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Abstract 

Background:  Long-term morbidity after pediatric intensive care unit (PICU) admission is a growing concern. Both 
critical illness and accompanying PICU treatments may impact neurocognitive development as assessed by its gold 
standard measure; intelligence. This meta-analysis and meta-regression quantifies intelligence outcome after PICU 
admission and explores risk factors for poor intelligence outcome.

Methods:  PubMed, Embase, CINAHL and PsycINFO were searched for relevant studies, published from database 
inception until September 7, 2021. Using random-effects meta-analysis, we calculated the standardized mean dif-
ference in full-scale intelligence quotient (FSIQ) between PICU survivors and controls across all included studies and 
additionally distinguishing between PICU subgroups based on indications for admission. Relation between demo-
graphic and clinical risk factors and study’s FSIQ effect sizes was investigated using random-effects meta-regression 
analysis.

Results:  A total of 123 articles was included, published between 1973 and 2021, including 8,119 PICU survivors and 
1,757 controls. We found 0.47 SD (7.1 IQ-points) lower FSIQ scores in PICU survivors compared to controls (95%CI -0.55 
to -0.40, p < .001). All studied PICU subgroups had lower FSIQ compared to controls (range 0.38–0.88 SD). Later year 
of PICU admission (range 1972–2016) and longer PICU stay were related to greater FSIQ impairment (R2 = 21%, 95%CI 
-0.021 to -0.007, p < .001 and R2 = 2%, 95%CI -0.027 to -0.002, p = .03, respectively), whereas male sex and higher rate 
of survivors were related to smaller FSIQ impairment (R2 = 5%, 95%CI 0.001 to 0.014, p = .03 and R2 = 11%, 95%CI 0.006 
to 0.022, p < .001, respectively). Meta-regression in PICU subgroups showed that later year of PICU admission was 
related to greater FSIQ impairment in children admitted after cardiac surgery and heart- or heart–lung transplanta-
tion. Male sex was related to smaller FSIQ impairment in children admitted after cardiac surgery. Older age at PICU 
admission and older age at follow-up were related to smaller FSIQ impairment in children admitted after heart- or 
heart–lung transplantation.

Conclusions:  PICU survivors, distinguished in a wide range of subgroups, are at risk of intelligence impair-
ment. Length of PICU stay, female sex and lower rate of survivors were related to greater intelligence impairment. 
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Background
Due to major advances in pediatric critical care, the 
survival rate of children admitted to the pediatric 
intensive care unit (PICU) has increased dramatically 
in the past decades [1, 2]. Nevertheless, long-term mor-
bidity after PICU admission is a growing concern [2–
8]. Both the critical illness and the accompanying PICU 
treatments may impact neurocognitive development 
as assessed by its gold standard measure intelligence. 
Intelligence is associated with important life outcomes, 
such as physical and mental health [9, 10], academic 
achievement [11], socioeconomic success [12], and life 
chances in general [10]. These findings highlight intel-
ligence as an important outcome after PICU admission.

Several pathophysiological mechanisms are pro-
posed that may impair long-term intelligence outcome 
of critically ill patients, including hypoxia, metabolic 
derangements such as glucose dysregulation, ischemia, 
inflammation, hypotension and delirium [13–15]. These 
mechanisms may be influenced by the underlying disease 
[16], critical illness [17] and associated treatments at the 
PICU [18]. A previous systematic review [19], includ-
ing 12 studies of which the majority reported on children 
admitted for sepsis, identified an increased risk of intel-
ligence impairment among PICU survivors. However, 
meta-analytic quantification of the magnitude of intelli-
gence impairment was not performed, and the available 
data did not allow to systematically explore predictive fac-
tors of intelligence outcome. Given the distinct heteroge-
neity in the PICU population (e.g. admission indication, 
associated treatments and age), it is of great importance 
to determine intelligence outcome of PICU survivors and 
identify risk factors for poor intelligence outcome.

The current meta-analysis and meta-regression aims 
to [1] quantify intelligence outcome of PICU survivors; 
and [2] explore risk factors for poor intelligence out-
come. The results of this study will provide valuable 
information for prognosis and early identification of 
children at risk for neurocognitive impairment, facili-
tating determination of the need for follow-up and/or 
early intervention after PICU discharge.

Methods
Study selection
Inclusion criteria for studies were: [1] the study sample 
consisted of PICU survivors who had been admitted to 

a general PICU or specialized PICU; [2] full-scale intelli-
gence quotient (FSIQ) was assessed after PICU hospitali-
zation using (short-forms of ) standardized and validated 
tests; and [3] published in a peer-reviewed journal. Exclu-
sion criteria were: [1] the study reported insufficient data 
to allow calculation of the individual study’s effect size; 
[2] the study sample comprised > 5% patients suffer-
ing from hereditary syndromes with known intelligence 
impairment (e.g. Down syndrome); [3] part of the sample 
comprised children hospitalized at other facilities than 
the PICU; [4] sample size < 10 children; [5] the study was 
written in Chinese; [6] the study could not be retrieved 
via our research institutes or via the authors. In case mul-
tiple articles reported on (partly) overlapping cohorts, 
only one article was selected that reported on (in order 
of importance): [1] the longest follow-up period; [2] the 
largest sample size; [3] the most extensive set of risk fac-
tors for intelligence impairment.

PubMed, Embase, CINAHL and PsycINFO were 
searched, without language or date restriction (last 
search September 7, 2021), using combinations of search 
terms relating to the [1] PICU, [2] children and [3] intel-
ligence. The complete search strategy is provided in 
Additional file  1. Studies identified by our search were 
reviewed by two independent authors and disagree-
ments were solved through discussion or by consulting a 
third author. Reference lists of the included studies were 
screened. This meta-analysis was conducted according to 
PRISMA guidelines.[20] The review protocol was regis-
tered in the International Prospective Register of System-
atic Reviews, PROSPERO (#CRD42020197282) [21].

Outcomes and covariates
We extracted descriptives on FSIQ of the PICU sample 
(and healthy control sample, if available) and extracted 
a broad range of demographic and clinical variables as 
potential risk factors for poor intelligence outcome. The 
extracted variables were variables reported at least once 
in the ten most recently published included articles (see 
Additional file 1: Table S1). In addition, in articles focus-
ing on cardiac surgery and heart- or heart–lung trans-
plantation, we also extracted the percentage of patients 
receiving cardiopulmonary bypass (CPB) and/or deep-
hypothermic circulatory arrest (DHCA) during sur-
gery, CPB duration during surgery, and the percentage 

Intelligence outcome has worsened over the years, potentially reflecting the increasing percentage of children surviv-
ing PICU admission.
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of patients with cyanotic heart disease. To be extracted 
from an article, the reported risk factor was required to 
be calculated on at least 75% of the PICU sample. In case 
only median FSIQ was reported, we calculated the mean 
[22] and standard deviation (SD) [23]. In case SD of FSIQ 
was not provided, we used the normative SD (i.e. 15). 
Two reviewers independently extracted data. Any disa-
greements were solved through discussion or by consult-
ing a third author.

Study quality
Study quality was assessed using the Newcastle–Ottawa 
Scale for cohort studies [24]. According to the man-
ual, the scale was adapted to fit the goal of this study 
(see Additional file  1 for more information [24–26]). 
All included studies were independently rated by two 
authors and disagreements were solved through discus-
sion or by consulting a third author.

Statistical analysis
Statistical analyses were performed using Comprehensive 
Meta-Analysis Software version 3.0.[27] For each individ-
ual study, FSIQ differences between PICU survivors and 
either healthy children or normative data were expressed 
in terms of standardized mean difference scores (Cohen’s 
d) and used as effect size. In case no healthy control 
group was included in a study, we used normative data 
for FSIQ (i.e. mean 100 and SD 15) assuming the same 
sample size as the PICU sample. Cohen’s d values of 0.2, 
0.5 and 0.8, were used to define thresholds for small, 
medium and large effect sizes, respectively [28].

We calculated a meta-analytic effect size for FSIQ 
based on all included PICU samples. If a study reported 
on multiple patient samples separately, one combined 
effect size was calculated across patient samples before 
meta-analytic aggregation across studies [29]. In addi-
tion, we calculated meta-analytic effect size for a num-
ber of PICU subgroup based on the reported indications 
for PICU admission in the included studies. The avail-
able studies allowed to distinguish subgroups of children 
admitted for: [1] respiratory and/or circulatory insuffi-
ciency necessitating ECMO, [2] circulatory insufficiency 
necessitating CPR [3] traumatic brain injury [4] sepsis 
and/or meningoencephalitis [5] cardiac surgery [6] heart- 
or heart–lung transplantation and [7] miscellaneous 
PICU admission indications. The effect size of each study 
was weighted by the inverse of its variance to account 
for sample size and measurement error. Random-effects 
meta-analysis was performed, recognizing sources of 
inter-sample variance. Dispersion in effect sizes was 
quantified using I2, discriminating between mild (I2 < 30), 
moderate (I2 = 30–50) and strong heterogeneity (I2 > 30) 
[30]. Indications for publication bias were evaluated 

using funnel plots and the Egger’s test of asymmetry [31], 
while the robustness of the meta-analytic effect sizes was 
calculated by the fail-safe N value, where values > 5 k + 10 
were considered robust [32].

In order to determine risk factors for poor intelligence 
outcome, aggregated effect sizes of PICU subgroups 
were compared by Cochran’s Q to study whether sub-
groups differ in the risk for poor intelligence outcome. 
Subsequently, random-effects meta-regression analyses 
were performed to quantify the association of each of 
the demographic and clinical risk factors and the study’s 
effect sizes for FSIQ. These analyses were performed in 
the total sample of selected studies and in each PICU 
subgroup. Meta-regression analyses with < 10 observa-
tions were omitted [33].

Results
Figure  1 shows the study selection process. Full-text 
examination revealed 123 eligible studies, published 
between 1973 and 2021 and comprising 8,119 PICU sur-
vivors. Thirty-three studies contained a healthy control 
group, representing 1,757 healthy control children. Mean 
year of PICU admission was 2000 (range 1972–2016, 
k = 99), mean percentage of boys was 59.1% (range 27.0–
80.8%, k = 103), mean gestational age was 39.2  weeks 
(range 35.7–40.6  weeks, k = 46), mean age at PICU 
admission was 22.4  months (range 0.0–159.6, k = 103), 
mean time to follow-up was 68.8 months (range 0–231.6, 
k = 107) and mean age at follow-up was 92.8  months 
(range 30.1–307.2  months, k = 112). Additional file  1: 
Table  S1 and S2 provide details of all included stud-
ies. Inter-rater agreement was 77.4% for study eligibility 
and 93.3% for quality assessment. The results of quality 
assessment at the group level are displayed in Fig. 2.

FSIQ
The results of meta-analysis aggregating the results of all 
123 studies comparing PICU samples to either healthy 
controls or normative data (further referred to as con-
trols) are displayed in Fig.  3. The results reveal a small-
sized aggregated effect size of d -0.47 (95% CI -0.55 to 
-0.40, p < 0.001), translating into a FSIQ impairment 
of on average 7.1 points in PICU survivors. There was 
strong heterogeneity in the individual study’s effect sizes 
(I2 = 71.20; p < 0.001).

Risk factors
To study possible sources of the heterogeneity in the indi-
vidual study’s effect sizes, we analysed subgroups of chil-
dren based on the reported reasons for PICU admission. 
All subgroups had significantly lower FSIQ scores than 
controls (Table  1 and Additional files 2,  3,  4,  5,  6,  7,  8: 
Figures  S1-7). The role of PICU subgroup as risk factor 
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was determined by comparison of the aggregated effect 
sizes for FSIQ between subgroups. The results indicate 
that children admitted after heart- or heart–lung trans-
plantation had significantly greater FSIQ impairment 
(d = -0.80) compared to children admitted after cardiac 
surgery (d = -0.38, Q = 9.48, p = 0.002) and compared to 
children admitted for sepsis and/or meningoencepha-
litis (d = -0.39, Q = 5.85, p = 0.02). Other comparisons 
between subgroups revealed no significant differences.

The relation between demographic and clinical risk 
factors and the study’s individual effect sizes for FSIQ 
was investigated using meta-regression in the total sam-
ple (Table 2). Later year of PICU admission was signifi-
cantly related to greater FSIQ impairment (R2 = 21%, 
see also Fig.  4), indicating that intelligence outcome of 
PICU survivors dropped with an average of 2.1 IQ-points 
every decade between 1972–2016. Furthermore, sex 
was significantly related to FSIQ (R2 = 5%). This finding 
indicates that one percentage increase in the percentage 
of boys in a study was related to an increase of on aver-
age 0.1 IQ-points (range studied 27.0–80.8%). In addi-
tion, longer PICU staywas significantly related to greater 

FSIQ impairment (R2 = 2%), indicating that intelligence 
outcome of PICU survivors dropped with an average of 
1.5 IQ-points every additional week of PICU stay (range 
studied 0.3–35.4  days). Lower rate of survivors (range 
studied 38.2–100%) was significantly related to greater 
FSIQ impairment (R2 = 11%), which suggests that survi-
vors in samples with higher mortality have poorer intel-
ligence outcome. Last, higher study quality, as rated 
on the Newcastle–Ottawa Scale (range 3–7), was sig-
nificantly related to greater FSIQ impairment (R2 = 7%). 
No other significant relationships were observed. Of 
note, no multivariate meta-regression analysis was con-
ducted, because of the low number of studies (k = 29) 
that reported all risk factors that were found signifi-
cantly related to FSIQ in the univariate meta-regression 
analysis, which would lead to biased and underpowered 
analysis.

Meta-regression in PICU subgroups was possible 
(i.e. > 10 observations) in the subgroups of children with 
respiratory and/or circulatory insufficiency necessitating 
ECMO, cardiac surgery and heart- or heart–lung trans-
plantation (Additional file 1: Table S3). Among children 

Fig. 1  PRISMA flowchart of the study selection procedure. Note: FSIQ = full-scale intelligence quotient, PICU = pediatric intensive care unit
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admitted after cardiac surgery, later year of PICU admis-
sion (range 1972–2013), lower percentage of boys (range 
30.3–79.4%) and higher study quality (range 3–7), were 
related to greater FSIQ impairment (R2 = 12%, 6% and 
9%, respectively). Among children admitted after heart- 
or heart–lung transplantation, later year of PICU admis-
sion (range 1989–2016), younger age at PICU admission 
(range 1.6–118.4 months) and younger age at follow-up 
(range 40.7–166.8 months) were related to greater FSIQ 
impairment (R2 = 65%, 74% and 68%, respectively). None 
of the other risk factors were related to FSIQ impairment 
in any of the subgroups.

Publication bias
Inspection of the funnel plot in the total sample did not 
suggest publication bias (Additional file  9: Figure S8), 
Egger’s test of asymmetry was not significant (p = 0.50) 

and the fail-safe N (N = 7,559) indicated that the obtained 
effect size was robust. Similar results were obtained in 
the PICU subgroups, with the exception that the fail-safe 
N values did not support the robustness of the effect sizes 
obtained in the subgroups of children admitted for cir-
culatory insufficiency necessitating CPR, traumatic brain 
injury and children with sepsis and/or meningoencepha-
litis (Table 1).

Use of normative data in uncontrolled studies
We explored the validity of using normative data for 
the calculation of effect sizes in studies not including a 
healthy control group. Hence, we calculated effect sizes 
for studies including a healthy control group (k = 31) 
with two approaches: [1] using data of the healthy control 
group and [2] using normative data (i.e. mean 100 and 

Fig. 2  Overview of Quality assessment results. Note: Labels display percentages. Higher scores indicate higher study quality. See Supplemental 
Information for more information on the Newcastle Ottawa scale



Page 6 of 11de Sonnaville et al. BMC Medicine          (2022) 20:198 

SD 15). Comparisons between the effect sizes retrieved 
with these two methods revealed a significant difference 
(Q = 39.5, p < 0.001), with the approach using healthy 
control group data resulting in a larger aggregated effect 
size (healthy control group: d = -0.62, 95% CI -0.74 to 
-0.51, p < 0.001 vs. normative data: d = -0.00, 95% CI 
-0.16 to 0.16, p = 0.99). This finding was replicated when 
selecting only those studies with a healthy control group 
that also tested and confirmed comparability of the PICU 
and healthy control groups in terms of sex, age and socio-
economic status (most often defined by parental level of 
education; k = 14; Q = 35.5, p < 0.001).. These findings 
indicate that the use of normative data yields conserva-
tive estimates of FSIQ impairment in PICU survivors.

Discussion
This meta-analysis and meta-regression aimed to [1] 
quantify intelligence outcome after PICU admission; and 
[2] explore risk factors for poor intelligence outcome. 
Based on 123 studies including 8,119 PICU survivors 
and 1,757 healthy control children, our results demon-
strate 0.47 SD lower intelligence scores in PICU survi-
vors compared to controls (healthy control children or 
normative data), corresponding to an average difference 
of 7.1 IQ-points. Accordingly, the prevalence of children 
with intellectual disability (FSIQ < 2 SD [34]) is expected 
to be threefold higher in PICU survivors (6.4%) than in 
the general population (2.3%). Intelligence reflects the 
ability to efficiently process information for goal-directed 
behavior and is known to be related to physical and men-
tal health [9, 10, 35], academic achievement [11], socio-
economic success [12] and survival to old age [35]. Even a 
small difference in intelligence can affect profound effects 
on life chances [10]. These findings highlight the rele-
vance of intelligence outcome and stress the relevance of 
structured neurocognitive follow-up of PICU survivors.

The results of our study show intelligence impairment 
across all PICU subgroups investigated, with effect sizes 
ranging between -0.38 and -0.88 SD. Children admitted 
after heart- or heart–lung transplantation had signifi-
cantly greater intelligence impairment (-0.80 SD) com-
pared to children admitted after cardiac surgery (-0.38 
SD), and compared to children admitted for sepsis and/
or meningoencephalitis (-0.39 SD). This finding may 
reflect the greater disease severity, greater intensity of 
PICU treatments, and/or greater intensity of surgical 
treatment(s) of children admitted after heart- or heart–
lung transplantation. The results on the PICU subgroups 

Fig. 3  Forest plot showing standardized mean differences and 
accompanying 95% CI of studies comparing FSIQ of PICU survivors to 
healthy controls or normative data
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in the current study are in line with earlier literature 
overviews [36–42] and extend these findings by the 
unique focus on children admitted to the PICU and by 
providing comprehensive meta-analytic quantification of 
intelligence impairment.

Meta-regression allowed to study a broad range of 
demographic and clinical risk factors for intelligence 
outcome. The results showed that later year of PICU 
admission (range studied 1972 – 2016) was related to 
greater intelligence impairment (R2 = 21%). These find-
ings may reflect the increasing medical attainments that 
have not only led to increased survival rates of children 
admitted to the PICU, but also to increasing morbid-
ity rates in those surviving [1, 2, 43]. This hypothesis 
does not find direct support by the contrasting obser-
vation that lower rate of survivors (range studied: 38.2–
100%) was related to greater intelligence impairment 
(R2 = 11%). However, differences between survival rate 
in this analysis may not only reflect potential trends 

over time, but also differences in the severity of criti-
cal illness between conditions that may influence intel-
ligence outcome. In line with this idea, results showed 
that longer PICU stay (range studied 0.3–35.4  days) 
was related to greater intelligence impairment 
(R2 = 2%). This finding may reflect the greater disease 
severity and/or the greater intensity of PICU treat-
ments of children with longer PICU stay, which may 
have affected their long-term neurocognitive outcome. 
Our findings are corroborated by a recent systematic 
review which also showed that length of PICU stay was 
related to poorer neurocognitive functioning at dis-
charge [44]. Of note, our current findings indicate that 
boys had on average better intelligence outcome than 
girls (R2 = 5%), i.e. every 10 percentage points increase 
in the amount of boys was related to an increase of on 
average 1 IQ-point (range studied 27.0–80.8%). No evi-
dence was found for a confounding effect, i.e. girls were 
not overrepresented in any of the PICU subgroups. The 

Table 1  Meta-analytic findings and results of the publication bias analyses for PICU subgroups

k = number of samples; CPR = cardio-pulmonary resuscitation; ECMO = extra-corporeal membrane oxygenation; PICU = pediatric intensive care unit. Difference in 
IQ-points compared to healthy controls or normative data. *p < .05. **p < .01. ***p < .001

aThis subgroup contains one sample with non-neurological sepsis

Subgroup k Cohen’s d 95% CI Difference in 
IQ-points

Egger test of 
asymmetry (p-value)

Fail-safe N

Respiratory and/or circulatory insufficiency 
necessitating ECMO

10 -0.52 ** -0.81, -0.22 -7.76 .10 88

Circulatory insufficiency necessitating CPR 3 -0.88 ** -1.39, -0.37 -13.23 .13 19

Traumatic brain injury 3 -0.86 ** -1.48, -0.24 -12.84 .48 8

Sepsis and/or meningoencephalitisa 5 -0.39 *** -0.61, -0.18 -5.88 .43 15

Cardiac surgery 80 -0.38 *** -0.46, -0.30 -5.75 .59 5077

Heart- or heart–lung transplantation 14 -0.80 *** -1.06, -0.55 -12.06 .44 368

Miscellaneous PICU admission indications 14 -0.55 *** -0.75, -0.34 -8.19 .07 426

Table 2  Results of univariate meta-regression analyses of demographic and clinical risk factors for FSIQ impairment

k = number of samples; ECMO = extra-corporeal membrane oxygenation; PICU = pediatric intensive care unit; Study quality was assessed by the Newcastle Ottawa 
Scale for cohort studies, revised to a maximum of 7 points. Unstandardized Beta’s are reported. *p < .05. **p < .01. ***p < .001

Risk factors k Beta 95% CI R2 (%) Range studied

Year of PICU admission 104 -0.014 *** -0.021, -0.007 21 1972–2016

Sex (% boys) 107 0.007 * 0.001, 0.014 5 27.0–80.8

Gestational age (weeks) 49 -0.069 -0.188, 0.051 0 35.7–40.6

Age at PICU admission (months) 107 0.000 -0.002, 0.002 1 0.0–159.6

Mechanical ventilation (days) 21 -0.011 -0.030, 0.007 0 0.0–41.5

PICU stay (days) 36 -0.014 * -0.027, -0.002 2 0.3–35.4

Resuscitation (%) 22 -0.005 -0.011, 0.001 2 0.0–100

ECMO (%) 28 -0.002 -0.005, 0.002 0 0.0–100

Rate of survivors (%) 56 0.014 *** 0.006, 0.022 11 38.2–100

Age at follow-up (months) 117 0.000 -0.001, 0.001 0 30.1–307.2

Time to follow-up (months) 110 -0.000 -0.002, 0.001 0 0.1–231.6

Study quality 129 -0.109 * -0.198, -0.020 7 3–7
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mechanisms underlying sex differences with respect to 
prevalence and outcome of several neurological condi-
tions are currently not well understood [45]. Sex dif-
ferences exist in, amongst others, different states in 
neuroinflammation [45] and (hormonal) reaction to 
stress [46–48]. These sex differences may possibly lead 
to differences in neurocognitive development of PICU 
survivors. Understanding the mechanisms behind sex 
differences could help develop more targeted therapy. 
At last, meta-regression showed that higher study 
quality was related to greater intelligence impairment 
(R2 = 7%). This aligns with the findings of our additional 
analysis, which showed that the use of the normative 
mean instead of control group data provides conserva-
tive estimates of intelligence impairment.

Regarding subgroups, the meta-regression findings of 
the total sample were replicated in the subgroup of chil-
dren admitted after cardiac surgery, with the exception 
that length of PICU stay was not significantly related to 
intelligence in this subgroup. Interestingly, longer CPB 
duration was not related to greater intelligence impair-
ment. This finding contrasts with existing literature from 
adults showing that CPB duration is related to length of 
intensive care unit and hospital stay and in-hospital mor-
tality [49]. Taken together, the potential relation between 
CPB duration and complication risk may not translate 
into intelligence outcome in children. The results of this 
study further show that later year of PICU admission was 
also related to greater intelligence impairment in children 

with heart- or heart–lung transplantation. In addition, 
results indicate that younger age at PICU admission was 
related to greater intelligence impairment in this sub-
group. One possible explanation for this finding may be 
that the main reasons for heart transplantation differ 
with age (i.e. < 1  year congenital heart disease, > 1  year 
cardiomyopathy)[50] and congenital heart disease may 
impact brain development already before birth [51]. We 
also found that older age at follow-up was associated with 
smaller intelligence impairment in this subgroup, sug-
gesting that intelligence outcome after heart- or heart–
lung transplantation may improve over time.

Intelligence impairment in PICU survivors may be caused 
by complex interaction between factors related to premor-
bid functioning [52], underlying disease [53], critical illness 
[17] and intensive care treatment [54], which influence 
pathophysiological mechanisms involving (a combination 
of) hypoxia, metabolic derangements such as glucose dys-
regulation, ischemia, inflammation, hypotension, delirium 
and potential negative effects of sedation [13–15]. We can 
only speculate about the specific active (combination) of 
underlying mechanisms that fuel intelligence impairment 
in critically ill children admitted to the PICU, which is also 
likely to differ between subgroups. Nevertheless, our study 
indicates the need for appropriate prospective studies that 
provide insight into the potential contribution of patho-
physiological mechanisms to intelligence outcome. Such 
studies may expose potential targets for treatment innova-
tions that may benefit outcome of PICU survivors.

Fig. 4  Association between year of PICU admission and study’s individual effect sizes for FSIQ. Note: Plotting characters are proportional to the 
study weight
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One limitation of this study is that a limited number of 
possible risk factors was assessed in the included studies 
(e.g. none of the studies assessed medical history prior to 
or after PICU admission) and the number of missing data 
for demographic and clinical potential risk factors was 
considerable. This reduced the power to identify risk fac-
tors (particularly in subgroups). Nevertheless, the availa-
ble data did allow us to study a broad range of risk factors 
in the total sample of studies. Furthermore, the current 
study is limited by the availability of studies into intelli-
gence outcome after PICU admission, with the available 
studies likely not being fully representative of the typical 
PICU population in terms of reasons for admission. Our 
study shows that a substantial number of studies is pub-
lished mainly on the subgroup of children admitted after 
cardiac surgery, while other subgroups are less well stud-
ied or not at all. For example, we were not able to identify 
studies including children with respiratory insufficiency 
necessitating mechanical ventilation or renal insuffi-
ciency necessitating renal replacement therapy in our 
broad and extensive systematic search, while these are 
important indications for PICU admission [1, 2] and con-
cerns about neurocognitive development of these PICU 
subgroups exist [4]. This limits the generalizability of our 
results to the PICU population as a whole and under-
scores the need for more follow-up studies on these pop-
ulations. A strength of our study is that with our broad 
and extensive systematic search we included a consider-
able number of studies and we were able to aggregate all 
existing data on intelligence outcome of PICU survivors, 
to systematically report on subgroups and to compre-
hensively study risk factors for intelligence impairment. 
Second, we showed that the use of normative data might 
underestimate the estimates of intelligence impairment 
in PICU survivors. Critical appraisal of the role of control 
data used is important, as normative data are frequently 
used in research and this may considerably influence the 
results and conclusions of studies.

Conclusion
In this meta-analysis, robust evidence was found for a 
risk of intelligence impairment in PICU survivors, apply-
ing to a wide range of PICU subgroups. The results fur-
ther indicate worsening intelligence outcome in the PICU 
populations over the years (between 1972–2016), poten-
tially reflecting the increasing percentage of children sur-
viving PICU admission with morbidity. In addition, the 
results indicate that longer length of PICU stay, female 
sex and lower rate of survivors negatively influence intel-
ligence outcome after PICU admission. The findings of 
this meta-analysis warrant the need for structured neuro-
cognitive follow-up of PICU survivors.
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