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Abstract 

Background: Bipolar disorder (BD) is a highly heritable psychiatric illness exhibiting substantial correlation with 
intelligence.

Methods: To investigate the shared genetic signatures between BD and intelligence, we utilized the summary 
statistics from genome‑wide association studies (GWAS) to conduct the bivariate causal mixture model (MiXeR) and 
conjunctional false discovery rate (conjFDR) analyses. Subsequent expression quantitative trait loci (eQTL) mapping in 
human brain and enrichment analyses were also performed.

Results: Analysis with MiXeR suggested that approximately 10.3K variants could influence intelligence, among 
which 7.6K variants were correlated with the risk of BD (Dice: 0.80), and 47% of these variants predicted BD risk and 
intelligence in consistent allelic directions. The conjFDR analysis identified 37 distinct genomic loci that were jointly 
associated with BD and intelligence with a conjFDR < 0.01, and 16 loci (43%) had the same directions of allelic effects 
in both phenotypes. Brain eQTL analyses found that genes affected by the “concordant loci” were distinct from those 
modulated by the “discordant loci”. Enrichment analyses suggested that genes related to the “concordant loci” were 
significantly enriched in pathways/phenotypes related with synapses and sleep quality, whereas genes associated 
with the “discordant loci” were enriched in pathways related to cell adhesion, calcium ion binding, and abnormal emo‑
tional phenotypes.

Conclusions: We confirmed the polygenic overlap with mixed directions of allelic effects between BD and intel‑
ligence and identified multiple genomic loci and risk genes. This study provides hints for the mesoscopic phenotypes 
of BD and relevant biological mechanisms, promoting the knowledge of the genetic and phenotypic heterogeneity 
of BD. The essential value of leveraging intelligence in BD investigations is also highlighted.
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Background
Bipolar disorder (BD) is a highly heritable psychiatric 
disorder characterized by mood swings between mania/
hypomania and depression [1, 2]. Early twin studies have 
indicated substantial contribution of a genetic compo-
nent in the etiology of BD [3–5], and genetic analyses 
including genome-wide association studies (GWASs) 
have reported multiple genomic loci showing evidence of 
associations with risk of BD [6, 7]. To date, BD risk loci 
have been found to contain genes encoding ion channels, 
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neurotransmitter transporters, and synaptic proteins [8], 
yet the mesoscopic phenotypes linking these pathways 
and BD remain largely obscure. Accumulating evidence 
have shown that healthy individuals or siblings carrying 
BD genetic risk alleles exhibited alterations in particular 
intermediate phenotypes (e.g., amygdala activity and cog-
nitive function) [9–12], and studies of these intermediate 
phenotypes are hence believed to provide clues for the 
biological underpinnings of BD.

To date, growing evidence has shown a putative corre-
lation between risk of BD and intelligence, for example, 
previous studies found that children with high intelli-
gence quotient (IQ) scores had a higher chance of being 
diagnosed with BD in adulthood [13–15]. Further stud-
ies found that individuals with either extremely high or 
low school grades were more likely to be diagnosed with 
BD later in life compared to their peers with average per-
formance [16], suggesting that the correlation between 
BD and IQ is not linear. In addition, a large-scale pro-
spective epidemiological study of more than one million 
Swedish men found a “reversed–J” shaped association 
between intelligence and hospitalization for BD (the 
average follow-up period was 22.6 years, and the patients 
had no psychiatric comorbidities) [17]. Specifically, they 
found that the risk of hospitalization with any form of BD 
decreased as the intelligence increased; in the meantime, 
subjects with either the lowest IQ scores or the highest 
IQ scores (especially those who performed better in ver-
bal or technical tests) had greater risk of hospitalization 
with pure BD [17].

These findings suggested significant associations 
between BD and intelligence with complicated correla-
tion patterns. Since both BD risk and intelligence are 
proven to be heritable, it is plausible to hypothesize that 
there is a shared genetic basis between BD and intelli-
gence. Although previous genetic correlation estimates 
using the Linkage Disequilibrium Score Regression 
(LDSC) method based on GWAS results yielded non-sig-
nificant results between BD and intelligence [8], it should 
be noticed that the LDSC method can only capture sig-
nificant correlations when multiple variants showed 
consistent allelic effect directions (the same or the oppo-
site, but not mixed) in both phenotypes. Since vari-
ants associated with both BD and intelligence may have 
mixed directions of allelic effects between phenotypes, 
the putative shared genetic foundation between them is 
still warranted. Indeed, mixed directions of allelic effects 
between phenotypes with overlapped genetic basis are 
commonly seen [18–20], and Frei et al. described a novel 
statistical method, MiXeR, for precisely estimating the 
overall shared polygenic architecture regardless of allelic 
effect directions [21]. In addition, the conjunctional false 
discovery rate (conjFDR) analyses, which are built on 

an empirical Bayesian statistical framework and lever-
ages the combined power of both GWASs, are believed 
to increase the opportunity of discovering novel risk loci 
based on GWAS summary statistics [22–27].

Using these approaches, previous studies have demon-
strated extensive genetic overlap between BD and intel-
ligence with mixed directions of allelic effects [25, 28], 
which seems in line with the epidemiological observa-
tions. In the present study, we repeated the MiXeR and 
conjFDR analyses using summary statistics from the 
latest GWASs of BD and intelligence, identifying both 
known and novel risk genes showing concordant or dis-
cordant effects between the two traits. Follow-up func-
tional annotations and gene-set enrichment analyses 
found distinct molecular pathways and human pheno-
types associated with “concordant loci” and “discordant 
loci,” respectively. These results identified genetic mecha-
nisms explaining the phenotypic heterogeneity across the 
bipolar spectrum disorders and provides hints for the 
mesoscopic phenotypes of BD by leveraging intelligence.

Methods
GWAS samples
GWAS summary datasets of BD (n = 41,917 cases and 
371,549 controls) [8] and intelligence (n = 269,867 indi-
viduals) [29] were retrieved from published studies. 
As described in the original study, the BD GWAS sam-
ple included 41,917 cases from 57 cohorts collected 
in Europe, North America, and Australia, and 371,549 
controls from European countries [8]. The intelligence 
GWAS data included 14 datasets from Europe and North 
America, and a common latent g factor underlying mul-
tiple dimensions of cognitive functioning was calculated 
and applied to operationalize the cohorts with intel-
ligence measured using distinct approaches [29]. The 
information about the effect allele, effect size (beta or 
odds ratio), standard error, and P value were obtained 
from the GWAS studies.

Statistical analyses
The genome-wide genetic correlation (rg) of BD with 
intelligence was calculated using LDSC [30]. MiXeR (ver-
sion v1.3) was used to construct a bivariate causal mix-
ture model to estimate the total number of shared and 
trait-specific causal variants between BD and intelligence 
based on GWAS summary statistics [21, 31]. MiXeR 
results are presented as a Venn diagram of the shared 
and unique polygenic components across BD and intel-
ligence, and the dice coefficient score (polygenic overlap 
measure in the 0~100% scale) were also computed [18].

The conditional quantile-quantile (Q-Q) plots were 
generated to provide a visual pattern of enrichment in 
single nucleotide polymorphism (SNP) associations 
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between BD and intelligence. As described in the pre-
vious study [32], the Q-Q plots computed the empiri-
cal cumulative distributions of P values in the primary 
phenotype for all SNPs and for subsets of SNPs (e.g., P 
≤ 0.1, P ≤ 0.01, P ≤ 0.001, respectively) in the second-
ary phenotype. Increased degree of leftward deflection, 
from the expected null line as the association significance 
increases in a phenotype, suggests enrichment of associa-
tions of the other phenotype [32].

We next conducted the conjFDR analyses to charac-
terize the genomic loci and SNPs jointly associated with 
both BD and intelligence. As described in the previous 
studies [32, 33], this method re-adjusted the GWAS sum-
mary statistics in the primary phenotype (e.g., BD) by 
leveraging pleiotropic enrichment with the GWAS sum-
mary statistics in the secondary phenotype (e.g., intelli-
gence). The conditional FDR (condFDR) estimates were 
calculated for each variant in the primary phenotype 
using the stratified empirical cumulative distribution 
function. This process was then performed again with 
the primary and secondary phenotypes switched, and 
conjFDR was defined as the maximum of the two cond-
FDR values [32, 33]. During the conjFDR analyses, all P 
values in the original GWAS datasets were corrected 
for genomic inflation, since the empirical null distribu-
tions of SNP associations in GWASs might be affected by 
population stratification [32]. Random pruning of SNPs 
was performed throughout the 500 iterations in both the 
conditional Q-Q plots and conjFDR analyses to mini-
mize inflation resulted from linkage disequilibrium (LD) 
dependency, and one randomly-returned representative 
SNP for each LD-independent block was retained after 
every pruning iteration (cluster of SNPs with r2 > 0.1). As 
recommended in the previous study [18], we remained 
only one signal in the highly extended major histocom-
patibility complex (MHC) region (hg19, chr6:26M-34M) 
to minimize the impacts of complicated LD patterns in 
this genomic area. SNPs with a conjFDR < 0.01 were con-
sidered statistically significant.

Functional annotations of the genomic risk loci
To identify genes associated with the risk loci, we con-
ducted expression quantitative trait loci (eQTL) analyses 
of all the significant SNPs in each independent genomic 
region (conjFDR < 0.01 and at r2 < 0.2), to identify genes 
associated with the risk loci in multiple datasets. We used 
datasets of postmortem postnatal human brain tissues 
(dorsolateral prefrontal cortex (DLPFC) or hippocam-
pus) such as psychENCODE (n = 1387 for DLPFC) [34], 
BrainMeta (n = 2865 for cortex) [35], BrainSeq (n = 477 
for hippocampus) [36] and Genotype-Tissue Expression 
(GTEx; n = 175 for DLPFC and n = 165 for hippocam-
pus) [37], datasets of prenatal cortex tissues from O’Brien 

et  al. (n = 120) [38] and Walker et  al. (n = 201) [39] 
studies, as well as single-cell eQTLs resources (includ-
ing mature midbrain dopaminergic neurons (from 175 
donors) and serotonergic-like neurons (from 161 donors) 
differentiated from human induced pluripotent stem cells 
(iPSC) lines [40]; and excitatory neurons and inhibitory 
neurons from 196 individuals by single nuclei RNA-
sequencing [41]). Detailed information about the sample 
characteristics, expression quantification, and normaliza-
tion, as well as statistical analysis in each eQTL dataset, 
can be found in the original publications. The psychEN-
CODE and BrainSeq datasets only provided SNP associa-
tions passing genome-wide level of statistical significance 
(false discovery rate (FDR) < 0.05 in psychENCODE and 
FDR < 0.01 in BrainSeq), we hence directly retrieved the 
significant eQTL associations. For the other eQTL data-
sets, we empirically considered the genes with eQTL P < 
0.001 to be significant. We did not perform eQTL analy-
sis in the MHC region (hg19, chr6:26M-34M) given its 
complicated LD patterns and potential mapping prob-
lems using short-reads sequencing.

Enrichment analyses of the risk genes
For the risk genes identified by eQTL analyses, we con-
ducted enrichment analyses of Gene Ontology (GO), 
Reactome pathway [42], UniProt keywords [43], and 
Monarch Human Phenotype Ontology (HPO) [44] using 
the STRING dataset (version 11.5) [45].

Results
Polygenic overlap between BD and intelligence
The polygenic overlap (i.e., shared causal variants) 
between BD and intelligence was assessed using MiXeR 
based on GWAS summary statistics. The bivariate 
MiXeR analysis revealed that approximately 8.6K (stand-
ard deviation (SD) = 0.2K) variants influenced BD, and 
approximately 10.3K (SD = 0.3K) variants influenced 
intelligence. Intriguingly, 7.6K (SD = 0.5K) variants influ-
enced both BD and intelligence, and the overall measure 
of polygenic overlap between BD and intelligence was 
80.3% (standard error (SE) = 4.9%) on a 0–100% scale 
(quantified as the Dice coefficient) (Fig. 1A).

We then generated conditional quantile-quantile 
(Q-Q) plots conditioning BD on intelligence and vice 
versa, to further describe the pleiotropic enrichment of 
SNP associations between BD and intelligence. The obvi-
ous leftward deflection of the curves for both BD-given 
intelligence and intelligence-given BD suggested strong 
enrichment of the significant variants for one trait in 
the other. Notably, SNPs with higher significance for the 
conditional trait exhibited greater leftward deflection in 
both plots, confirming the substantial polygenic overlap 
between BD and intelligence (Fig. 1B).
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Shared genetic loci between BD and intelligence
Both MiXeR and the Q-Q plots indicated significant 
polygenic overlap between BD and intelligence, but no 
significant genetic correlation was observed between 
them (LDSC rg = −0.066, P = 0.062, Fig.  1A). Since 
LDSC analyses only reported significant genetic correla-
tions with the premise that there were numerous SNPs 
showing associations with both phenotypes in concord-
ant direction of allelic effects, we suspected that the 
shared variants between BD and intelligence had mixed 
directions of allelic effects. Indeed, MiXeR analysis 
showed that the “concordant variants” took up only 47% 
(SE = 0.4%) of the shared genetic components (7.6K vari-
ants) between BD and intelligence.

We hence applied the genetic pleiotropy-informed con-
jFDR method [33], which identifies loci associated with 
both BD and intelligence regardless of the allelic effect 
directionality with boosted statistical power. We identi-
fied 37 distinct genomic loci (r2 < 0.2) that were jointly 
associated with BD and intelligence with a conjFDR 
< 0.01 (Fig.  2 and Table  1), including 24 independent 
loci that were not identified in the original BD GWAS 
[8]. Further computation of the z-scores of these loci 
revealed that 16 SNPs exhibited the same directions of 
effect between BD and intelligence (i.e., one allele pre-
dicted a higher risk of BD and greater intelligence), while 
21 SNPs had the opposite directions (Fig. 2 and Table 1). 
This finding is consistent with a previous study describ-
ing loci jointly associated with BD and intelligence [25], 
albeit that study reported fewer joint risk loci.

We then performed a detailed genomic mapping analy-
sis of the 37 shared loci between BD and intelligence. 
The locus with the strongest concordant effect on both 
the risk of BD and intelligence was in MIR2113 on chro-
mosome 6 (rs1487445, conjFDR = 7.78×10−11), and the 
T-allele of rs1487445 predicted both increased risk of BD 
(odds ratio (OR) = 1.077, P = 1.48×10−15) and higher 
IQ scores (beta = 0.031, P = 3.27×10−29) (Fig.  3A). 
The variant with the strongest opposite effects on BD 
and intelligence is in the chromosome 3p21.1 region 
(rs12487445, conjFDR = 1.54×10−6), and the A-allele of 
rs12487445 predicted increased risk of BD (OR = 1.062, 
P = 2.44×10−10) but lower IQ scores (beta = −0.018, P 
= 3.31×10−11) (Fig.  3B). The locus showing the second 
strongest opposite effects was in the highly extended 
MHC region (rs3749971, conjFDR = 3.27×10−5), and the 
G-allele of rs3749971 predicted increased risk of BD (OR 
= 1.106, P = 8.91×10−10) while lower IQ scores (beta = 
−0.030, P = 3.06×10−9) (Fig. S1). Another locus with 
the opposite directions of allelic effects between BD and 
intelligence was in the gene ADCY2 (rs17826816, con-
jFDR = 1.04×10−4), and its G-allele was linked to higher 
risk of BD (OR = 1.065, P = 1.32×10−8) but lower IQ 
scores (beta = −0.018, P = 1.68×10−8) (Fig. S2).

Since BD and schizophrenia exhibit strong genetic 
correlations [46], and schizophrenia also has substantial 
polygenic overlap with intelligence [25], there is the pos-
sibility that the identified BD risk loci through leveraging 
intelligence are not exclusively associated with BD. We 
verified this by examining the aforementioned 37 BD risk 
SNPs in the largest schizophrenia GWAS in Europeans 
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(74,776 cases and 101,023 controls) [47], we found that 
15 of these loci were also associated with schizophrenia 
in the same allelic directions (Table 1). Notably, 13 of the 
21 SNPs showing opposite directions of effect between 
BD and intelligence also exhibited significant associa-
tions with schizophrenia; by contrast, only 2 of the 16 
SNPs showing the same directions of effect between BD 
and intelligence were associated with schizophrenia. 
Therefore, although both BD and schizophrenia have 
polygenic overlap with intelligence, the potential genetic 
mechanisms regulating intelligence in these two disor-
ders are likely divergent.

Risk genes and functional annotations in the significant 
genomic loci
Since majority of the risk SNPs for BD are in the noncod-
ing genomic regions, functional annotations of them are 
urgently needed. Accumulating evidence suggests that 
noncoding SNPs affect gene transcription and splicing 
likely in a cell type- and developmental stage-specific 
manner [7, 48]. We thus examined the regulatory effects 
of the BD risk SNPs using datasets containing human 
eQTL results in postnatal DLPFC and hippocampal tis-
sues, prenatal cortex tissues, as well as different types of 
brain cells. In summary, 25 of the 37 risk loci had eQTL 

associations in at least one dataset (Table 1); 9 of the 16 
risk loci showing concordant effects on BD and intel-
ligence contained eQTL-associated risk genes, while 16 
of the 21 loci showing opposite effects on BD and intelli-
gence contained eQTL associated risk genes. There were 
no overlapped eQTL risk genes between the “concordant 
loci” and “discordant loci”.

Specifically, 37 protein-coding genes were significantly 
affected by SNPs in the loci showing concordant effects 
on BD and intelligence (Table S1). Although GO analysis 
of these genes did not reveal any significant enrichment, 
Reactome pathway analysis found that their proteins 
were significantly enriched in the pathways of “Activa-
tion of AMPK downstream of NMDARs,” “Microtubule-
dependent trafficking of connexons from Golgi to the 
plasma membrane,” “RHO GTPases activate IQGAPs,” 
“Selective autophagy,” “Transmission across Chemi-
cal Synapses,” and “Membrane Trafficking” (Fig. 4A and 
Table S2). UniProt keywords analysis suggested that 
these proteins were significantly enriched in the terms 
of “GTP-binding” and “Fatty acid biosynthesis” (Fig.  4A 
and Table S2). Monarch HPO analysis found that these 
genes were enriched in the terms “Intelligence,” “Cogni-
tion,” and “Self reported educational attainment.” Intrigu-
ingly, we found that these genes also showed significant 

Fig. 2 Manhattan plots for conjFDR analyses. SNPs jointly associated with BD and intelligence in the conjFDR analysis (conjFDR < 0.01). Lead SNPs 
in each independent risk loci with the same directions of allelic effects between BD and intelligence are marked in red, and lead SNPs in each 
independent risk loci with opposite directions of allelic effects between BD and intelligence are marked in green
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enrichment in the term “Sleep measurement” (Fig.  4A 
and Table S2).

We identified 135 protein-coding genes affected by 
SNPs in the genomic loci showing opposite effects on BD 
and intelligence (Table S3). GO analysis of these genes 
revealed significant enrichment in the terms “Cell adhe-
sion” and “Calcium ion binding”, whereas Reactome path-
way analysis did not identify any significantly enriched 
pathways (Fig.  4B and Table S4). Similarly, UniProt 

keywords analysis found significant enrichment of these 
proteins in the terms “Cell adhesion” and “Calcium” 
(Fig. 4B and Table S4). Monarch HPO analysis found that 
these genes were enriched in the terms “Intelligence” and 
“Cognition.” It should be noticed that these genes were 
also significantly enriched in “Anxiety,” “Emotional symp-
tom measurement,” and “Worry measurement” (Fig.  4B 
and Table S4).

Fig. 3 Associations of SNPs at MIR2113 on chromosome 6 (A) and 3p21.1 region (B) with risk of BD and intelligence in the GWAS datasets. A 
physical map of the region is given and depicts known genes within the region, and the LD is defined based on the SNP rs1487445 (A) and 
rs12487445 (B), respectively

Fig. 4 Enrichment analyses of the eQTL genes in the “concordant loci” (A) and “discordant loci” (B). The enrichment analyses were conducted in the 
STRING website, and default parameters were applied
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Discussion
A previous study by Gale et  al. [17] found elevated risk 
of developing BD in subjects with either lower or higher 
IQ scores, and extensive genetic overlap between BD 
and intelligence with mixed directions of allelic effects 
was demonstrated [25, 28]. In the present study, we have 
identified multiple genomic loci and risk genes correlated 
with both BD and intelligence, with either the same or 
opposite directions of allelic effects. These results provide 
possible explanations for the higher prevalence of BD in 
subjects with either low or high intelligence, and high-
light the etiological heterogeneity of BD.

By leveraging pleiotropic enrichment between BD and 
intelligence using the conjFDR method, we herein iden-
tified 37 loci jointly associated with BD and intelligence 
(16 loci showed the same allelic effect directions, and 21 
loci showed opposite directions) based on large-scale 
GWAS summary statistics, and 24 loci were not identi-
fied in the original BD GWAS [8]. We noticed that one of 
the most significant loci, which showed the same direc-
tions of allelic effects between BD and intelligence, was 
in MIR2113 on chromosome 6 (rs1487445, conjFDR = 
7.78×10−11). Notably, a recent study found that a vari-
ant rs77910749, which is in complete LD with rs1487445 
(r2 = 1.00 in Europeans) and resides within a highly con-
served putative enhancer LC1 in the upstream region 
of POU3F2 [49], could alter LC1 enhancer activity and 
POU3F2 expression during neurodevelopment in embry-
onic mouse brain and human iPSC-derived cerebral 
organoids. Intriguingly, rs77910749 knock-in mice exhib-
ited behavioral defects in sensory gating [49], which is an 
amygdala-dependent endophenotype commonly seen in 
BD patients [50].

Despite that lower intelligence and higher intelligence 
are both linked to increased risk of BD, we speculate that 
the molecular mechanisms underlying the two conditions 
are distinct. Indeed, functional annotations revealed 
that no overlap of the genes affected by the “concordant 
loci” and those affected by the “discordant loci.” Further 
analyses found that genes related to the “concordant loci” 
were significantly enriched in synapses related pathways, 
whereas genes related to the “discordant loci” were sig-
nificantly enriched in the biological processes of “Cell 
adhesion” and “Calcium ion binding.” More intriguingly, 
although both sets of genes showed significant enrich-
ment in the terms “Intelligence” and “Cognition,” the 
“concordant genes” also showed enrichment in “Sleep 
measurement,” whereas the “discordant genes” were 
rather enriched in “Anxiety,” “Emotional symptom meas-
urement,” and “Worry measurement.” These results sug-
gested that the “concordant genes” were likely related to 
the dysrhythmia in BD, while “discordant genes” were 
possibly involved in the abnormal emotional behaviors. 

Therefore, further investigations into genes shared by 
intelligence and BD, either with the same or opposite 
directions of allelic effects, will likely extend our knowl-
edge of this disorder and biological mechanisms of the 
human brain.

Nonetheless, we acknowledged the potential limita-
tion that the shared loci between BD and intelligence can 
not fully explain their nonlinear relationships in epide-
miological observations, as other factors (e.g., family and 
social environment, humanistic culture, and education) 
may also affect these traits. In addition, our analyses were 
based on samples from European ancestry, despite the 
results being intriguing, validations in other ethnic popu-
lations are necessary in the future.

Conclusions
We observed substantial polygenic overlap between BD 
and intelligence and identified multiple loci associated 
with BD and intelligence with mixed directions of allelic 
effects. Enrichment analyses suggested different biologi-
cal processes related to the “concordant genes” and the 
"discordant genes", providing hints for the mesoscopic 
phenotypes of BD and relevant biological mechanisms. 
An appealing hypothesis, that whether BD patients with 
lower intelligence exhibit more severe emotional distur-
bance, while BD patients with higher intelligence have 
more frequent dysrhythmia, is of great interest for fur-
ther clinical validations.
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