylum Actinobacte-
ria (OR = 0.041, 95% CI = 0.002–0.676, p = 2.53 ×  10−2, 
Wald ratio) and class Actinobacteria (OR = 0.131, 95% CI 
= 0.019–0.910, p = 3.99 ×  10−2, Wald ratio) were caus-
ally associated with oral cavity cancer (Table 1, Fig. 5).

In identifying more gut microbiota related to head 
and neck cancer in the other set of IVs (p < 1×  10−6), we 
found that the genus Ruminococcus1 was causally asso-
ciated with head and neck cancer (OR = 1.008, 95% CI 
= 1.004–1.013, p = 1.98 ×  10−4, Wald ratio), especially 
oral and oropharyngeal cancers (OR = 1.007, 95% CI 
= 1.003–1.011, p = 3.71 ×  10−4, Wald ratio) (Table  2, 
Fig. 4).
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Endometrial cancer
In the set of IVs (p < 5 ×  10−8), we found that genetic 
liability to the gut microbiota was not causally associ-
ated with endometrial cancer, as per the Bonferroni 
test.

When determining more gut microbiota related 
to endometrial cancer in the other set of IVs (p < 1 × 
 10−6), we found that the class Gammaproteobacteria 
was causally associated with endometrial cancer (OR = 
0.9936, 95% CI = 0.989–0.997, p = 8.43 ×  10−4, Wald 
ratio) (Table 2, Fig. 4).

Ovarian cancer
In the set of IVs (p < 5 ×  10−8), we did not find any 
genetic liability to the gut microbiota that was caus-
ally associated with ovarian cancer after the Bonferroni 
test.

When identifying more gut microbiota related to 
ovarian cancer in the other set of IVs (p < 1×10-6), we 
found that the genus Ruminiclostridium 6 was caus-
ally associated with a low malignant potential in serous 
ovarian cancer (OR = 11.869, 95% CI = 3.178–44.327, 
p = 2.33 ×  10−4, Wald ratio) (Table 2, Fig. 4).

Potential causal associations between the gut microbiota 
and cancers
Moreover, we found some potential causal associations 
between the gut microbiota and cancers. Those results 
were found in at least two different datasets in the set 

of IVs (p < 1×10−6), with p < 0.05, but did not pass the 
Bonferroni test. Detailed information is provided in 
Additional file 3: Table S3.

The genus Ruminococcaceae UCG013, genus Rumino-
coccaceae NK4A214 group, genus Oxalobacter, genus 
Holdemanella, genus Eubacterium eligens group, and 
class Alphaproteobacteria were highly associated with 
breast cancer. The order Selenomonadales, genus Turici-
bacter, genus Ruminococcus1, genus Ruminococcaceae 
UCG014, genus Odoribacter, genus Dorea, and class 
Negativicutes were highly associated with head and neck 
cancer. The genus Eubacterium coprostanoligenes group, 
genus Parasutterella, genus Ruminococcaceae UCG003, 
and order Lactobacillales were highly associated with 
lung cancer. The family Verrucomicrobiaceae, class Ver-
rucomicrobiae, order Verrucomicrobiales, genus Ter-
risporobacter, genus Roseburia, and genus Akkermansia 
were highly associated with prostate cancer. The genus 
Adlercreutzia was highly associated with prostate and 
endometrial cancer.

Sensitivity analyses
The MR-Egger, weighted mode, simple mode, and 
weighted median methods yielded similar causal esti-
mates for magnitude and direction. We found no evi-
dence of horizontal pleiotropy for gut microbiota in 
cancers with p > 0.05 when using the MR-Egger regres-
sion intercept approach. MR-PRESSO analysis revealed 
no outliers in the results. In addition, the results of the 
Cochrane Q statistics showed no significant heterogene-
ity (p > 0.05).

Fig. 2 Mendelian randomisation results of causal effects between gut microbiome and cancer risk (p < 5 ×  10−8)
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Bi‑directional causal effects between gut microbiota 
and cancer risk
To evaluate any reverse causation effects, we used can-
cer as exposure and gut microbiota as outcome, and 211 
SNPs associated with cancers extracted from previous 
GWAS were used as IVs (Table 3). Based on the Bonfer-
roni test, the significance threshold for various taxa levels 

was set to p = 6.25 ×  10−3 (0.05/8), and we found that 
lung adenocarcinoma was causally associated with the 
genus Tyzzerella3 (p = 1.02 ×  10−3, IVW), which indi-
cates a bi-directional causal effect between lung ade-
nocarcinoma and the genus Tyzzerella3. A summary 
network for a better understanding of the relationship 
between gut microbiota and cancer is presented in Fig. 6.

Fig. 3 Mendelian randomisation results of causal effects between gut microbiome and breast cancer risk (p < 1 ×  10−6)

Fig. 4 Mendelian randomisation results of causal effects between gut microbiome and other cancer risks (p < 1 ×  10−6)
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Discussion
To the best of our knowledge, this is the first MR study to 
investigate whether gut microbiota is causally associated 
with cancers, which we think is a longitudinal microbi-
ome study antecedent to human cancer. Robustly associ-
ated gene variants were identified in the largest GWAS 
of the gut microbiota. Based on comprehensive genetic 
data from over 450,000 European individuals, we found 
genetic liability to some gut microbiota causally associ-
ated with cancers. Surprisingly, the genetic liability to the 
family Bifidobacteriaceae and order Bifidobacteriales was 
causally associated with breast cancer. We also identified 
some gut microbiota that might be potential risk factors 
for cancer. These results could have implications for pub-
lic health interventions aimed at reducing cancer risk.

A growing number of studies have found a possible 
link between the gut microbiota selected in our study 
and other cancers. For instance, Ruminococcus plays an 
important role in the digestion of resistant starch [34]. 
However, a previous study found that Ruminococcus 
gnavus is associated with Crohn’s disease [35] and Rumi-
nococcus gnavus was identified as a signature taxon for 
patients with hepatocellular carcinoma infected with 
hepatitis B and/or hepatitis C viruses [36]. The abundance 
of members from Peptostreptococcaceae was increased 
in patients with intrahepatic cholangiocarcinoma (ICC) 
compared to that in patients with hepatocellular carci-
noma or liver cirrhosis and healthy individuals. Patients 
with vascular invasion (VI) had a greater abundance of 

Fig. 5 Mendelian randomisation results of causal effects between gut microbiome and cancer risk (continue) (p < 5 ×  10−8)

Table 3 Bi-directional MR results of the causal effects between gut microbiome and cancer risk (p < 5×10−8)

Cancer type (exposure) Gut microbiota 
(outcome)

Method Number 
of SNPs

β SE p-value Correct 
causal 
direction

Steiger p-value

ProstateCancer GenusRoseburia IVW 23 −0.86 0.37 1.97×10−2 True 1.49×10−12

OropharyngealCancer GenusTuricibacter Wald ratio 1 79.16 33.11 1.68×10−2 True 8.69×10−6

Non-SmallCell Lung Cancer GenusTyzzerella3 Wald ratio 1 −0.16 0.06 1.14×10−2 True 4.48×10−5

Non-SmallCell Lung Cancer GenusParasutterella Wald ratio 1 0.11 0.04 8.04×10−3 True 3.19×10−7

Non-SmallCell Lung Cancer GenusTyzzerella3 Wald ratio 1 −0.16 0.06 1.14×10−2 True 4.48×10−5

Non-SmallCell Lung Cancer GenusParasutterella Wald ratio 1 0.12 0.04 8.03×10−3 True 3.19×10−7

LungCancer OrderLactobacillales IVW 2 −14.06 6.52 3.10×10−3 False 0.46

LungCancer OrderLactobacillales IVW 2 −14.42 6.51 2.67×10−2 False 0.48

LungAdenocarcinoma GenusTyzzerella3 IVW 2 −0.17 0.05 1.02×10−3 True 1.55×10−9

ER+Breast Cancer GenusEubacterium eli-
Gens Group

IVW 7 −0.04 0.02 4.80×10−2 True 1.05×10−65

BreastCancer GenusOxalobacter IVW 47 0.08 0.04 2.51×10−3 True 6.01×10−66
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the family Ruminococcaceae than did patients with ICC 
without VI [37].

Actinobacteria, including 15 species of Bifidobacte-
rium, decreased with age, and the overall richness or 
number of unique Bifidobacterium species present in an 
individual steadily declined throughout their life [38]. A 
previous study showed that Actinobacteria was present 
in a relatively high proportion of breast cancer tissue 
samples [39]. Meanwhile, some absolute numbers of Bifi-
dobacterium were significantly different according to the 
clinical stages of cancer [40, 41], which suggests that the 
microbiome may be involved in the progression of breast 
cancer [41]. Recent studies have reported a higher abun-
dance of Bifidobacterium in the tissues of patients with 
colorectal adenomas [42, 43] and advanced pancreatic 
cancer in mice [44], whereas other studies have reported 
that Bifidobacterium correlates with an increased anti-
PD-L1 therapeutic response [45, 46]. One study showed 
that Bifidobacteria might be potential pathogens [47], 
which indicated that although Bifidobacterium is gener-
ally considered beneficial, specific species and strains 
of Bifidobacterium may have varying effects on human 
health [48]. As shown in our results, our MR results 
suggested that the phylum Actinobacteria and class Act-
inobacteria are risk factors for breast cancer and lung 
cancer but are protective factors for oral cavity cancer. 
The family Bifidobacteriaceae and order Bifidobacteri-
ales are also risk factors for breast cancer, while the genus 
Ruminococcaceae UCG013 is a protective factor against 
breast cancer. The genus Tyzzerella3 is a risk factor for 
lung adenocarcinoma, but a protective factor against 
colorectal cancer. The genus Ruminococcustorquesgroup 
is a risk factor for colorectal cancer, but a protective fac-
tor against prostate cancer. The family Peptostreptococ-
caceae is a risk factor for gastric cancer, and the order 

Gastranaerophilales is a risk factor for oropharyngeal 
cancer. In summary, different species may have divergent 
effects on the tumour microenvironment [45].

Experimental models have suggested that gut micro-
biota can promote the induction and/or development of 
tumour formation through multiple mechanisms [49]. 
However, the exact mechanism by which the gut micro-
biota causes cancer has not been determined. Therefore, 
a mechanistic analysis of our results is required for fur-
ther investigation.

Studies have determined whether the gut microbes 
are “beneficial” or “harmful” by comparing the relative 
abundance of gut microbiota between healthy people 
and patients. Engstrand and Graham suggested that the 
relative abundance of the dominant microbiota in the gut 
microbiota may not be a risk factor for cancers, but may 
represent a bystander effect [50] as well as a carcinogenic 
factor.

Many dietary components can influence cancer via 
targeting gut microbiota [51]. Nowadays, the preva-
lence of obesity is significantly increasing in develop-
ing countries such as China where people are adapting 
to high-fat diet [52, 53]. High-fat diet is dominated by 
carbohydrate and fat and lacks plant-based dietary fibre 
[54]. The consequence of this is that high-fat diet popu-
lations showed lower bacterial diversity compared with 
those of traditional rural population [55]. Obesity is cor-
related with excessive fat dietary intake. The positive 
association between obesity and cancers has been veri-
fied by several studies [56–58]. So apart from the genetic 
factors influencing on cancer risk, behaviour and lifestyle 
can also play an important role in cancer development. 
In the future, exploring the relationship of diet and can-
cer through gut microbiota may offer new insights to 
cancer treatment [59]. In consideration of the complex 

Fig. 6 The causal relationships between gut microbiota and cancers by Mendelian randomisation analysis
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relationships between diet, gut microbiota, and cancers 
[60, 61], more studies and mediation MR analysis are 
needed to discover the association and mechanism in 
detail [62].

A GWAS is unlikely to explain all the heritability of 
complex traits [63]. As linkage disequilibrium pat-
terns vary across ethnic groups, it is not suitable for 
non-European populations in the past [63, 64]. With 
the development of a new generation of high-density 
arrays and the accumulation of more sequencing data 
from more diverse populations, this problem may have 
been improved [65]. Nowadays, clinical prediction 
by GWASs might also prove to be especially useful in 
small isolated populations where deleterious variants 
with strong effects have increased to a high frequency 
[66]. A previous study revealed that variants that are 
significantly correlated with each other tend to be in 
linkage disequilibrium or even form haplotypes [67]. 
Although we can find causal relations between variants 
and disease, it is difficult to identify causal variations 
from multiple variants located on the same haplotype 
[68]. Variable penetrance and variable expressivity are 
the common cause for the observation where individu-
als carrying the same variant display highly variable 
symptoms [69]. A case–control analysis of autism and 
cancer cohorts suggested that modified penetrance of 
coding variants by cis-regulatory variation contrib-
utes to disease risk [70]. Although knowledge of indi-
vidual’s genetic risk can improve readiness to adopt a 
healthier lifestyle, human behavior is complex [71, 72]. 
Both the environment and genes can influence disease 
symptoms. In addition to the separate effects of geno-
type and environmental factors, the effects of environ-
mental factors on different individuals will be affected 
by genotype. Meanwhile, the role of genetic factors also 
depends on environmental influences [73, 74]. We used 
the MR approach to eliminate some confounders that 
are commonly observed in epidemiological studies. 
Moreover, our SNPs were strongly associated with gut 
microbiota and were compared with multiple cancer 
databases. Moreover, the reverse MR analysis and sen-
sitivity analysis showed no pleiotropy or heterogeneity, 
which indicates that our results are statistically robust.

Nevertheless, our study had several limitations. First, 
while the majority of patients in the GWAS summary 
data used in our study were European, only a small num-
ber of the gut microbiota data were taken from other 
races, which may lead to bias estimates and affect uni-
versality. Second, the bacterial taxa were only analysed at 
the order or family level. If the GWASs had used more 
advanced shotgun metagenomic sequencing analyses, the 
results would be more specific and accurate. Third, due 
to our strict thresholds, many of the genetic liabilities 

of the gut microbiota were excluded at the IV selection 
stage, which may result in some results being missed.

Recent research proposed that future research should 
take an integrative approach that uses multiple omics 
platforms to improve understanding of the pathogen-
esis of disease in the context of the complex interactions 
between genes and the environment over time [74].

Conclusions
In summary, we comprehensively assessed the causal 
association between the gut microbiota and a series of 
cancers. Our results suggest that there are four posi-
tive causal directions and one negative causal direction 
with breast cancer, three positive causal directions and 
one negative causal direction with lung cancer, two posi-
tive causal directions and four negative causal directions 
with prostate cancer, one positive causal direction with 
gastric cancer, one positive causal direction with ovarian 
cancer, one negative causal direction with endometrial 
cancer, six positive causal directions and one negative 
causal direction with colorectal cancer, and one posi-
tive causal direction and three negative causal directions 
with colorectal cancer. In addition, we found potential 
causal associations between the gut microbiota and can-
cer. This study may provide new insights into the mecha-
nisms of gut microbiota-mediated cancer development.
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