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Abstract

Background: We aimed to map and describe the current state of Mendelian randomization (MR) literature on
cancer risk and to identify associations supported by robust evidence.

Methods: We searched PubMed and Scopus up to 06/10/2020 for MR studies investigating the association of any
genetically predicted risk factor with cancer risk. We categorized the reported associations based on a priori
designed levels of evidence supporting a causal association into four categories, namely robust, probable, suggestive,
and insufficient, based on the significance and concordance of the main MR analysis results and at least one of the
MR-Egger, weighed median, MRPRESSO, and multivariable MR analyses. Associations not presenting any of the
aforementioned sensitivity analyses were not graded.

Results: We included 190 publications reporting on 4667 MR analyses. Most analyses (3200; 68.6%) were not
accompanied by any of the assessed sensitivity analyses. Of the 1467 evaluable analyses, 87 (5.9%) were supported
by robust, 275 (18.7%) by probable, and 89 (6.1%) by suggestive evidence. The most prominent robust associations
were observed for anthropometric indices with risk of breast, kidney, and endometrial cancers; circulating telomere
length with risk of kidney, lung, osteosarcoma, skin, thyroid, and hematological cancers; sex steroid hormones and
risk of breast and endometrial cancer; and lipids with risk of breast, endometrial, and ovarian cancer.

Conclusions: Despite the large amount of research on genetically predicted risk factors for cancer risk, limited
associations are supported by robust evidence for causality. Most associations did not present a MR sensitivity
analysis and were thus non-evaluable. Future research should focus on more thorough assessment of sensitivity MR
analyses and on more transparent reporting.
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Background
With a global burden of 18.1 million new cases and 9.9
million deaths in 2020 [1], cancer is one of the leading
non-communicable diseases. Despite the extensive
research in the field, a causal relationship with cancer
has been established only for a limited number of risk
factors. Identification of causal relationships with spe-
cific risk factors and separation from spurious associa-
tions is key to cancer prevention. Despite being
considered the gold standard for identification of causal
relationships, randomized controlled trials (RCT) are
often impractical or even unfeasible to perform due to
time constraints and ethical issues. Conversely, the cap-
acity of epidemiological observational studies to identify
causal relationships is limited, due to confounding, re-
verse causation, and other biases [2].
Mendelian randomization (MR) is an analytic ap-

proach which utilizes genetic variation as a randomized
instrument of the exposure of interest to provide
insights into causality. As genetic variants are assumed
to be randomly distributed at conception, MR can be
considered akin to a “natural” RCT [3, 4]. By using gen-
etic variants (single-nucleotide polymorphisms [SNPs])
as instrumental variables (IV) to assess the association of
a genetically predicted exposure with the outcome of
interest, MR analyses can provide estimates less prone
to some common epidemiological biases. Nevertheless,
for a MR analysis to be valid, three assumptions for IVs
must be met: (a) the genetic variants should be associated
with the exposure; (b) the genetic variants must not be as-
sociated with measured or unmeasured confounders of
the exposure-outcome association; (c) conditional on the
exposure and the confounders, the genetic variants must
be independent of the outcome. Given the growing avail-
ability of large-scale genomic information from published
genome-wide association studies (GWAS), it is no wonder
that during the past decade MR analyses have seen a sub-
stantial increase, especially after the introduction of the
“two-sample” summary-data MR approach that can im-
prove feasibility and efficiency [5].
Researchers are faced with the challenge of evaluating

the MR evidence, filtering this information and deriving
valid inferences. The continuously increasing amount of
new scientific information coupled with the fact that two
of the three MR assumptions (b and c) cannot be con-
firmed empirically further complicates this cumbersome
task. Furthermore, the field of evaluating MR associa-
tions is rapidly evolving [6, 7]. The investigation and as-
sessment of the potential violations of the MR
assumptions, especially in the case of multiple instru-
ments, is a key step towards a valid inference and a ro-
bust interpretation of potential causal associations.
Several sensitivity analyses have been proposed that ad-
dress the validity of these assumptions, and the results

from MR studies that do not use them should be viewed
as incomplete [8].
In this paper, we systematically reviewed the literature

investigating associations between genetically predicted
risk factors and any type of cancer using MR ap-
proaches. Firstly, we aimed to map and describe the
current state of MR literature on cancer risk, identify
areas where research has focused, and identify possible
gaps and emerging areas of interest. Furthermore, we
aimed to evaluate these associations using a breadth of
well-established MR methods and the most commonly
applied sensitivity analyses to identify those presenting
robust evidence for causality. We note that the word
“robust” refers to evidence of causality for the studied
associations, not the quality of the analysis.

Methods
This systematic review was conducted in accordance to
the published protocol that was registered in the open
Science Network registries (https://osf.io/2ruct) and is
reported following the Preferred Reporting Items for
Systematic Review and Meta-Analysis (PRISMA) check-
list [9].

Search Strategy
A detailed description of the search strategy and inclu-
sion and exclusion criteria along with the data extraction
process is provided in the Additional file 1: Supplemen-
tary methods [10–26]. Briefly, we searched the Medline
(via PubMed) and Scopus databases from inception to
06/10/2020 using a combination of the terms “Mendel-
ian randomization,” “genetic instrument,” and “cancer”
and their synonyms for MR studies investigating the as-
sociation of genetically predicted risk factors with risk of
cancer development or mortality. We also screened the
references of relevant reviews and the references of the
included studies. We extracted information on the ex-
posure and outcome of interest, the genetic instrument,
the MR design (one-sample or two-sample, based on
whether the gene-exposure and gene-outcome associa-
tions were estimated on the same or different popula-
tions), and main MR analysis results (as defined by the
authors). We further extracted information on a number
of sensitivity MR methods, namely MR-Egger, weighted
median (WM), MRPRESSO, and also multivariable MR
(MVMR).

Evaluation of Robustness in the identified associations
The robustness of the evidence was categorized into four
a priori designed levels of evidence for causality (robust,
probable, suggestive, insufficient evidence) (Fig. 1) based
on information from both the main MR analysis and at
least one of the MR-Egger, WM, MRPRESSO, and
MVMR. These methods were chosen as they are the
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Fig. 1 Categorization of the evidence. * For the main analysis: statistically significant at the threshold set up by the study due to multiple testing
or at 0.05 if no multiple testing threshold was defined. For the sensitivity analyses: statistically significant at 0.05
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most commonly used in the MR literature to assess and
adjust for potential assumption violations. The grading
was performed in the following manner: Robust evidence
for causality was achieved when all the performed
methods (i.e., main analysis, and MR-Egger, WM, MRPR
ESSO, and MVMR) for the specific association presented
a nominally significant p value. We used instead the p
value threshold for the main analysis adjusted for mul-
tiple testing when this was reported. Furthermore, in all
methods, the direction of the effect estimates needed to
be concordant. The evidence was graded even if some of
the sensitivity analyses were not performed, but at least
one was required for the evaluation. Probable evidence
for causality was achieved when at least one method
(main or sensitivity analysis) had a nominally significant
p value of 0.05 (for the main analysis, we took the p
value threshold as set up by the study due to multiple
testing) and direction of the effect estimate was concord-
ant for all the methods. Suggestive evidence for causality
was achieved when at least one method had a nominally
significant p value (for the main analysis, we took the p
value threshold as set up by the study due to multiple
testing), but the direction of the effect estimates differed
between methods. Associations that presented nominally
non-significant p value for all methods (in the main ana-
lysis, the p value did not survive the threshold set up by
the study due to multiple testing) were classified as insuffi-
cient evidence for causality. This category may contain
associations for which evidence for causality is unclear
(due to low power and wide confidence intervals) but also
associations for which MR analyses suggest that a moder-
ate size of causal effect is unlikely. Finally, associations
that did not present any of the sensitivity analyses were
categorized as non-evaluable evidence. We also performed
a separate analysis by removing the MR-Egger test from
the criteria as it often provides different results from the
other methods due to low power [27, 28]. Associations
presenting MR-Egger as the sole sensitivity analysis were
not graded in this separate evaluation.
The structure of this evidence quality grading relates

more to polygenic MR analyses than to MR analyses for
gene products (e.g. proteins) that are conducted using
variants from a cis-gene window and are more likely to
use only one or a few SNPs as instrument. Therefore, we
further assessed the associations in the non-evaluable
evidence category by evaluating how many of them used
biological relevance and cis IV definitions and among
them how many conducted a colocalization analysis,
which evaluates the shared, local genetic architecture
and causality between two traits [29].

Patient and public involvement
No patients were involved in the development of the re-
search question or the outcome measures, nor were they

involved in the study design or the interpretation of the
results.

Results
The search strategy yielded a total of 6074 original search
results of which 305 were evaluated in full text and 115 re-
cords were excluded [12, 14, 15, 20–22, 30–138] (specific
reasons for exclusion are presented in Additional file 2:
File S1) leading to 190 eligible MR publications [139–328]
(Fig. 2). These 190 publications presented 4667 MR asso-
ciations for 16 exposure categories, including 852 unique
exposures, namely amino acids and derivatives (N = 81
unique exposures), anthropometrics (N = 47), circulating
leukocyte telomere length (N = 1), diabetes and related
biomarkers (N = 37), dietary intake and micronutrient
concentrations (N = 42), fatty acids and derivatives (N =
59), growth factors (N = 12), inflammatory biomarkers (N
= 82), lifestyle, education and behavior (N = 35), lipid me-
tabolism biomarkers (N = 148), methylations (N = 14), re-
productive factors (N = 8), steroids (N = 24), clinical
measurements (N = 21), other diseases and traits (N = 47),
and other metabolites/biomarkers (N = 194) (Additional
file 2: File S2), and 21 cancer sites (i.e. head and neck,
esophageal, stomach, small intestine, colorectal, liver and
biliary tract, pancreatic, lung, skin/melanoma, sarcomas,
breast, cervical, endometrial, ovarian, prostate, kidney,
bladder and urinary tract, central nervous system, thyroid,
leukemias and lymphomas, and any cancer/mixed) and
their subsites. The vast majority of associations (N = 4532;
97%) investigated cancer risk with only 135 (3%) associa-
tions being on cancer mortality. The complete evidence
base of the extracted information is provided in the
Additional file 2: File S3.

Description of the evidence base
The 190 MR studies on cancer were published as early
as 2009, but the majority (N = 135; 71%) were published
after 2018. Most publications (N = 149; 78%) used a
two-sample MR design, 30 publications (15.7%) used a
one-sample design, and 11 publications (5.8%) presented
both one- and two-sample MR analyses. The design of
one publication was unclear (Fig. 3).
For most MR analyses, the variants used as instru-

ments for the exposure were derived from populations
of European ancestry (N = 3183; 68.2%), 31 (0.7%) from
Asian, four (0.1%) Amish, three (0.1%) South American,
and 56 (1.2%) mixed, while for 1390 (29.8%) associations,
the exposure population ancestry was not reported.
Regarding the outcome, in most comparisons (3221;
69%) population ancestry was European, 233 (5%) Asian,
12 (0.3%) South American, one African, and 101 (2.2%)
mixed, while for 1099 (23.5%) outcome population an-
cestry was not reported.
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Body mass index (BMI) was the most frequently studied
exposure with 278 MR analyses across 40 publications,
followed by vitamin D-related phenotypes with 149 MR
analyses across 25 publications, and height with 109 MR
analyses across 23 publications. The sample size for the ex-
posure genetic analysis was reported in 3454 associations
with a median of 17,649 participants (range, 231 for the
metabolite X-12435 to 1232091 for smoking initiation).
The most frequently studied cancer was breast, which

was investigated in 63 publications, followed by lung (N
= 57), colorectal (N = 53), and prostate (N = 49). In con-
trast, pancreatic cancer had the highest number of MR

analyses (N = 646; 13.8%), followed by lung (N = 634;
13.6%), breast (N = 586; 12.6%), and ovarian (N = 582;
2.5%). With regards to the number of cases, breast
cancer had the highest number of cases (median N =
69,501 across 534 analyses), followed by prostate cancer
(median N = 44,825 across 352 analyses), with small in-
testine cancer having the smallest median number of
participants (N = 156; 36 analyses).

Description of the instrument selection
The median number of SNPs used as instruments was
five, ranging from one to 3163, whereas for 141 (3%)

Fig. 2 Study selection flowchart
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MR analyses this information was not reported (Add-
itional file 2: Table S1). In the majority of the analyses
(4108; 88%), instrument selection was based on the
genome-wide significance threshold 5 × 10−8, 87 (1.9%)
analyses used a stricter threshold of significance, 102
(2.2%) analyses used a more lenient threshold, and in
370 (7.9%) analyses the significance threshold for instru-
ment selection was not reported. For 1241 (26.6%) asso-
ciations, the authors reported that the choice of the
instruments was based on their biological relevance to
the exposure of interest. The most frequently used
clumping thresholds for SNP inclusion were r2 < 0.001
(N = 1203; 25.9%), r2 < 0.01 (N = 1058; 22.7%), and r2 <
0.1 (N = 1059; 22%). The percentage of variance ex-
plained (R2) was reported for 2162 (46.3%) associations
and ranged from 0.01 to 100% (for chemokine [C-X-C
motif] ligand 1 and chemokine [C-C motif] ligand 4)
with a median of 2.9% (Additional file 2: Table S1). Only
about one-in-four associations (N = 1135) reported a nu-
merical estimation of the power of the MR analysis, with
a median reported power of 76% (range 1 to 100%)
(Additional file 2: Table S1). A total of 1326 (28%) asso-
ciations reported on the adjustments used for the expos-
ure GWAS. The majority (N = 1283; 96.8%) adjusted for
population stratification, 907 (68.4%) adjusted for age,
720 (54.3%) for sex, and 271 (20.4%) used adjustments
specific to genotyping methods. Other adjustments in-
cluded study location or assessment center (N = 169;
12.8%), anthropometrics (N = 85; 6.4%), lifestyle factors
(N = 73; 5.5%), and study year/time (N = 42; 3.1%),

whereas in 81 (1.7%) analyses a number of additional ad-
justment factors were used.

Description of the results and robustness of the evidence
Most analyses were based on a two-sample (N = 4304;
92.2%) and only 363 (7.8%) used a one-sample design.
The statistical analysis method of preference as main
analysis with 2974 (63.7%) associations was the inverse-
variance weighted method (either fixed-effect or
random-effects), whereas 734 (15.7%) associations were
derived from likelihood-based analyses. Other statistical
analysis approaches used for the main MR analysis in-
cluded the Wald ratio, generalized models (generalized
least squares and generalized summary-based MR), two-
stage regression approaches (35% of the one-sample de-
signs), WM, and MR using robust-adjusted profile
scores. Forty-two publications (22.1%) performed an ad-
justment for multiple comparisons, and from the 4667
total associations only 523 (11.2%) were statistically sig-
nificant in the main analysis at the threshold set up by
the study due to multiple testing or at nominal signifi-
cance (p value < 0.05) if no multiple testing threshold
was defined. Sensitivity analyses were mostly performed
in two-sample MR, and a limited number of these sensi-
tivity analyses were performed in one-sample MR
designs.
Across two-sample designs, MR-Egger was evaluated

in 1293 (30%) analyses with 140 (10.8%) of those pre-
senting a nominally statistically significant MR-Egger
slope; a total of 1055 (24.5%) associations performed a

Fig. 3 Time trend of Mendelian randomization (MR) publications on cancer risk or mortality, by MR design
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WM analysis with 217 (20.6%) being statistically signifi-
cant, while sensitivity analyses using MRPRESSO or
multivariable MR were fairly limited with only 142
(3.3%; with N = 55; 38.7% statistically significant) and
171 (4%; with N = 53; 31% statistically significant) asso-
ciations, respectively (Additional file 2: Table S2). Across
the 363 analyses with one-sample design, 46 performed
a MR-Egger (N = 3; 6.5% significant), 27 a WM (N = 5;
18.5% significant), no analysis performed MRPRESSO,
and 27 performed a MVMR analysis (N = 9; 33.3% sig-
nificant) (Additional file 2: Table S2).
A total of 1467 (31.4%) MR associations reported in

121 publications presented results on both the main and
at least one sensitivity analysis and were further evalu-
ated based on the aforementioned grading scheme. The
rest of the MR associations (N = 3200; 68.6%) across 123
publications only presented results for the main analysis
and therefore could not be graded. Of those 3200 associ-
ations, 293 (9.2%) had a one-sample and 2907 (90,8%) a
two-sample design. For 36.6% (N = 1171) of analyses,
the authors selected the IVs based on their biological
relevance to the exposure, with 1106 (94.5%) of them
having a two-sample design. A total of 238 (7.4%) associ-
ations with only a main analysis were statistically

significant (or survived a multiple testing threshold) and
for only 60 (25.2%) of those the selection of the instru-
ment was based on biological relevance. Of those, 14
used a cis definition for the selected instruments, but
none of those performed a colocalization analysis.
A graphical overview of the robustness of the evidence

per exposure category and cancer group is presented in
Fig. 4. Out of the 1467 graded associations, we observed
87 MR analyses that presented robust evidence (5.9%;
1.9% of total MR analyses), 275 with probable evidence
(18.8%; 5.9% of total), 89 with suggestive evidence (6.1%;
1.9% of total), and 1016 with insufficient evidence
(69.3%; 21.8% of total) based on the results of the main
and sensitivity analyses. Across the 16 exposure categor-
ies, anthropometrics had the highest number of robust
analyses (N = 16; 18.4%), followed by steroids (N = 13;
15%), circulating leukocyte telomere length (N = 13;
15%), the other diseases and traits category (N = 12;
13.8%), and lipids (N = 10;11.5%), whereas no robust
association was found among the amino acids and
derivatives, fatty acids and derivatives, inflammatory bio-
markers, methylations, and other metabolites and bio-
markers categories (Table 1). Across cancers, the highest
number of robust associations was observed for breast

Fig. 4 Evidence map
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cancer with 29 (33.3%) of the 87 robust associations,
followed by lung cancer (N = 14; 16.1%) and endometrial
(N = 11; 12.6%). Head and neck, stomach, small intes-
tine, pancreatic, cervical, and central nervous system
cancers did not present any robust MR associations
(Table 2). The network of the robust exposure–cancer
associations is presented in Fig. 5.
The 16 robust associations from the anthropometrics

category pertained to BMI (including childhood BMI
and early life body size) and waist-to-hip ratio (WHR)
with decreased risk of total breast cancer [164, 250, 255,
299], estrogen receptor positive (ER+) [250, 299], and
negative (ER−) disease [164, 250, 299]); BMI with in-
creased risk of kidney/renal cell [240] and endometrial
[293] cancer, and adult height with increased overall
[204] and ovarian cancer risk [194]. Thirteen robust as-
sociations were observed in the steroids category, per-
taining to the positive association of different measures
of testosterone with breast (total, ER+) and endometrial
cancer, and to the negative association of sex-hormone-
binding globulin (SHBG) and endometrial cancer [301].
Thirteen robust associations were also found for longer
(shorter) leukocyte telomere length pertaining to in-
creased (decreased risk, respectively) risk of total cancer
[244], lung (total, adenocarcinoma [AC], AC-never
smokers) [241], kidney/renal cell [185], osteosarcoma
[314], skin [288], thyroid [288], leukemia [288], and
lymphoma and multiple myeloma [288]. The 10 robust
associations from the lipid metabolism biomarkers cat-
egory pertained to high-density lipoprotein cholesterol

(HDL-C) with increased risk of breast (total, ER+, ER−)
[279] but decreased risk of overall cancer [197]; triglyc-
erides (TGL) with decreased risk of breast [207]; low-
density lipoprotein cholesterol (LDL-C) with decreased
risk of endometrial (total, non-endometrioid) [321] and
lung squamous cell carcinoma (SCC) [178]; total
cholesterol and lung SCC (decreased risk) [178]; and 3-
hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)
reductase with ovarian cancer (decreased risk for de-
creased genetically predicted levels of the exposure)
[309]. From the lifestyle, education, and behavior cat-
egory, six associations were found with robust evidence,
namely between smoking and increased risk of lung can-
cer (total [286, 328], SCC [328], small cell [328]), two
between physical activity and decreased risk of colorectal
cancer [296] and one between chronotype and decreased
risk of breast cancer [254]. From the dietary intake and
micronutrient concentrations category, we found eight
robust associations pertaining to magnesium with breast
(total and ER+, increased risk) [324], ferritin with liver
(increased risk) [311], alcohol consumption with lung
(increased risk) [286], and vitamin B12 with increased
risk of ovarian cancer of low malignant potential [274].
Transferrin saturation showed increased risk of liver
cancer, but transferrin levels presented a decreased risk
[311]. The rest of the robust associations pertained to
age at menarche with ovarian (total and serous; de-
creased risk) [260], alcohol use disorder diagnostic codes
with ovarian serous (decreased risk) [317], endometriosis
with ovarian [261] and with endometriosis-uterine

Table 1 Number and percent of Mendelian randomization analyses per grading category by exposure category

Exposure category Robust
evidence

Probable
evidence

Suggestive
evidence

Insufficient
evidence

Non-
evaluable

Amino acids and derivatives 0 (0) 5 (1.82) 0 (0) 27 (2.66) 210 (6.56)

Anthropometrics 16 (18.39) 37 (13.45) 16 (17.98) 177 (17.42) 299 (9.34)

Circulating leukocyte telomere length 13 (14.94) 20 (7.27) 1 (1.12) 25 (2.46) 68 (2.13)

Clinical measurements 2 (2.3) 14 (5.09) 5 (5.62) 25 (2.46) 53 (1.66)

Diabetes and related biomarkers 2 (2.3) 22 (8) 20 (22.47) 121 (11.91) 188 (5.88)

Dietary intake and micronutrient concentrations 7 (8.05) 31 (11.27) 8 (8.99) 235 (23.13) 371 (11.59)

Fatty acids and derivatives 0 (0) 14 (5.09) 6 (6.74) 27 (2.66) 187 (5.84)

Growth factors 1 (1.15) 1 (0.36) 1 (1.12) 1 (0.1) 72 (2.25)

Inflammatory biomarkers 0 (0) 6 (2.18) 3 (3.37) 22 (2.17) 347 (10.84)

Lifestyle, education and behavior 9 (10.34) 48 (17.45) 9 (10.11) 66 (6.5) 108 (3.38)

Lipid metabolism biomarkers 10 (11.49) 35 (12.73) 7 (7.87) 144 (14.17) 344 (10.75)

Methylations 0 (0) 0 (0) 0 (0) 6 (0.59) 23 (0.72)

Other diseases and traits 12 (13.79) 21 (7.64) 11 (12.36) 67 (6.59) 96 (3)

Other metabolites/biomarkers 0 (0) 4 (1.45) 0 (0) 21 (2.07) 783 (24.47)

Reproductive factors 2 (2.3) 5 (1.82) 1 (1.12) 24 (2.36) 29 (0.91)

Steroids 13 (14.94) 12 (4.36) 1 (1.12) 28 (2.76) 22 (0.69)

Total 87 (100) 275 (100) 89 (100) 1016 (100) 3200 (100)
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leiomyoma [235] (both increased risk), gallstone disease
with gallbladder (increased risk) [264], insulin-like
growth factor 1 (IGF-1) with breast (increased risk)
[295], obstructive sleep apnea syndrome with breast
(increased risk) [271], polycystic ovary syndrome with
ovarian endometrioid (decreased risk) [237], stem cell
growth factor beta (SCGF-β) with prostate (decreased
risk) [304], schizophrenia with breast (total, ER+, ER−;
increased risk) [210], standardized forced expiratory
volume in 1 s with lung SCC (increased risk) [281],
thyroid-stimulating hormone with cancer overall
(decreased risk) [313], type 2 diabetes with esophageal
(decreased risk) [312], and vitiligo with non-melanoma
skin, melanoma, and ovarian (decreased risk) [306].
When the MR-Egger test was removed from the grad-

ing scheme as a sensitivity analysis, a total of 70 associa-
tions with probable and four with suggestive evidence
were upgraded to robust, while 35 associations were
upgraded from suggestive to probable. In contrast, 23
MR analyses with probable and 32 with suggestive evi-
dence were downgraded to insufficient evidence. Finally,
15 associations with robust evidence, 34 with probable,
17 with suggestive, and 242 with insufficient evidence
now presented only a main analysis and were non-evalu-
able (Additional file 2: Table S3).

Discussion
In this large systematic overview, we searched and
mapped current literature evaluating the association of
852 distinct genetically predicted risk factors across 16
broad exposure categories in relation to 21 cancer sites
and their subtypes by evaluating the results of 190 publi-
cations and over 4600 MR associations. Using a set of
clear, comprehensive and easily replicable criteria to
evaluate the validity of the reported associations, we
found that less than 90 of the reported MR analyses pre-
sented robust evidence for causality and that the vast
majority of the analyses did not perform sensitivity ana-
lyses, at least with regard to MR-Egger, WM, MRPR
ESSO, and MVMR. Most of the MR analyses supported
by robust evidence were observed for anthropometric in-
dices, steroid hormones, telomere length, and lipids.
The median number of IV size across all analyses was

relatively small (N = 5), despite most studies being con-
ducted in an era of large GWASs across a wide breadth
of phenotypes. This may partially be explained by the
large number of infrequently used biomarkers that were
assessed in some studies [245, 315]. This may have af-
fected the implementation of sensitivity analyses such as
MR-Egger in several cases that did not include enough
IVs. However, in only a limited number of analyses a

Table 2 Number and percent of Mendelian randomization analyses per grading category by cancer group

Cancer group Robust evidence Probable evidence Suggestive evidence Insufficient evidence Non-evaluable

Head and neck 0 (0) 2 (0.73) 0 (0) 10 (0.98) 23 (0.72)

Esophageal 1 (1.15) 1 (0.36) 0 (0) 8 (0.79) 28 (0.88)

Stomach 0 (0) 3 (1.09) 0 (0) 7 (0.69) 20 (0.63)

Small intestine 0 (0) 0 (0) 0 (0) 0 (0) 36 (1.13)

Colorectal 2 (2.3) 31 (11.27) 21 (23.6) 75 (7.38) 156 (4.88)

Liver and biliary tract 3 (3.45) 2 (0.73) 1 (1.12) 5 (0.49) 29 (0.91)

Pancreatic 0 (0) 15 (5.45) 2 (2.25) 42 (4.13) 587 (18.34)

Lung 14 (16.09) 46 (16.73) 14 (15.73) 148 (14.57) 412 (12.88)

Skin/melanoma 3 (3.45) 7 (2.55) 0 (0) 14 (1.38) 136 (4.25)

Sarcomas 1 (1.15) 1 (0.36) 0 (0) 3 (0.3) 1 (0.03)

Breast 29 (33.33) 40 (14.55) 20 (22.47) 140 (13.78) 357 (11.16)

Cervical 0 (0) 2 (0.73) 1 (1.12) 3 (0.3) 14 (0.44)

Endometrial 11 (12.64) 7 (2.55) 0 (0) 10 (0.98) 31 (0.97)

Ovarian 9 (10.34) 35 (12.73) 11 (12.36) 180 (17.72) 347 (10.84)

Prostate 1 (1.15) 15 (5.45) 6 (6.74) 57 (5.61) 278 (8.69)

Kidney 2 (2.3) 9 (3.27) 1 (1.12) 17 (1.67) 55 (1.72)

Bladder and urinary tract 2 (2.3) 6 (2.18) 5 (5.62) 23 (2.26) 116 (3.62)

Central nervous system 0 (0) 22 (8) 1 (1.12) 110 (10.83) 201 (6.28)

Thyroid 1 (1.15) 4 (1.45) 0 (0) 9 (0.89) 34 (1.06)

Leukemias and lymphomas 2 (2.3) 16 (5.82) 2 (2.25) 125 (12.3) 213 (6.66)

Any cancer/mixed 6 (6.9) 11 (4) 4 (4.49) 30 (2.95) 126 (3.94)

Total 87 (100) 275 (100) 89 (100) 1016 (100) 3200 (100)
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further exploration of the association was performed
using other approaches such as colocalization. Apart
from sensitivity MR analyses not being frequently per-
formed in the original studies (often but not always due
to lack of sufficient number of IVs), other valuable in-
sights regarding the methodological approaches can be
gained by examining this evidence base. We observed
that several different clumping thresholds for pruning
SNPs were applied. While most studies used thresholds
ranging from r2 < 0.001 to r2 < 0.1, one in ten had an
even more liberal threshold. Researchers should consider
adjusting for the potential correlation between IVs when
using less strict thresholds such as 0.1 or higher [329].
Of note is also that less half of the analyses provided the

percentage of variance explained by the IV and less than
one quarter provided a power estimation, although some
studies presented the power estimations graphically, but
we were not able to extract those. Both the R2 and a
priori power estimation are equally important for evalu-
ating the capacity of an IV to provide valid and accurate
estimates and can help to differentiate between non-
significant but otherwise underpowered associations
from real null ones.
Across the MR analyses pertaining to anthropometric

exposures, robust evidence was observed predominantly
for BMI. BMI was inversely associated with risk of total,
ER+, and ER− breast cancer (mostly post-menopausal),
which was supported by robust evidence across several

Fig. 5 Network of the exposure–cancer associations of the Mendelian randomization analyses presenting robust evidence. Note: For circulating
telomere length, the red arrows refer to longer while the green arrows refer to shorter genetically predicted telomere length. For HMG-GoA
reductase, the green arrow to ovarian cancer refers to decreased genetically predicted levels of the exposure. Abbreviations: AC: adenocarcinoma;
BMI: body mass index; ER−: estrogen receptor negative; ER+: estrogen receptor positive; FEV1: forced expiratory volume in one second; HDL:
high-density lipoprotein; HMG-CoA: 3-Hydroxy-3-methylglutaryl coenzyme A; IGF-1: insulin-like growth factor 1; LDL: low-density lipoprotein; SCC:
squamous cell carcinoma; SHBG: sex-hormone-binding globulin
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different MR analyses. In contrast, observational evi-
dence supports a positive association of body fatness
with post-menopausal breast cancer risk, and an inverse
association for premenopausal disease [22, 330, 331].
These contradictory results between MR and observa-
tional evidence may be attributed to the fact that genet-
ically predicted BMI reflects more closely early life body
fatness [164, 332], and early life body fatness has been
inversely associated in observational [333] and in MR
studies [164, 299] with both pre- and post-menopausal
breast cancer. Robust evidence was also observed for a
positive association of BMI and endometrial cancer in
Asian populations [293], which is in line with the obser-
vational evidence on body fatness and endometrial can-
cer in the general population [330, 334, 335]. The results
were also consistent in the main analysis of the four MR
publications on BMI and endometrial cancer among
European populations; however, these publications did
not perform any sensitivity analyses for endometrial can-
cer [149, 203, 236], so they could not be evaluated in
our grading scheme. The positive association of body
fatness with renal cell carcinoma from observational
studies [330, 336, 337] was confirmed in our review
based on robust evidence for BMI and probable evidence
for WHR and body fat percentage, both of which were
upgraded to robust in the sensitivity analysis excluding
the MR-Egger analysis. Several well-acknowledged ob-
servational associations of adiposity and cancer risk,
namely for ovarian [330, 334, 338] and colorectal [330,
339] cancer were only supported by probable evidence.
The association for ovarian cancer from the largest MR
study to-date failed to reach robust evidence due to the
main analysis not surviving the multiple comparisons
threshold set by the original publication that investigated
many risk factors, despite being nominally significant
[261]. Similarly, for colorectal cancer, the MR analyses,
despite consistently indicating an increased risk [164,
167], did not reach robust evidence due to several rea-
sons, including not surviving the multiple correction
thresholds and having non-significant sensitivity
analyses. BMI also presented probable evidence of an in-
creased risk with lung SCC. The results from observa-
tional data are showing inverse associations for BMI and
risk of total lung cancer [330, 340], which are likely due
to residual confounding by smoking [341]. With respect
to other anthropometric exposures, namely adult height,
WHR, waist and hip circumference, the results were in
line with the ones for BMI although being supported by
lower levels of evidence in MR studies, with the excep-
tion of adult height and overall [204] and ovarian cancer
[194] that reached robust evidence.
Robust and probable evidence was also found for the

positive association of genetically predicted testosterone
concentrations with risk of breast and endometrial

cancer, and the negative association of SHBG with endo-
metrial cancer. These results have been partially con-
firmed in observational evidence [342, 343]. Conversion
of androgens into estrogens in the adipose tissue of
post-menopausal women may partially explain these re-
sults, due to the role of estrogens in breast [344] and
endometrial cancer cell proliferation [345]. On the other
hand, excess weight, insulin resistance, and hyperinsuli-
nemia have been associated with changes in total and
bioavailable plasma sex steroid levels in women through
a number of mechanisms that can lead to a decrease in
plasma SHBG levels, and a rise in bioavailable testoster-
one [346].
A considerable fraction of the studies focused on cir-

culating leukocyte telomere length, for which robust as-
sociations were observed with total cancer, and with
lung, leukemia, lymphoma, osteosarcoma, skin, and thy-
roid cancers, where longer telomeres increased the risk
(or shorter lengths decreased the risk) of these cancers.
Furthermore, a positive association with increased telo-
mere length was supported by probable evidence for a
number of other cancer sites, such as glioma, bladder,
kidney, melanoma, multiple myeloma, non-Hodgkin’s
lymphoma, ovarian, and prostate cancer, several of
which were upgraded to robust with the exclusion of the
MR-Egger analysis. In contrast, negative associations of
increased telomere length with cervical, head and neck,
pancreatic, and skin basal cell cancers were supported
by probable evidence. The observational evidence has
created controversy in the literature about the direction
of the associations [347, 348], while in a recent umbrella
review the strength of the observational evidence was
deemed relatively weak and inconsistent [349]. A recent
review on the association of telomere length and cancer
risk highlighted the importance of the pleiotropic effects
of certain telomere-related loci such as TERT, TERC,
and OBFC1 [20], while mediation MR analyses have in-
dicated that a considerable proportion of the association
between the TERT region and lung cancer risk is medi-
ated by telomere length [241]. The current understand-
ing is that telomeres may both promote and also limit
cancer proliferation and neoplastic progression [350,
351], although the potential of proliferation from longer
telomeres seemingly overshadows the risk stemming
from genetically determined shorter telomeres [352].
Several associations were identified for lipids, espe-

cially TGL, total cholesterol, LDL-C, and HDL-C. Specif-
ically, the negative association of TGL with total and
ER+ breast cancer was supported by robust and probable
evidence, which is in line with the observational evi-
dence [353, 354]. For LDL-C and HDL-C, the MR re-
sults were consistent across several studies, indicating a
positive association with total, ER+, and ER− breast can-
cer. These associations are further supported by
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consistent results from MVMR analyses adjusting for
other lipid traits. However, the observational evidence is
contradictory for LDL-C and HDL-C, as previous meta-
analyses have shown a negative association for LDL-C
and no association for HDL-C [354, 355]. With regard
to endometrial cancer, we found robust evidence for a
negative association with LDL-C and lower levels of evi-
dence for associations with other lipids [321]. These re-
sults were concordant with MVMR analyses adjusting
for BMI, but further MVMR analyses mutually adjusting
for lipids were not performed. Limited observational
evidence indicates a positive association with TGL
[356–358] but no association with LDL-C or HDL-C
[356, 359, 360]. An emerging robust association was
observed between HMG-CoA reductase, the drug tar-
get of statins, and lower risk of ovarian cancer with
consistent MVMR results accounting for BMI. Obser-
vational evidence for statin use suggests a decreased
risk of ovarian cancer among statin users [361]. Only
two associations presented robust evidence with lung
SCC, pertaining to a negative association for total
cholesterol and LDL-C, but MVMR analyses were not
conducted, while for total lung cancer these associa-
tions were supported by probable evidence. Observa-
tional studies indicated a lower risk of lung cancer
for circulating lipids [362]. For several other cancers
such as colorectal, glioma, lymphomas, pancreatic,
kidney, and multiple myeloma, the MR results were
limited and inconsistent, without any robust evidence.
The role of lipid metabolism in carcinogenesis and
tumor growth has been acknowledged in the literature
[363, 364] although the molecular mechanism is not
yet fully understood and the associations are compli-
cated by the potential role of different lipid subfrac-
tions and correlation between different lipids as well
as with other traits and diseases such as BMI or
metabolic syndrome [365, 366]. Regulating lipid
metabolism has been identified as a promising target
for anti-cancer interventions [363]. An overview of
reviews on statin use has shown low levels of evidence in
meta-analyses of observational studies for decreased risk
of breast, colorectal, esophageal, gastric, hematological,
liver, and prostate cancers, while the results from meta-
analyses of RCTs were null [367].
Many of the included associations were non-evaluable

due to not performing any of the sensitivity analyses
required for our grading. Reasons may vary across
studies, including inability to do so due to low number
of instruments, especially for the MR-Egger analyses,
prioritization of statistically significant associations for
further evaluation with sensitivity analyses, or sensitivity
analyses not being part of the authors’ analysis plan.
There is a necessity to study these associations more
comprehensively, especially in the cases of polygenic

definition of instruments, which are more prone to
biases or pleiotropy that can drive associations both to-
wards and away from the null. Regardless of the reason
and the appropriateness of the decision to include sensi-
tivity MR analyses, these associations are not sufficiently
investigated and are all considered non-evaluable in our
grading scheme, which focuses on evaluating the robust-
ness for causality of the studied associations.
Other efforts to summarize the evidence of MR ana-

lyses on cancer risk have been performed previously.
However, they were either limited to specific exposures
[12, 14, 18, 20] or cancer sites [15, 16], or used a more
narrative approach of presenting and assessing the MR
results [11, 13, 19], while none performed a formal
evaluation of the evidence. Instead, our review used pre-
defined criteria for the categorization of the evidence for
causality, which increases the transparency and reprodu-
cibility of our results. We did not evaluate the quality of
reporting of the MR studies, as there are only some very
recent efforts focusing in this topic [17], and compre-
hensive reporting guidelines were very recently devel-
oped [7]. In addition, as guidelines for performing MR
studies [6] have also very recently been developed and
are not yet widely agreed upon, we refrained from using
those to evaluate the quality of the identified studies.
Although the grading scheme utilized in our review pro-
hibited us from evaluating a large proportion of the in-
cluded MR analyses because they did not report on any
sensitivity MR analysis, most of the results that received
robust evidence were in line with previous observational
research and are further supported by mechanistic
evidence.
Several limitations need to be acknowledged. Our

search strategy may have resulted in missing some rele-
vant studies, especially if the MR analysis was not the
primary focus of some studies but only a supplementary
analysis, which seems to be increasingly common in re-
cent GWA studies. In these cases, however, we would
not expect a comprehensive evaluation of the studied as-
sociations using sensitivity MR analyses, which would
only lead to inflation of the number of associations with
non-evaluable evidence. The structure of the criteria for
evaluation of the robustness of the MR evidence for
causality was more geared towards the evaluation of
two-sample MR approaches, but the percentage of one-
sample designs that did not perform one of the pre-
specified sensitivity analyses was only marginally higher
than that of two-sample designs. Associations evaluated
in earlier publications, especially those before many of
the sensitivity analyses were introduced, could also not
be evaluated. However, the majority of the studies were
published after 2018 and the earlier associations often
relied on limited number of cases or on instruments in-
cluding only a limited number of SNPs and with low
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percentage of variability explained. Information of the
percentage of variance explained and statistical power of
the instrument was often not reported, and thus a
complete assessment of weak instrument bias could not
be performed. Therefore, the grading scheme did not
allow us to distinguish MR analyses that presented ro-
bust evidence of lack of association from MR analyses
that did not present an association due to being insuffi-
ciently powered. Future studies may benefit from report-
ing this information. The approach undertaken in this
review for grading the associations did not allow to us to
evaluate MR analyses that only presented a main analysis
without being supported by sensitivity analyses. Since
two of the three MR assumptions are not directly test-
able, a MR analysis is imperative to be supported by a
comprehensive evaluation of complementary and sensi-
tivity analyses to increase credibility of the results, as
such approaches can at least give some indication of
large violations of the assumptions. Most MR analyses
evaluating associations for gene products using cis in-
struments were non-evaluable using our current criteria
as most included one or two SNPs as IVs, and the sensi-
tivity analyses could not be applied. However, only two
of these studies performed colocalization analysis and
neither presented statistically significant associations for
these specific analyses. More recently introduced sensi-
tivity MR analyses were not included in the current
evaluation, as their use is very infrequent in the MR lit-
erature. Finally, there is discrepancy in the availability of
genetic data for different cancers, and hence the MR
studies that have been possible; thus, cancer consortia
are encouraged to make their summary data more read-
ily and widely available.

Conclusions
The field of cancer epidemiology is challenging to evalu-
ate due to the sheer amount of available observational
evidence and further burdened by the increasing interest
on MR methodologies that could complement findings
from traditional observational research. Our work sum-
marizes and evaluates the robustness of the MR analyses
evidence for causality in cancer prevention and etiology.
Only a minority of the evaluated MR analyses were sup-
ported by robust evidence. In addition, we identified
gaps in the conduct and reporting of MR studies that
will assist in developing stronger future reporting
guidelines.
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