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Abstract 

Background:  Alzheimer’s disease (AD), a progressive neurodegenerative disease, is the most common cause of 
dementia worldwide. Accumulating data support the contributions of the peripheral immune system in AD patho‑
genesis. However, there is a lack of comprehensive understanding about the molecular characteristics of peripheral 
immune cells in AD.

Methods:  To explore the alterations of cellular composition and the alterations of intrinsic expression of individual 
cell types in peripheral blood, we performed cellular deconvolution in a large-scale bulk blood expression cohort and 
identified cell-intrinsic differentially expressed genes in individual cell types with adjusting for cellular proportion.

Results:  We detected a significant increase and decrease in the proportion of neutrophils and B lymphocytes in AD 
blood, respectively, which had a robust replicability across other three AD cohorts, as well as using alternative algo‑
rithms. The differentially expressed genes in AD neutrophils were enriched for some AD-associated pathways, such 
as ATP metabolic process and mitochondrion organization. We also found a significant enrichment of protein-protein 
interaction network modules of leukocyte cell-cell activation, mitochondrion organization, and cytokine-mediated 
signaling pathway in neutrophils for AD risk genes including CD33 and IL1B. Both changes in cellular composition and 
expression levels of specific genes were significantly associated with the clinical and pathological alterations. A similar 
pattern of perturbations on the cellular proportion and gene expression levels of neutrophils could be also observed 
in mild cognitive impairment (MCI). Moreover, we noticed an elevation of neutrophil abundance in the AD brains.

Conclusions:  We revealed the landscape of molecular perturbations at the cellular level for AD. These alterations 
highlight the putative roles of neutrophils in AD pathobiology.

Keywords:  Alzheimer’s disease (AD), Mild cognitive impairment (MCI), Peripheral blood transcriptome, 
Deconvolution, Cell-specific gene expression, Cellular proportion

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Alzheimer’s disease (AD) is a progressive neurodegenera-
tive disorder that is characterized by cognitive and func-
tional impairment and memory loss [1, 2]. It is the most 
common frequent form of dementia leading to a wide 
spectrum of social and financial burdens [3]. Therefore, 

there is an urgent need to understand the etiology and 
pathogenesis of the disease. For decades, the amyloid 
cascade hypothesis was the major pathogenic theory. 
The aberrant processing of Amyloid-beta precursor pro-
tein or dysfunctional clearance of the amyloid-β peptide 
(Aβ) leads to the accumulation of the Aβ plaque, followed 
by the deposition of neurofibrillary tangles (NFTs), and 
ultimately causes synaptic and neuronal dysfunction and 
loss [4]. However, the failure of multiple therapeutic trials 
targeting Aβ clearance suggests that there must be other 
pathogenic mechanisms, such as inflammation [5, 6].
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Neuroinflammation is a dominant manifestation and 
a contributor to AD pathogenesis [7]. Initially, micro-
glia and astrocytes are activated by the deposition of Aβ 
plaques and other pathological proteins to phagocytose 
Aβ peptides, thus reducing the plaque burden and pro-
viding a neuroprotective function [8–11]. However, the 
persistence of plaque results in the constant production 
of inflammatory cytokines, chemokines, and neurotoxins 
by these cells, which ultimately impairs both neurons and 
other cells (astrocytes, oligodendrocytes, and microglia) 
[12–14]. The vicious circle finally causes neurodegen-
eration and neuron loss. Recently, some genome-wide 
association studies (GWAS) have found the association 
between AD and key microglial genes, including CD33 
and TREM2 genes involved in innate immunity [15–18], 
suggesting immune system-mediated actions contribute 
to or drive AD pathogenesis.

Epidemiological and translational studies have indi-
cated that the peripheral systemic immune or inflam-
matory responses may promote neurodegenerative 
and AD-specific pathology [19]. For instance, systemic 
immune challenge by the lipopolysaccharide and chronic 
inflammatory disorders could result in the development 
of AD-like neuropathology and an increase in the risk 
of AD [20–23], respectively. Individuals with higher lev-
els of systemic inflammation in the blood during midlife 
exhibit a steeper cognitive decline [24]. Accordingly, 
non-steroidal anti-inflammatory drugs could reduce the 
risk of AD [25, 26]. These findings highlight the involve-
ment of systemic peripheral inflammation in AD etiology 
and progression.

Emerging evidence support that there is an intense 
crosstalk between the peripheral systemic immune and 
the central nervous systems [27]. For instance, cytokines 
such as interleukin-6 (IL-6), IL-1β, and tumor necrosis 
factor (TNF) in the blood could signal to brain via the 
circumventricular organs and transport across the blood-
brain barrier (BBB) via receptors on the endothelium, 
leading to increased activation of microglia [27–29]. Fur-
thermore, the infiltration of innate and adaptive immune 
cells from peripheral blood, containing monocytes, mac-
rophages, neutrophils, and lymphocytes, also have been 
observed in the brains of AD patients and animal models 
[9, 30–32]. With the stimulation of Aβ and the neuroin-
flammation, monocytes migrate to brain parenchyma and 
change their expression profiles and morphology termed 
bone marrow-derived microglia to phagocytose Aβ [33, 
34]. Neutrophils enter the brain via LFA-1 integrin and 
surround Aβ plaques with neutrophil extracellular traps, 
potentially promoting BBB damage and neuronal toxicity 
[35, 36]. Activated CD8+ T cells exhibit a higher propor-
tion in the CSF of AD patients than healthy older adults 
and correlate with clinical and structural markers of AD 

pathology [37]. Several studies based on the single-cell 
RNA sequencing of peripheral blood mononuclear cells 
further have disclosed the cell-specific signatures in AD 
and mild cognitive impairment (MCI) [38–40]. However, 
the small sample size and underestimate of polymorpho-
nuclear leukocytes (e.g., neutrophils) limit our under-
standing of the distribution and biological characteristics 
of all the peripheral blood immune cells.

Here, to explore the alterations of cellular composi-
tion and changes of intrinsic expression of blood immune 
cell types in AD, we performed cellular deconvolution 
in large-scale bulk blood transcriptomic cohorts and 
evaluated the association between the cellular propor-
tion and disease status and cognitive functions. Moreo-
ver, we identified shared and specific biological processes 
among cell types. Then, we performed enrichment analy-
sis for AD risk genes on network modules of neutrophils. 
Finally, we explored the infiltration of immune cells in 
AD brain regions. These cellular proportion and signaling 
perturbations contribute to further research regarding 
disease etiology and the development of immune-related 
diagnostic and/or therapeutic biomarkers.

Methods
Datasets
Blood expression data was obtained from the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) database 
[41, 42], a longitudinal multicenter dataset in the US 
and Canada containing clinical, imaging, genetic, and 
biochemical data to identify biomarkers for early detec-
tion and progression of AD. Enrollment and diagno-
sis criteria for ADNI have been described previously in 
detail [43]. Briefly, enrolled participants were between 
55 and 90 years old without other psychiatric and neu-
rologic diseases. Subjects with AD were diagnosed with 
the National Institute of Neurological and Communi-
cative Disorders and Stroke-Alzheimer’s Disease and 
Related Disorders Association (NINCDS-ADRDA) cri-
teria for probable AD [44]. Subjects with MCI and nor-
mal control (NC) participants were determined through 
whether meeting the Jak/Bondi Criteria or not with neu-
ropsychological measures [45]. The expression data were 
sequenced using the Affymetrix Human Genome U 219 
array and normalized by the Robust Multichip Analysis 
(RMA) [46].

To validate the findings in ADNI, we performed 
the same analysis on other three independent periph-
eral blood transcriptomic datasets, including the 
AddNeuroMed datasets ANM1 [47] and ANM2 [47], 
and the AD cohort in Zhangjiang international Brain 
Biobank (ZIB-AD [48]). The ANM consortium is a 
large cross-European, public-private consortium for 
AD [49]. Blood RNA samples from ANM1 and ANM2 
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were profiled on Illumina Human HT-12 v3 and v4 
Expression BeadChips, respectively. The probe-set 
level intensities of each set were normalized using the 
RMA method in the R package affy [50]. The ZIB is 
an ongoing imaging genetic neuropsychiatric cohort 
in China. Expression profiling of AD cohort in the ZIB 
was sequenced on Illumina NovaSeqTM 6000 with 150-
bp paired-end. In addition, we also performed cellular 
deconvolution on a human AD brain transcriptomic 
dataset (i.e., Mayo RNAseq [51, 52]) and a spatial tran-
scriptomics dataset in brain of AD mouse model (i.e., 
Alzmap [53, 54]).

Estimation of cellular proportion of immune cell types
We first applied EPIC [55] to estimate the cellular pro-
portions based on deconvolution algorithm. Briefly, 
the bulk gene expression (b) is modeled as the sum of 
the expression from the pure cell types composing this 
sample, i.e., b = C × p, C is a reference gene expres-
sion matrix for cell types; and p is a vector of the pro-
portions from the K cell types. The reference cell gene 
expression profile was obtained from RNA-Seq data 
of sorted immune cells [56–58]. The cellular propor-
tions were then inferred by a least-square optimiza-
tion. EPIC estimates showed a remarkable agreement 
with the cell fractions computed with flow cytometry 
in both blood and tumor samples [55].

To avoid the method bias, we also quantified the 
immune cells with other computational tools, includ-
ing quanTIseq [59], CIBERSORT [60], and MCP-coun-
ter [61]. QuanTIseq is based on a signature matrix 
derived from 51 RNA-seq data sets of blood-derived 
immune cells from ten different immune cell types. 
Both EPIC and QuanTIseq allow estimating the frac-
tion of uncharacterized cells. CIBERSORT, demon-
strating robust deconvolution performance and high 
accuracy in microarray data via nu support vector 
regression [60], was also applied to estimate the cell 
fractions and to infer sample-level gene expression for 
each cell type. A leukocyte RNA-Seq signature matrix 
comprised of six peripheral blood immune subsets 
(GSE60424) was taken as the specialized knowledge-
base [57, 60]. The above three methods force the esti-
mates to be non-negative and to sum up to one and 
therefore could be interpreted directly as cell fractions 
and compared across different immune cell types. 
Furthermore, MCP-counter, a transcriptomic marker-
based approach [61], was applied to quantify the abso-
lute abundance of immune cells. Here, we applied 
the R package immunedeconv [62] to implement uni-
formly the above algorithms with a non-log scale gene 
expression matrix as the input.

Identification of bulk and cell‑type‑specific differentially 
expressed genes
Limma [63], an R package based on linear regression for 
both RNA-seq and microarray data, was applied to iden-
tify bulk differentially expressed genes (DEGs, P < 0.01) 
of AD and MCI in each dataset. The normalized expres-
sion matrixes of microarray and RNA-seq data were used 
as inputs while adjusting for covariates of age and gen-
der. In addition, the Wilcoxon test that performs robustly 
with a lower false discovery in population studies [64] 
was applied to further validate the DEGs.

TOAST [65], a reference-free deconvolution method, 
was applied to detect differentially expressed genes in 
each cell type between AD or MCI vs. NC. First, we made 
a model design using a phenotype matrix (including age, 
gender, and disease status) and the cellular proportions 
estimated from EPIC. Then, we fitted the linear model 
for non-log-transformed expression data and the model 
design. Finally, we tested the disease effects (i.e., differ-
ences) in each cell type while controlling for covariates.

Pathway enrichment analysis
We identified the enriched biological processes in Gene 
Ontology for DEGs using Metascape [66, 67], which 
utilizes the hypergeometric test and Benjamini-Hoch-
berg p-value correction algorithm to identify significant 
terms. To address the issue of term redundancies, Metas-
cape will compute pairwise similarity scores between 
any two enriched terms based on a Kappa-test score [68] 
and performs hierarchical clustering using the similarity 
matrix. Then, the hierarchical tree is trimmed with the 
0.3 similarity threshold into separate clusters. Metascape 
choose the most significant (lowest P-value) term within 
each cluster to represent the cluster in the bar graph and 
heatmap representations. We also constructed enrich-
ment networks, in which the nodes represent significant 
terms and the edges connect these nodes for which the 
similarity scores are above 0.3. The networks were visual-
ized using Cytoscape v3.8.0 [69].

Re‑construction of protein‑protein interaction networks
For DEGs in neutrophils, we re-constructed protein-pro-
tein interaction (PPI) network using Metascape under the 
combined (all) option. Metascape extracts protein inter-
actions from STRING [70], OmniPath [71], InWeb_IM 
[72], and BioGrid [73] database for input gene/proteins. 
Then, the Molecular Complex Detection (MCODE), a 
graph-theoretic clustering algorithm based on vertex 
weighting by local neighborhood density and outward 
traversal from a locally dense seed protein to isolate the 
dense regions, was applied to identify densely-connected 
modular clusters with default parameters [74]. For each 
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cluster, Metascape further applies function enrichment 
analysis and uses the top enriched terms to annotate its 
biological roles. We also identified candidate hub genes 
with high degree centralites or clustering coefficients 
using cytoHubba.

Statistical analysis
All statistical analyses were performed using R (version 
4.0.2). ANOVA (analysis of variance) test and chi-squared 
test were applied to compare continuous demographics 
variables and categorical variables, respectively. Compar-
ison of cell proportion between groups was performed 
using the two-tailed Wilcoxon test, whereas the one-
tailed Wilcoxon test was applied to determine whether 
the NLR of AD and MCI is higher than NC or not. Cor-
relations between proportion and phenotype traits were 
assessed with Spearman’s correlation. Overlaps of DE 
genes between two sets were assessed using a hypergeo-
metric test. The enrichment of PPI modules in AD risk/
associated gene lists was determined with the application 
of Fisher’s exact test.

Results
Alterations of immune cell proportion in AD
We obtained the blood-derived gene expression data 
from the individuals in the ADNI database [41], includ-
ing 116 AD, 382 MCI, and 246 elderly NC. We first 
applied a deconvolution algorithm EPIC [55] to estimate 
the immune cell proportions for these samples using 
the gene expression profiles of the reference immune 
cell types [56–58] (Fig.  1A). We found that the propor-
tion of B cells was significantly lower in AD compared to 
NC (P = 3.3e−4, Wilcoxon test) and MCI (P = 9.7e−4, 
Wilcoxon test), while the proportion of neutrophil was 
significantly higher in AD compared to NC (P = 4.8e−3, 
Wilcoxon test). Then, we used the neutrophil-to-lympho-
cyte ratio (NLR), a simple ratio between the neutrophil 
and lymphocyte counts measured in peripheral blood, 
to estimate the neutrophil-mediated systemic inflam-
mation for these samples. We found that the NLR in AD 
exhibited a significant increase compared to controls (P 
= 9.9e-3, one-tailed Wilcoxon test) (Fig. 1B). To further 
validate this observation, we also estimated the immune 
cell proportions in other three independent bulk blood 
transcriptomic datasets (i.e., ANM1, ANM2 [47], and 
ZIB [75]) using three alternative computational tools (i.e., 
quanTIseq [59], CIBERSORT [60], and MCP-counter 
[61]). As expected, we found a significantly higher NLR 
in AD than in NC in most of the datasets when using 
different computational tools except for ANM2 dataset 
under CIBERSORT (Fig.  1B). Although the NLR differ-
ence between MCI and NC is not statistically significant 
in most tests (Additional file  1: Fig. S1), we could still 

observe the same trend as in AD vs. NC. Collectively, 
these findings revealed an elevation of inflammation 
response in AD and MCI than in NC.

We then performed principal component analysis 
(PCA) on the immune cell proportion from these sam-
ples. The first two principal components (PCs) can 
explain 59.9% of the total variance-covariance of the 
immune cell proportion in the samples. The PC1 (35% 
of the total variance-covariance) was most strongly con-
tributed by neutrophils (negative) and B cells (positive) 
(Fig.  1C). The PC2 (24.9% of the total variance-covar-
iance) was most strongly weighted on CD8+ and CD4+ 
T cells. The PCA scatterplot revealed that the immune 
cell profiles in most AD cases could not be distinguished 
from those in controls (Fig.  1C), but a subset of them 
showed lower PC1 positivity scores, i.e., a distinctively 
lower proportion of B cells and/or an increased propor-
tion of neutrophils, indicating a lower adaptive activity 
and/or a higher innate and pro-inflammatory activity in 
these samples.

We then estimated the correlations between immune 
cell proportion, cognition, disease diagnosis, brain struc-
tural features for early detection of AD [76] (derived from 
MRI data), and demographic variables in NC and AD 
participants (Fig. 1D). Consistent with the above results, 
NLR and neutrophil proportion showed positive correla-
tion with disease diagnosis, while exhibited negative cor-
relations with hippocampus and left entorhinal cortex 
volumes, as well as with cognitive functions (Fig. 1D and 
Additional file 1: Fig. S2). A similar pattern of correlation 
could be observed when estimating using all AD, MCI 
and NC individuals (Additional file 1: Fig. S3). Moreover, 
we noticed that the cellular proportion and NLR could 
be affected by age and gender (Fig. 1D). Considering the 
variation of age and gender across different diagnosis 
groups (Additional file  1: Fig. S4) that could be impor-
tant confounding factors, we therefore performed logistic 
regression between disease status and cellular propor-
tion by adjusting for the two confounding factors (i.e. age 
and gender) (Additional file 2: Table S1). After adjusting 
for the confounding factors, although with a decreased 
statistical significance level, the proportions of neutro-
phils and B cells remained to show significantly positive 
(t = 2.112, P = 0.035, logistic regression) and negative 
(t = − 2.553, P = 0.0111, logistic regression) correlation 
with AD status in ADNI dataset, respectively. We also 
confirmed these results in ANM1 and ANM2 datasets 
(Additional file  2: Table  S1). We observed the same-
direction while insignificant correlation between the 
proportions of neutrophils and B cells and MCI status 
(Additional file  2: Table  S1). In addition, the difference 
of the proportion of CD4+ T cells between MCI and AD 
did not remain statistically significant (P = 0.262, logistic 
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Fig. 1  Peripheral immune cell proportion in AD. A The distribution of cellular proportion of six peripheral blood immune cells in MCI, AD 
individuals, and controls. Boxplot shows the median and interquartile range, with the outer violin plot showing the full distribution of data. ns, 
not significant; •, P < 0.1; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; Wilcoxon test. B Comparison of the neutrophil-to-lymphocyte ratio (NLR) between 
AD and NC across different datasets under different deconvolution tools. The one-tailed Wilcoxon test was applied to test whether NLR in AD was 
higher than in NC. C Principal component analysis (PCA) of cellular proportions in AD and NC participants. Each point represents one participant’s 
scores on the first 2 principal components (PC1 and PC2), where grey and red points correspond to NC and AD, respectively. The blue arrows 
show the loadings of cell types on the first 2 principal components. Ellipses show the 80% confidence ellipse for each group. The bottom bar plot 
shows the contribution of each cell type to PC1. The dashed red line represents the expected value if the contribution were uniform. D Spearman 
correlations between immune cell proportion, diagnosis, cognitive measurements, brain-area volumes, and demographic variables. Only significant 
correlations with P < 0.05 are shown. Color represents the correlation coefficient. Blue and red colors indicate positive and negative correlations, 
respectively. MoCA-B, Montreal Cognitive Assessment Basic; MMSE, Mini-Mental State Examination
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regression) after adjusting for the confounding factors 
of age and gender. Consistent with previous studies [77], 
these results indicated that in addition to age and gender 
factors, the occurrence of AD partially drove the increase 
in neutrophil proportion and NLR.

Cell‑type‑aware DEGs in AD
The differentially expressed genes (DEGs) in AD were 
identified in each dataset through linear regression by 
adjusting for the co-founding factors (Fig.  2A), where 
the significant overlap and strong concordance with 
those identified using the Wilcoxon test confirmed 
the reliability of the results (Additional file 1: Fig. S5). 
Consistent with the changes of immune cell propor-
tion and previous studies [78], we found that the bulk 
upregulated and downregulated genes in AD were sig-
nificantly enriched in neutrophil activation/degranula-
tion and B/T cell receptor signaling pathways in three 

out of four datasets, respectively (Fig.  2B, C). We also 
observed downregulation of neutrophil activation/
degranulation and upregulation of RNA catabolic pro-
cess in MCI in ANM1 and ANM2 datasets (Additional 
file 1: Fig. S6).

To further examine the intrinsic expression changes 
of individual immune cell types, we identified the DEGs 
in each cell type by adjusting for the cell proportion and 
co-founding factors in ADNI dataset (Fig. 2D). We com-
pared the bulk DEGs and cell-type-intrinsic DEGs (Addi-
tional file 1: Fig. S7) and found that only a small fraction 
of the DEGs in each cell type overlap with the bulk DEGs. 
We noticed that four (i.e., neutrophils, monocytes, NK 
cells and CD4+ T cells) out of the six cell types exhibited 
significant overlap with the bulk DEGs; the neutrophils 
showed the strongest overlap (P = 9.5e−11, hypergeo-
metric test), which may be due to the high abundance 
(55-70%) of this cell type in the peripheral blood.

Fig. 2  Differentially expressed genes (DEG) in AD at bulk and cellular levels. A The Venn diagram shows the overlap of bulk DEGs among four blood 
transcriptomic datasets. B, C The top enriched biological processes of upregulated (B) and downregulated (C) genes in AD compared with NC in 
each dataset. The point size represents the number of DE genes in the corresponding pathway. Color represents the significant level (i.e., FDR). 
D Circos plot shows the overlap between DE genes in each cell type in ADNI, where colors of the outer circle represent cell types. The dark and 
light oranges in the inner circle indicate genes hitting multiple cell types and only one cell type, respectively. Purple curves link identical genes. E 
Network of enriched terms in each cell type in ADNI, where terms with a similarity score > 0.3 are connected by edges. The color of the pie chart 
indicates the cell type which is color-coded as Fig. 2D, where the size of a slice represents the percentage of DEG from each cell type. The node size 
represents the number of DEG hitting terms
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We next explored the shareness of the perturbed bio-
logical pathways across the peripheral immune cell types 
in AD from ADNI dataset. As shown in Fig. 2E, the dys-
regulated genes in all or most of the cell types are associ-
ated with the regulation of immune response, regulation 
of defense response, cellular response to cytokine stim-
ulus, and regulation of inflammatory response, which 
is consistent with the common dysregulated signal-
ings among peripheral blood mononuclear cells in AD 
revealed by single-cell RNA-seq analysis [40]. Moreover, 
we observed cell-type-specific disruptions in some bio-
logical processes, for instance, Ras protein signal trans-
duction in B cells, positive regulation of cell migration 
in NK cells, regulation of biomineralization in CD4+ 
T cells, antigen processing, and presentation in mono-
cytes. Interestingly, we found that there was a significant 
enrichment of DEGs in neutrophils for ncRNA metabolic 
process, peptide and ATP metabolic process, ribosomal 
subunit biogenesis, and mitochondrion organization, 
which were also downregulated in the bulk level, indi-
cating that the neutrophils could be the primary factor 
in the peripheral transcriptomic alterations. The mito-
chondrion dysfunction and energy hypometabolism have 
been reported as one of the most consistent and earliest 
abnormalities in AD and MCI and could be a link to Aβ 
production [79], highlighting the putative roles of neu-
trophils in the pathobiology of AD.

Enrichment of AD risk genes in neutrophil modules
The protein-protein interaction (PPI) networks can help 
elucidate the biochemical complexes or signal transduc-
tion components that govern the biological outputs. 
Given the putative functions of neutrophils in AD patho-
genesis, we re-constructed PPI networks for the DEGs 
in neutrophils using Metascape [66, 67]. We identified 
densely connected modular clusters (with a minimum 
size of three proteins) which represent specific molecu-
lar complexes and functional units [80, 81] (Fig. 3A and 
Additional file 2: Table S2). For example, the most signifi-
cant modular cluster #1 is enriched in ribonucleoprotein 
complex biogenesis, including ribosome protein families, 
such as RPL35, RPL7A, and RPL6. The modular clusters 
#2 and #3 are enriched in cytokine-mediated signaling, 
including interleukins (ILs) and tumor necrosis factors 
(TNFs). We also observed other biologically meaning-
ful functional units enriched in clusters #3, #4, and #5, 
including ATP metabolic process, mitochondrial trans-
port, and mitochondrial outer membrane-associated 
with mitochondrial organization.

To confirm that the modular clusters are associated 
with AD pathogenesis, we then estimated the enrich-
ment of the genes in the modular clusters in the AD 
genetic risk gene set or the AD-associated gene sets from 

diverse sources (Fig. 3B). We found that modular clusters 
#2 and #3 were significantly enriched in more than one 
AD-related gene sets. The modular cluster #2 exhibited 
mainly enrichment in the regulation of leukocyte cell-
cell adhesion and activation. Interestingly, we found that 
two hub genes in modular cluster #2, IL1B (encoding 
pro-inflammation members of the interleukin 1 cytokine 
family) and FAS (encoding TNF-receptor superfamily), 
were upregulated in neutrophils from AD participants 
(Fig.  3B, Additional file  1: Fig. S8A-B). We also noticed 
that modular cluster #3, a mitochondrion organization 
and cytokine-mediated signaling pathway-related mod-
ule, was significantly enriched for AD genetic risk genes 
from GWAS and meta-analysis of large LOAD consor-
tium data sets [82]. For example, the expression level of 
CD33 (encoding a member of the sialic acid-binding Ig-
like lectin family of receptors and expressed on myeloid 
cells and microglia [83, 84]) shows positive correlation 
with the hippocampus and entorhinal cortex volumes 
(Additional file 1: Fig. S9). In previous studies, it has been 
reported that CD33 might play an important role in Aβ 
clearance and neuroinflammatory pathways mediated 
by microglia in the brain, and its structural variants and 
SNP were associated with a higher risk of AD [15, 85]. In 
addition, we would like to notice that CD33 was one of 
the hub genes with high clustering coefficients in modu-
lar cluster #3 (Additional file  1: Fig. S8D). These results 
highlight the putative functions of modular cluster #3 in 
neutrophils in AD pathogenesis.

We then performed biological process enrichment 
analysis for the DEGs in neutrophils. We found inhi-
bition of mitochondrion organization and activation 
of cytokine-mediated signaling pathway and inflam-
matory response in AD vs. NC (Additional file  1: Fig. 
S10). To validate the disruptions of signaling pathways 
in neutrophils, we further performed pathway enrich-
ment analysis using the DEGs identified from different 
datasets (Fig.  3C-D). Although the DEGs from different 
datasets exhibited limited overlap (Fig.  3C), we would 
like to highlight the convergence in the enriched pathway 
categories across at least three cohorts, including meta-
bolic process, immune system process, and response to 
stimulus (Fig.  3D, Additional file  2: Table  S3). In addi-
tion, we observed similar pathway enrichment patterns 
in MCI across different cohorts (Fig. 3E, Additional file 2: 
Table S4).

Elevation of neutrophils in AD brains
Compelling evidence has demonstrated that the dys-
function and deterioration of blood-brain barrier (BBB) 
may play key roles in AD pathogenesis through a feed-
back loop with the accumulation of Aβ and acceler-
ate cognitive impairment and the onset of dementia 
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[86–88]. Blood-derived leukocyte subpopulations, such 
as lymphocytes and monocytes, have been also identi-
fied in the brains of AD patients and animal models [6, 
30, 89].

To check whether the neutrophils infiltrate into AD 
brains, we estimated the proportion and abundance of 
neutrophils in AD brains using transcriptomic data-
set from 97 AD individuals and 105 controls (i.e., Mayo 
RNA-seq [51]). Consistent with the extravasation migra-
tion of neutrophils into brain [31, 36], we observed that 
the absolute abundance of neutrophils was significantly 
increased in AD brains in both cerebellum (CBE) (P = 
4.1e−8, Wilcoxon test) and temporal cortex (TCX) (P 

=1.1e−7, Wilcoxon test) (Fig. 4A). We also found that the 
abundance of neutrophils exhibited significantly positive 
correlation with Braak tau neurofibrillary tangle staging 
score (Fig. 4B and Additional file 1: Fig. S11A) and Thal 
amyloid phase (Fig. 4C and Additional file 1: Fig. S11B) 
in the two brain regions. However, we did not observe 
significant difference of the proportions of neutrophils 
between ADs and NCs (Additional file 1: Fig. S12), which 
could be due to the massive elevation of brain immune 
cells (e.g., microglia and astrocytes). Furthermore, we 
quantified the abundance of neutrophils in a spatial tran-
scriptomics dataset from AD mouse model (i.e., Alzmap 
in 3, 6, 12, and 18 months old) [53]. As expected, we 

Fig. 3  Protein-protein interaction network identified in neutrophils. A Protein-protein interaction network and top MCODE module clusters 
for DEGs in neutrophils of AD. The bottom shows the top enriched biological processes for each module. Circle and square indicate the up and 
downregulated genes of neutrophils in AD compared with NC. Node size represents the degree. Genes associated with AD are highlighted with a 
black border. B The enrichment of each module cluster in AD-associated gene lists, where the black border represents significant enrichment. Color 
and size of node indicate the significance and odds ratio of enrichment, respectively. C The Venn diagram shows the overlap of DEGs in neutrophils 
of AD versus NC across four blood transcriptomic datasets. D, E Heatmap of top enriched biological process terms’ parents of DEGs in AD (D) and 
MCI (E) across four datasets, colored by P-values
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found that the abundance of neutrophils show significant 
increase in both hippocampus (HP) and cortex (CX) at 
the late stages (i.e., 12 and 18 months) instead of at the 
early stages (3 and 6 months) (Figs. 4D–E).

Discussion
In this study, we firstly performed deconvolution analy-
sis for a large-scale bulk peripheral blood transcrip-
tome cohort with AD, MCI, and NC participants. We 
then compared the cellular proportions of immune cells 
among these groups and further validated the results 
using independent three blood transcriptomic datasets 
with alternative computational tools. We next estimated 
the cell-intrinsical DEGs for the deconvoluted immune 
cell types. We identified cell-type-specific and shared 
signaling pathways across these immune cell types. We 
also re-constructed protein-protein interaction networks 
for the DEGs in neutrophils and identified several modu-
lar clusters that are associated with AD pathogenesis. 

Finally, we found that the infiltration of immune cells 
could be elevated in the AD brains.

Broadly, we found that the proportions of neutrophils 
and B lymphocytes significantly increased and decreased 
in AD compared to NC, respectively, consistent with an 
elevation of the NLR in AD. We observed that propor-
tion of neutrophils and the NLR exhibited negative cor-
relations with AD magnetic resonance imaging (MRI) 
biomarkers, and cognitive measurements, and showed 
negative correlations with AD status even after adjust-
ing for the confounding factors of age and gender. Neu-
trophils, the most abundant leukocyte type in the human 
peripheral blood, have been proposed as the key ele-
ments of innate immunity in defense against infectious 
pathogens [90]. The NLR in peripheral blood reflects 
the balance between systemic inflammation and adap-
tive immunity. Therefore, the elevations of neutrophils 
and NLR in AD indicate the putative roles of the sys-
temic inflammatory response in AD pathogenesis. Inter-
estingly, we noticed a higher NLR in MCI than in NC, 

Fig. 4  The abundance of neutrophils in AD brain. A Comparison of the absolute abundance of neutrophils in the cerebellum (CBE) and temporal 
cortex (TCX) between AD individuals and controls. B Correlation between the neutrophil abundance score and Braak tau neurofibrillary tangle 
staging score in the temporal cortex. The association was assessed using the Pearson correlation test. C Correlation between the neutrophils 
abundance score and Thal amyloid phasing score. D, E Comparison of the absolute abundance of neutrophils between AD and NC model mice in 
the hippocampus (D) and brain cortex (E) of different ages
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suggesting that this easily available biomedical measure-
ment could serve as a powerful indicator for the early 
diagnosis of AD. Moreover, the previous studies from AD 
mouse models suggested that neutrophils in the periph-
eral blood could adhere to the brain capillaries and block 
cortical blood flow, extravasate into the brain paren-
chyma through the integrin LFA-1, and finally promote 
damage of the BBB [35, 36, 91]. Accordingly, we noticed 
an increased abundance of neutrophils in multiple brain 
regions at both early and late periods of AD, and a posi-
tive correlation between neutrophils abundance and AD 
pathological changes (e.g., tau neurofibrillary tangle and 
amyloid score).

Given the contribution of mitochondrial dysfunction 
and decreased metabolism to cognition decline and Aβ 
deposition [92], the specific downregulation of metabolic 
process and mitochondrion organization in neutrophils 
highlights the role of neutrophils in AD progression. 
Moreover, we noticed that the network modules of 
mitochondrion organization, cytokine-mediated signal-
ing pathway, and leukocyte cell-cell adhesion in neutro-
phils were significantly enriched in AD risk or associated 
genes. Specifically, the expression of some proinflamma-
tory cytokines and receptors (e.g., such as IL1B, IL1R1, 
IL21R, and TNFAIP6) were significantly upregulated in 
neutrophils in AD patients compared to controls. These 
cytokines could target microglia and brain endothelium 
cells, resulting in an increased microglial activation and 
altered permeability and transport of BBB [29], respec-
tively. In addition, CD33, a biomarker of immature neu-
trophils [93], was downregulated in AD neutrophils, 
consistent with the elevated neutrophil degranulation in 
AD. Besides, the expression of oxidative phosphorylation 
subunit genes (e.g., NDUFC2, NDUFA7, and NDUFV1) 
was reduced in neutrophils, mirroring mitochondrial 
dysfunction in AD brain [94]. These results indicate the 
potential role of molecular changes of neutrophils in AD 
pathogenesis.

There is a consistency between the enrichment for neu-
trophils degranulation of bulk upregulated genes and the 
increased proportion of neutrophils. In addition, there 
is a significant overlap between the bulk DEGs and the 
intrinsic DEGs for most immune cell types, especially for 
neutrophils. This suggests that the bulk transcriptome 
alteration is driven by both cellular proportion and abun-
dance and cellular expression changes. Despite a signifi-
cant overlap, the majority of DEGs of each cell type were 
not detected at the bulk level, highlighting the impor-
tance to identify cellular intrinsic DEGs for the devel-
opment of diagnostic biomarkers. Besides, we noticed 
that the DEGs showed limited overlap among different 
cohorts (Fig.  3C) and also limited overlap with those 
identified from single-cell RNA sequencing datasets 

(Additional file 1: Fig. S13) [38, 40, 78], which may due to 
the differences of sample preparation, sequencing meth-
ods, and analytic protocols, as well as the heterogeneity 
of the participants. However, there was a convergence in 
dysregulated signaling pathways, such as the dysregula-
tions of regulation of defense response, cellular response 
to cytokine stimulus, and regulation of inflammatory 
response in the majority of cell types, suggesting that 
pathway and network-based markers may be more robust 
[95].

Despite the biological insights gained from deconvo-
luted cellular proportion and cellular molecular altera-
tions, there are also some limitations. Firstly, we adjust 
common covariates of age and gender when performing 
differential expression analysis and logistic regression 
analysis. However, immune cell count and expressional 
profiling of peripheral blood are susceptible to the effects 
of hiding confounding factors, such as comorbidity, clini-
cal, and lifestyle factors. Second, AD is a heterogeneous 
disorder with diverse pathophysiologic mechanisms. 
Accordingly, molecular subtypes corresponding to dif-
ferent combinations of multiple dysregulated pathways, 
such as susceptibility to tau-mediated neurodegenera-
tion, aβ neuroinflammation, synaptic signaling, immune 
activity, and mitochondria organization, have been 
revealed by brain transcriptome data [96]. Therefore, the 
alterations identified in this study might reflect the aver-
age signaling of heterogeneous samples. Finally, currently 
there is no available single-cell RNA-seq data for the neu-
trophils in AD. Although the changes in cell proportions 
and enriched signaling pathways are reproducible across 
multiple independent datasets, there is a lack of compari-
sons of single-cell analyses on the same batch of data to 
illustrate the performance of the deconvolution methods.

Conclusions
In summary, we explored the alterations of the pro-
portions of diverse immune cell types and the changes 
of intrinsic expression of individual cell types in the 
peripheral blood from AD participants. We observed 
a consistent increase of the cellular proportion of neu-
trophils and NLR across independent cohorts in both 
AD and MCI participants compared to the controls. 
We identified cell-type-specific and shared signaling 
pathways based on the DEGs in the immune cell types. 
We then re-constructed PPI networks for the DEGs in 
each immune cell type and identified several modular 
clusters from neutrophils that are associated with AD 
pathogenesis, for which the molecular functions are 
enriched in leukocyte cell-cell activation, mitochon-
drion organization, and cytokine-mediated signaling 
pathway. Both changes of the abundance of neutrophils 
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and the expression levels of the hub genes from the 
relevant modular clusters in neutrophils showed sig-
nificant association with the pathological alterations in 
AD. This work highlights the clinical value of the cel-
lular abundance and expression profiling of neutrophils 
and, in the future, integration analysis of these data in 
the peripheral blood will enable a monitoring of AD/
MCI pathogenesis and may provide novel insights into 
the development of therapeutic targets for AD.
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