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Abstract

Background: Coronavirus SARS-CoV-2, the causative agent of COVID-19, has caused a still evolving global
pandemic. Given the worldwide vaccination campaign, the understanding of the vaccine-induced versus COVID-19-
induced immunity will contribute to adjusting vaccine dosing strategies and speeding-up vaccination efforts.

Methods: Anti-spike-RBD IgGs and neutralizing antibodies (NAbs) titers were measured in BNT162b2 mRNA
vaccinated participants (n = 250); we also investigated humoral and cellular immune responses in vaccinated
individuals (n = 21) of this cohort 5 months post-vaccination and assayed NAbs levels in COVID-19 hospitalized
patients (n = 60) with moderate or severe disease, as well as in COVID-19 recovered patients (n = 34).

Results: We found that one (boosting) dose of the BNT162b2 vaccine triggers robust immune (i.e., anti-spike-RBD
IgGs and NAbs) responses in COVID-19 convalescent healthy recipients, while naive recipients require both priming
and boosting shots to acquire high antibody titers. Severe COVID-19 triggers an earlier and more intense (versus
moderate disease) immune response in hospitalized patients; in all cases, however, antibody titers remain at high
levels in COVID-19 recovered patients. Although virus infection promotes an earlier and more intense, versus
priming vaccination, immune response, boosting vaccination induces antibody titers significantly higher and likely
more durable versus COVID-19. In support, high anti-spike-RBD IgGs/NAbs titers along with spike (vaccine encoded
antigen) specific T cell clones were found in the serum and peripheral blood mononuclear cells, respectively, of
vaccinated individuals 5 months post-vaccination.
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Conclusions: These findings support vaccination efficacy, also suggesting that vaccination likely offers more

protection than natural infection.
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Background

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), the causative agent of coronavirus disease 2019
(COVID-19), has caused almost 185M infections result-
ing in more than 4M of deaths worldwide as of July 10,
2021 (Johns Hopkins, USA—Coronavirus Resource Cen-
ter). For most human cells SARS-CoV-2 infection pro-
ceeds via its binding to the cell surface protein
angiotensin-converting enzyme 2 (ACE2) through the
receptor-binding domain (RBD) of its spike (S) protein
[1]; in addition, proteases of the host likely facilitate the
infection process [1, 2]. While most of SARS-CoV-2 in-
fected carriers will be asymptomatic or mildly symptom-
atic, a minority will develop severe symptoms requiring
hospitalization, which may lead to acute respiratory dis-
tress syndrome (ARDS), extensive inflammation, and the
so-called cytokine storm; the latter may then trigger a
systemic multi-organ collapse [3-6]. Regarding SARS-
CoV-2-induced immune responses, the current state of
knowledge indicates that innate immunity mechanisms
along with the adaptive immune system and its compo-
nents, i.e.,, CD4" T cells/CD8" T cells and the antibodies
[including neutralizing antibodies (NAbs)] produced by
B cells/plasma cells contribute to control of SARS-CoV-
2 in both non-hospitalized and hospitalized cases of
COVID-19 [7-11].

Given that currently there is no effective treatment for
COVID-19 [3, 12], a prophylactic intervention via vac-
cination is deployed via a worldwide campaign. The
BNT162b2 mRNA vaccine (Comirnaty™; Pfizer-
BioNTech GmbH) is the first vaccine that received
emergency use authorization by both FDA and EMA,
due to its efficacy in healthy adults [13], while reportedly
it also induces cross-neutralization of at least some of
the circulating SARS-CoV-2 variants [14—16]. An assess-
ment of the first BNT162b2 vaccination dose effects
among nursing facility residents and staff showed that it
offers some protection after the first injection [17] in-
cluding also robust antibody responses in seropositive
individuals [18, 19]. In support, we recently reported
that the BNT162b2 mRNA vaccine triggers robust im-
mune responses up to day 50 post-first vaccination in
COVID-19-naive recipients, which are however age- and
gender-dependent [20]; interestingly, these responses are
seemingly compromised in hematological malignancies
[21, 22]. However, the BNT162b2 vaccine-induced im-
mune responses in COVID-19 convalescent versus naive
recipients during a longer time frame or in comparison

with COVID-19 hospitalized patients or COVID-19 re-
covered patients have not been studied.

By combining data from our distinct ongoing pro-
spective studies (NCT04743388; NCT04408209), we re-
port here the anti-S-RBD IgGs and NAbs kinetics in
COVID-19 convalescent and naive (part of data for naive
donors have been reported in [20]) healthy recipients of
the BNT162b2 mRNA vaccine versus COVID-19 hospi-
talized or recovered patients. We further show the devel-
opment of SARS-CoV-2S protein specific T cell clones
in peripheral blood mononuclear cells (PBMCs) of vacci-
nated recipients 5 months post-vaccination. Our findings
indicate that vaccination induces antibody titers signifi-
cantly higher and likely more durable versus COVID-19.

Methods

Lead contact—resource availability

Further information and reasonable requests for re-
sources should be directed to Iloannis Trougakos
(itrougakos@biol.uoa.gr) or Evangelos Terpos
(eterpos@med.uoa.gr).

Materials availability
This study did not generate new unique reagents.

Clinical characteristics of the donors

Major inclusion or exclusion criteria for vaccinated par-
ticipants were as described before [20]. The characteris-
tics of the vaccinated health workers (n = 250;
Alexandra General Hospital, Athens, Greece) in this pro-
spective study (NCT04743388) are shown in Additional
file 1: Table S1. For this study, fully matched (for all
time points) antibodies titers for the selected 250 sub-
jects were used and analyzed allowing (among others) a
direct comparison of the obtained antibodies’ (i.e., anti-
S-RBD IgGs versus NAbs) titers. A second cohort in-
cluded hospitalized COVID-19 patients following admis-
sion to Thoracic Diseases General Hospital “Sotiria”,
Athens, Greece (ongoing study, part of NCT04408209);
all but one patient who passed away have been dis-
charged from the hospital. The characteristics of this co-
hort are reported in Additional file 1: Table S2. The
inclusion/exclusion criteria for the use of collected con-
valescent plasma for the treatment of severe COVID-19
infection (ongoing phase 2 study, NCT04408209) have
been previously described [23]. Briefly, all donors (18 M/
16F) who donated plasma were symptomatic (11 re-
quired hospitalization); common symptoms included
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fever, fatigue, headache, cough, dyspnea, anosmia, and/
or taste loss [23]. All studies have been approved by the
respective Ethical Committee of Alexandra Hospital, in
accordance with the Declaration of Helsinki and the
International Conference on Harmonization for Good
Clinical Practice. All patients and controls provided in-
formed consent before entering the study.

Blood collection, processing, and antibodies
measurement

Time points for blood collection and serum isolation
were day 1 (D1; first BNT162b2 dose), D8, D22 (second
dose), D36, and D50 for vaccinated healthy individuals,
D1, D7, and D30 post-hospitalization for COVID-19 pa-
tients, and at various time points (median from symp-
toms onset for this group, 60days) for COVID-19
recovered patients who donated plasma. Following vein
puncture, serum was separated within 4h from blood
collection and stored at — 80 °C until performing the as-
says. Samples in different time points from the same
donor were measured for all individuals in parallel. Anti-
bodies’ titers will be prospectively recorded every 3
months till month 18, post D22.

Anti-S-RBD IgG antibodies (representing responses to
either prior infection or the vaccine) and NAbs against
SARS-CoV-2 were measured using FDA approved
methods, ie., the Elecsys Anti-SARS-CoV-2S assay
(Roche Diagnostics GmbH, Mannheim, Germany) and
the cPass™ SARS-CoV-2 NAbs Detection Kit (GenScript,
Piscataway, NJ, USA) [24], respectively, as per manufac-
turers’ instructions. cPass™ is a surrogate virus
neutralization assay that allows the indirect detection of
potential SARS-CoV-2 NAbs in the blood, by assaying
the antibody (independent of class)-mediated inhibition
of SARS-CoV-2 S-RBD binding to human host receptor
ACE2. We used the 30% inhibition cutoff for this surro-
gate NAbs test as previously suggested [24]; our initial
validation study of the assay in serum samples versus
data from neutralization assays using wild-type virus re-
vealed high correlation coefficient values (not shown).

Assay of SARS-CoV-2 S or N protein specific T cell clones
in PBMCs

PBMCs from selected vaccine recipients (n = 21) were
isolated from whole blood samples using Ficoll (Lym-
phosep, Lymphocyte Separation Media, Biosera, LM-
T1702). Two hundred fifty thousand PBMCs were then
plated into each well of the T-SPOT.COVID kit (Oxford
Immunotec), a standardized ELISPOT (Enzyme Linked
ImmunoSpot)-based assay intended for qualitative detec-
tion of a T cell-mediated adaptive immune response to
SARS-CoV-2 related antigens [S and Nucleocapsid (N)
proteins]. Briefly, the kit measures responses to six dif-
ferent but overlapping peptides pools to cover protein
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sequences of six different SARS-CoV-2 antigens, without
HLA restriction, and includes negative and positive con-
trols; peptide sequences with high homology to endemic
coronaviruses have been removed from the sequences,
but sequences that may have homology to SARS CoV-1
were retained. Cells were incubated with antigens, and
interferon-y secreting T cells (i.e., CD4 and CDS8 effector
T cells sensitized to S or N SARS-CoV-2 antigens) were
detected by measuring blue spots in each well by an in-
dependent operator. As per a manufacturer’s trial, PCR
confirmed COVID-19 subjects showed high levels of re-
activity with 23.2 % within 8-20 spots and a majority
(58.9 %) with > 20 spots. Because the T-SPOT test uses
fresh cells, we assayed the presence of SARS-CoV-2 S
and N antigen-specific T cell clones 5 months post-
vaccination; at this time point, we also measured anti-S-
RBD IgGs and NAbs titers in donors’ serum.

Statistical analyses

Data were analyzed by using GraphPad Prism v.7 soft-
ware (San Diego, CA, USA). Results in figures are plot-
ted as median values with 95% confidence interval. For
statistical analysis, one-way ANOVA tests were per-
formed unless otherwise stated. P values <0.05 were
considered statistically significant. In all figures, *P <
0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

Results

SARS-CoV-2 anti-S-RBD IgGs and NAbs in convalescent
versus naive vaccinated recipients

Our screening for anti-S-RBD IgGs titer in the cohort of
vaccinated health care workers (Additional file 1: Table
S1) revealed 10 (4%) convalescent vaccine recipients,
who (at D1) had anti-S-RBD IgGs titer > 0.8 U/ml (posi-
tivity threshold) (Fig. 1, P1 group). In all these individ-
uals, BNT162b2 vaccination triggered an early sharp
induction of anti-S-RBD IgGs at D8, so that for 8/10 in-
dividuals anti-S-RBD IgGs at this time point plateaued
at values above the measuring range of the assay follow-
ing a 10-fold dilution of the sample (reported as > 2500
U/mL) (Fig. 1). Anti-S-RBD IgG titers remained at
values >2500 U/mL for all convalescent vaccine recipi-
ents up to D50 (Fig. 1). These 10 convalescent recipients
were also positive at D1 for anti-SARS-CoV-2 NAbs
(surrogate neutralization assay) (Fig. 2, P1) which, as in
the case of anti-S-RBD IgGs, plateaued in 9/10 individ-
uals at D8 post-vaccination (97.29% median inhibition)
and remained at very high levels up to D50 (>97.25%
median inhibition). Notably, NAbs’ measurement also
revealed a group (P2) of 21 individuals who were at D1
positive for NAbs but negative for anti-S-RBD IgGs (Fig.
2). These donors showed a unique pattern of humoral
immune responses as compared to convalescent (P1)
and naive (see below) vaccine recipients, since despite
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Fig. 1 Kinetics of anti-S-RBD IgGs development in convalescent versus naive (part of data for naive donors have been reported in [20]) recipients
of the BNT162b2 mRNA vaccine. Anti-S-RBD IgG antibodies in shown individuals at D1 (first dose of the vaccine), D8, D22 (second vaccination),
D36, and D50. POS, convalescent recipients (P1) being also positive for NAbs (see Fig. 2); NEG, naive recipients (shown n values denote the
number of enrolled individuals per category). Median age of donors, number of males (M)/females (F), mean, standard deviation (SD) and median
values of U/mL for this assay at D1-D50 are also shown. Blue/red arrows indicate 2/10 POS individuals with relatively low anti-S-RBD IgG titers at
D1 and D8

being all positive (>30% inhibition of SARS-CoV-2S
protein binding to ACE2) for anti-SARS-CoV-2 NAbs at
D1, they did not significantly elevate NAbs titers at D8
(33.96% median inhibition) but rather at D22 (56.51%
median inhibition); notably, this increase was more pro-
nounced versus naive vaccine recipients (Fig. 2). The
anti-S-RBD IgGs and NAbs titer in naive vaccine recipi-
ents (part of data for this group have been reported in
[20]) remained negative at D8 and increased on D22,
reaching high plateau values after the second dose (D22)
of the vaccine and starting a slight decline at D50 (Figs.
1 and 2) (Additional file 1: Fig. S1; shown data also in-
clude the 21 donors of P2). These results further support
the notion of a robust BNT162b2 vaccine-mediated
mobilization of humoral immune responses. As we re-
cently reported [20], our herein paired (n = 250) anti-S-
RBD IgGs and NAbs titers were more robust in females
and showed a negative correlation with increasing age
(not shown).

Interestingly, our recording for SARS-CoV-2 qRT-
PCR positivity prior to vaccination at D1 revealed that in
total 18 (7.2%; n = 250) individuals reported a positive
qRT-PCR test; all others were qRT-PCR negative.
Healthcare workers included in this study were tested

for SARS-CoV-2 qRT-PCR positivity periodically; in the
case of COVID-19 related symptoms, all were tested by
frequent qRT-PCR tests. The mean time since qRT-PCR
testing for donors of the P1 group was 6 + 4.51 months
(range 1.5-11 months) and for all donors (P1/P2 groups)
4.19 + 3.44 months (range 1.5-11 months). From those,
only 7 (38.8%; n = 18) were found also positive for anti-
S-RBD-IgGs, whereas the rest were negative. On the
other hand, 3 donors positive for anti-S-RBD IgGs at D1
did not report any SARS-CoV-2 related qRT-PCR test
(asymptomatic/unsuspected virus carriers); similarly, 9
individuals who reported SARS-CoV-2 qRT-PCR posi-
tivity at D1 were found negative for NAbs (Additional
file 1: Fig. S2).

The paired anti-S-RBD IgGs and NAbs titers kinetics
per donor showed high correlation in the P1 group (n =
10) and in the merged P2/NEG (n = 240) groups at D22,
D36, and D50 (Additional file 1: Fig. S3), further sup-
porting the functional interdependence and biological
relevance of these humoral immune responses. Further-
more, ROC analyses (n = 240; P2/NEG groups) revealed
that values higher than 8.315, 44.66, and 334.2 U/mL for
anti-S-RBD IgGs predicted with significant sensitivity (>
90%) and specificity (>96%) NAbs (%) inhibition values
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Fig. 2 NAbs levels as measured by using a high-throughput ACE2 binding inhibition surrogate neutralization assay in convalescent versus naive
(part of data for this group were reported in [20]) vaccinated recipients; NAbs were assayed in all participating individuals (see also, Fig. 1) at D1—
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higher that 30%, > 50%, and 75% respectively (Additional
file 1: Fig. S4).

Comparative kinetics of NAbs development in vaccinated
naive recipients versus COVID-19 patients

Given the significant positive correlation between anti-S-
RBD IgGs and NAbs kinetics (Additional file 1: Fig S3),
we then sought to compare the rate of anti-S-RBD IgGs
and NAbs development following vaccination with that
of natural immunity triggered by SARS-CoV-2 infection.
To this aim, we analyzed anti-S-RBD IgGs and NAbs
kinetics in hospitalized COVID-19 patients (n = 60;
Additional file 1: Table S2) in three different time points
(i.e., D1, D7, and D30) following admission to hospital.
Patients were categorized in (a) those showing a disease
of moderate severity with fever or other symptoms but
with no need for supplemental oxygenation (group la; n
= 15); (b) those with a disease of moderate severity, i.e.,
co-existing respiratory failure but moderate need for
supplemental oxygen [up to minute ventilation (MV):
40%] (group 1b; n = 22); and (c) those with severe dis-
ease marked by respiratory failure, requiring high flows
of supplemental oxygenation (>MV 40% with conven-
tional methods), high-flow nasal oxygen (HFNO), and or
intensive care unit (ICU) admission (group 2; n = 23). In
all cases, we observed a gradual increase in anti-S-RBD-

IgGs and NAbs development which was however signifi-
cantly more intense for both anti-S-RBD-IgGs and NAbs
at D7 in patients with severe disease (Fig. 3, Additional
file 1: Figs S5, S6). Furthermore, patients with moderate
(1b) or severe (2) disease reached high anti-S-RBD IgGs
(median 392 and 568.8 U/mL for groups 1b, 2, respect-
ively versus 85.62 U/mL for group la) and NAbs (me-
dian 88.068 and 90.020 % inhibition for groups 1b, 2,
respectively versus 68.975 % inhibition for group 1la) ti-
ters at D30 post hospitalization (Fig. 3, Additional file 1:
Figs S5, S6). NAbs titers remained high in plasma (see
the “Methods” section) isolated from COVID-19 recov-
ered patients (median of ~ 60 days post symptoms initi-
ation; n = 34) further supporting the notion of sustained
immunity post-SARS-CoV-2 infection.

To compare humoral immune responses (NAbs) after
SARS-CoV-2 infection versus BNT162b2 vaccination,
we used titers at D1-D30 for all COVID-19 patients
(groups 1la, 1b, and 2; n = 60) versus those obtained after
BNT162b2 vaccination in the P2/NEG group (see above)
(n = 240). Given a reported median duration for symp-
toms initiation (i.e., close to virus infection) in recruited
(this study) COVID-19 patients upon hospitalization of
~ 9 days, we assumed that the measured NAbs titers cor-
respond to D10 [ie, D1 (hospitalization) plus 9 days],
D16 [i.e., D7 (hospitalization) plus 9 days], and D39 [i.e.,
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D30 (hospitalization) plus 9 days] post infection [i.e.,
SARS-CoV-2 antigen(s) presentation]. Therefore,
these time points roughly correspond to levels at D8,
D22, and D36 post-vaccination of naive BNT162b2
vaccinated donors. Accordingly, NAbs’ values from
COVID-19 recovered patients’ isolated plasma (me-
dian of ~60days post symptoms initiation) were
compared to values obtained at D50 after the first
dose of the BNT162b2 vaccine. As shown in Fig. 4
(compare also, Additional file 1: Figs S1 versus S5,
S6), virus infection promotes an earlier adaptive
humoral immune response (Fig. 4; D10 versus D8)
and high values at D16 with similar (all patients—
groups la, 1b, and 2) NAbs’ (% inhibition) values
thereafter (Fig. 4). On the other hand, administration
of the viral S protein (by the BNT162b2 mRNA vac-
cine) triggers a significant mobilization of adaptive
immune responses already at D22 which, following
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patients (Fig. 4; D39 versus D36), but even from
COVID-19 patients with severe disease (group 2)
(90.02% median inhibition) (P < 0.0001). In support,
NADbs’ titers were significantly higher at D50 follow-
ing vaccination versus plasma from COVID-19 re-
covered patients. The intensity of the secondary
antigen-related immune responses was further evi-
dent by comparing [D1 POS (P1 group) versus D22
NEG, D8 POS (P1 group) versus D36 NEG, and D22
POS (P1 group) versus D50 NEG] the kinetics of
NAbs production in COVID-19 recovered patients
receiving one dose of the vaccine versus naive recipi-
ents receiving the second dose of the vaccine (Fig.
2). Thus, despite a delayed (versus SARS-CoV-2 in-
fection) mobilization of humoral immune responses
following the first dose of the BNT162b2 vaccine
(Fig. 4), eventually, following boosting vaccination
(second dose), immune responses become more in-

the second dose, plateaus at values (97.231% median tense (versus COVID-19) and are likely more
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Existence of SARS-CoV-2 S protein sensitive T cell clones
in PBMCs of vaccinated recipients 5 months post-
vaccination

To assay the durability of post-vaccination humoral im-
mune responses, as well whether vaccination triggers
immune responses relevant to the other arm of adaptive
immunity, ie., cellular immunity, we measured in se-
lected individuals (# = 21) 5 months post-vaccination,
anti-S-RBD IgGs/NAbs titers and assayed (in isolated
PBMCs) the existence of SARS-CoV-2 S protein (vaccine
delivered antigen) specific T cell clones. Our analyses re-
vealed that all vaccine recipients were positive (> 0.8 U/
mL) [mean, 1213.51 U/mL (max 2500 U/mL) + 943.71
(SD); median 773.60 U/mL] for anti-S-RBD IgGs (Fig.
5A), showing also high NAbs (>50% inhibition) titers
(Fig. 5B; Additional file 1: Fig. S7). Moreover, by using
an ELISPOT assay, we noted at the same time point the
existence in vaccinated donors’ isolated PBMCs, of T cell
clones specific for the SARS-CoV-2 S protein (Fig. 5C);
as expected, T cell clones specific for the SARS-CoV-2
N protein were found only in COVID-19 recovered indi-
viduals (Fig. 5C). Notably, the recorded T cell clones
numbers were found to positively correlate with NAbs
titers, further supporting the notion of vaccination-
mediated parallel mobilization of both arms of adaptive
(i.e., humoral and cellular) immunity.

Discussion

Given the current global vaccination campaign, the un-
derstanding of the immune responses and level of pro-
tection against SARS-CoV-2 offered by the vaccines is
critical. Among the first vaccines authorized for emer-
gency use by both the FDA and EMA was the
BNT162b2 mRNA vaccine due to its efficacy in healthy
recipients [13]. Our finding that the BNT162b2 vaccine
effectively mobilizes early robust humoral immune re-
sponses (i.e., both anti-S-RBD IgGs and NAbs) in conva-
lescent healthy recipients further supports its efficacy, as
it indicates the full structural match of the produced
antigen (i.e., SARS-CoV-2 S protein) with the S protein
of virus. It also suggests that COVID-19 recovered pa-
tients sustain long-lived anti-SARS-CoV-2 immune
memory responses, which as shown in this study and re-
ported before [25-30] may last for several months post-
infection.

The P2 group of anti-S-RBD IgGs negative/NAbs posi-
tive at D1 individuals (see, Fig. 2) likely correlates with
previous exposures to human endemic coronaviruses,
which may however make these individuals more re-
sponsive to SARS-CoV-2. This observation may also in-
dicate the existence of NAbs to distinct non-RBD
epitopes on the S protein [31]. Interestingly, it has re-
ported the existence of SARS-CoV-2-specific T cells in
individuals with no history of SARS-CoV-2 infection,
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COVID-19, or contact with individuals who had SARS-
CoV-2 infection and/or COVID-19; these T cells target
(among others) SARS-CoV-2 N protein [32, 33]. More-
over, S-reactive T cell lines that were generated from
SARS-CoV-2-naive donors were found to respond simi-
larly to the S protein of the human endemic corona-
viruses OC43 and 229E and of SARS-CoV-2,
demonstrating the likely presence of S-cross-reactive T
cells, probably generated during past infections with en-
demic coronaviruses [34]. The presence of SARS-CoV-2
cross-reactive preexisting immunity [35] in a significant
portion of the general population may affect both the
dynamics of the current pandemic and the ongoing vac-
cination campaign. Nonetheless, the nature of the spe-
cific immune signatures produced by the individuals of
the P2 group or whether the NAbs found in these sub-
jects are associated with protection against COVID-19
[36] should await further studies.

As expected, the BNT162b2 vaccine-induced anti-S-
RBD IgGs showed high correlation with NAbs titers in-
dicating their functional interdependence and biological
relevance. Our finding of threshold cutoffs which can
predict neutralization activity in COVID-19 recovered
patients or vaccinated individuals with high sensitivity/
specificity by simply measuring anti-S-RBD IgGs will
further aid our effort to identify COVID-19- or
vaccination-induced seroconversion/protection in the
community. Moreover, given that the increase rate for
anti-S-RBD IgGs titer is far more intense versus NAbs
titer which plateau during secondary immune responses
(i.e., boosting immunization), it is evident that the pres-
ence of anti-RBD IgGs does not indicate anti-virus neu-
tralizing activity. Thus, ideally, both assays should be
employed to verify genuine immune protective responses
against SARS-CoV-2 infection or following vaccination.
The adaptation of this strategy is important to identify
true COVID-19 convalescent recovered patients, while,
regarding the qRT-PCR positive for SARS-CoV-2 infec-
tion individuals who showed no adaptive humoral im-
mune responses (and thus remain COVID-19 naive
vaccine recipients), they surely require a prime-boost
immunization strategy.

The efficacy of the BNT162b2 mRNA vaccine is also
evident by comparing COVID-19 versus vaccination
humoral adaptive immune (i.e., anti-S-RBD IgGs and
NAbs) responses. Specifically, in COVID-19 hospitalized
patients, we found a gradual increase in NAbs titers,
which, as reported before [37], was significantly earlier
and more intense in patients with severe disease. In sup-
port, studies in animal models and cell-based assays fol-
lowing SARS-CoV-2 infection, as well as serum and
transcriptional profiling of COVID-19 patients, revealed
an exaggerated abnormal inflammatory response being
marked by reduced levels of type I and III IFNs, along
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with increased chemokines and IL-6 expression in severe
disease [38, 39]. Furthermore, it was found that coordi-
nated CD4" and CD8" T cells and antibody responses
are protective, whereas uncoordinated responses fre-
quently fail to control disease [40]. NAbs’ titers
remained high in plasma isolated from COVID-19 re-
covered patients further supporting the hypothesis of
durable immunity post-SARS-CoV-2 infection [25-29].
Interestingly, at comparable time points post-viral infec-
tion or post-vaccination, it was found that, although the
former promotes an earlier adaptive humoral immune
response, the latter eventually triggers humoral immune
responses which are more intense even versus to those
found in COVID-19 patients with severe disease. More-
over, our finding that individuals at 5 months post-
vaccination sustain high antibodies titers (and although
a long-term monitoring of these responses is surely
needed) further highlights the efficacy of the BNT162b2
mRNA vaccine.

Finally, our observation of existing T cell clones being
specific for the SARS-CoV-2 S protein 5 months post-
vaccination  indicates  the  vaccination-mediated
mobilization of also the second arm of adaptive immun-
ity, i.e., cellular immunity. This observation further cor-
roborates recent findings showing that as in individuals
convalescing from COVID-19 who develop effective
CD4 and CD8 T cells responses [32], the BNT162b2
mRNA vaccine triggers not only humoral but also cellu-
lar immunity (poly-specific T cells) [41, 42]. Taken to-
gether, these observations support the notion of a likely
long-lasting vaccination-induced effective immunity
against SARS-CoV-2.

Conclusions

In summary, our (ongoing) studies in different cohorts
suggest that one dose of the BNT162b2 mRNA vaccine
would be likely sufficient to trigger secondary boosting
immune responses in COVID-19 recovered patients be-
ing positive for anti-S-RBD IgGs/NAbs. In support, prior
SARS-CoV-2 infection rescues B and T cell responses to
variants after first BNT162b2 vaccine dose [43]. More-
over, given the sharp increase of anti-S-RBD IgGs/NAbs’
titers in naive healthy recipients at D22, some protection
likely kicks in after the first injection suggesting that the
second dose can be maybe delivered in young/middle-
aged healthy recipients (e.g., <65years old [20]) few
months after the first shot, giving the immune system
the time to “relax.” Indeed, other multi-dose vaccines,
e.g., those for hepatitis viruses, human papillomavirus,
and measles virus (which however use different vaccine
platforms), are given months or even years apart [44].
Given, however, that distinct vaccine platforms engage
the immune system differently, the strategy of delaying
the second dose will need carefully designed clinical
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trials aiming to address the single dose-mediated level
and duration of protection. The dose-delay strategy
should exclude the elderly (i.e., > 65 years old [20]) or
patients with active morbidities (e.g., hematological ma-
lignancies [21, 22]), where the second timely BNT162b2
vaccination is critical.

Overall, our findings suggest possible strategies to pro-
vide sufficient vaccination doses for a larger part of the
population during the ongoing worldwide vaccination
campaign (see also, [42]). Moreover, given that the virus
(and its emerging variants) will likely become endemic
in the community, along with the fact that mRNA vac-
cines seem to be effective against the known mutations
[14-16, 45], the possible future transient exposures of
vaccinated individuals to different circulating variants of
the virus will likely minimize the need for additional an-
amnestic future vaccinations.
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