
RESEARCH ARTICLE Open Access

Interventions to control nosocomial
transmission of SARS-CoV-2: a modelling
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Abstract

Background: Emergence of more transmissible SARS-CoV-2 variants requires more efficient control measures to
limit nosocomial transmission and maintain healthcare capacities during pandemic waves. Yet the relative
importance of different strategies is unknown.

Methods: We developed an agent-based model and compared the impact of personal protective equipment (PPE),
screening of healthcare workers (HCWs), contact tracing of symptomatic HCWs and restricting HCWs from working
in multiple units (HCW cohorting) on nosocomial SARS-CoV-2 transmission. The model was fit on hospital data from
the first wave in the Netherlands (February until August 2020) and assumed that HCWs used 90% effective PPE in
COVID-19 wards and self-isolated at home for 7 days immediately upon symptom onset. Intervention effects on the
effective reproduction number (RE), HCW absenteeism and the proportion of infected individuals among tested
individuals (positivity rate) were estimated for a more transmissible variant.

Results: Introduction of a variant with 56% higher transmissibility increased — all other variables kept constant —
RE from 0.4 to 0.65 (+ 63%) and nosocomial transmissions by 303%, mainly because of more transmissions caused
by pre-symptomatic patients and HCWs. Compared to baseline, PPE use in all hospital wards (assuming 90%
effectiveness) reduced RE by 85% and absenteeism by 57%. Screening HCWs every 3 days with perfect test
sensitivity reduced RE by 67%, yielding a maximum test positivity rate of 5%. Screening HCWs every 3 or 7 days
assuming time-varying test sensitivities reduced RE by 9% and 3%, respectively. Contact tracing reduced RE by at
least 32% and achieved higher test positivity rates than screening interventions. HCW cohorting reduced RE by 5%.
Sensitivity analyses show that our findings do not change significantly for 70% PPE effectiveness. For low PPE
effectiveness of 50%, PPE use in all wards is less effective than screening every 3 days with perfect sensitivity but
still more effective than all other interventions.

Conclusions: In response to the emergence of more transmissible SARS-CoV-2 variants, PPE use in all hospital
wards might still be most effective in preventing nosocomial transmission. Regular screening and contact tracing of
HCWs are also effective interventions but critically depend on the sensitivity of the diagnostic test used.

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: t.m.pham-2@umcutrecht.nl
†Thi Mui Pham and Hannan Tahir contributed equally to this work.
1Julius Center for Health Sciences and Primary Care, University Medical
Center Utrecht, Utrecht University, P.O. Box 85500, Utrecht, The Netherlands
Full list of author information is available at the end of the article

Pham et al. BMC Medicine          (2021) 19:211 
https://doi.org/10.1186/s12916-021-02060-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-021-02060-y&domain=pdf
http://orcid.org/0000-0001-6748-2479
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:t.m.pham-2@umcutrecht.nl


Background
Effective interventions to limit nosocomial transmission
of the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) are pivotal to maintain healthcare capaci-
ties during pandemic waves [1, 2]. During the first epi-
demic wave many hospitals around the world restricted
visits and cancelled non-essential medical procedures in
order to maintain adequate staffing levels for patients
with COVID-19. In the Netherlands, specific infection
control measures were implemented but nosocomial
transmission may have been facilitated by temporary
shortness of supplies of personal protective equipment
(PPE), including gloves, goggles, face shields, gowns and
(N95) masks, at the onset of the pandemic.
Indeed, healthcare workers (HCWs) experienced a

higher incidence of SARS-CoV-2 infections, compared
to other professions, during the first pandemic wave [3–
5]. Front-line HCWs in the UK and USA tested three
times more frequently positive during the first epidemic
wave than the general population after accounting for
the frequency of testing [3]. Other studies from the UK
and the Netherlands found higher SARS-CoV-2 inci-
dences after the first epidemic wave among staff working
in COVID-19 wards than staff working elsewhere in the
hospital [5, 6]. In addition to direct contact with infec-
tious patients, HCW-to-HCW transmission most likely
also contributed to these elevated incidence rates.
Only a few studies incorporated modelling of SARS-

CoV-2 transmission in healthcare settings [7–11]. In a
stochastic within-hospital model, combined with a deter-
ministic model reflecting SARS-CoV-2 transmission in
the community, PPE use by HCWs and patients in the
entire hospital substantially reduced nosocomial infec-
tions, while random weekly testing of asymptomatic
HCWs and patients was less effective [9]. Moreover,
strict cohorting of undiagnosed patients and HCWs in
small units reduced the probability that SARS-CoV-2
introduction would lead to a large outbreak. In a deter-
ministic within-hospital susceptible-exposed-infectious-
recovered (SEIR) model isolating COVID-19 patients in
single rooms or bays reduced infection acquisition in pa-
tients by up to 80% [8]. The model predicted that peri-
odic testing of HWCs would have a smaller effect on the
COVID-19 patient-burden than isolating patients but
could reduce HCW infections by up to 64% and lead to
a reduction of staff absenteeism. Both aforementioned
models assumed a time-invariant SARS-CoV-2 infec-
tiousness and diagnostic PCR test with 100% sensitivity.
An individual-based modelling study assessed the impact
of different interventions for SARS-CoV-2 transmission
in a non-COVID-19 hospital unit [11]. The model was
calibrated to COVID-19 outbreak data in a neurosurgery
hospital unit in Wuhan (January until February 2020).
High-efficacy face-masks were shown to be most

effective for reducing infection cases and workday loss.
Reduction of contact rates had only a marginal effect on
mitigating the outbreak in the long run. Another model
(stochastic, individual-based, aimed at patients and
HCWs in long-term care facilities (LTCF)) did incorpor-
ate a test sensitivity that varies with time since infection
[7]. This model concluded that pooled testing (combin-
ing clinical specimens from multiple individuals into a
single biological sample for a single RT-PCR test) was
the most effective and efficient surveillance strategy for
resource-limited LTCFs.
While these previous studies investigated interventions

such as the PPE use, physical distancing among HCWs,
various testing strategies and cohorting of patients and
HCWs, the impact of contact tracing within-hospital set-
tings has not been modelled yet. Observational evidence
from 5700 HCWs in two large hospitals and 40 out-
patient units in Milan, Italy, suggested that random test-
ing (positivity rate of 2.6%) was less efficient than
contact tracing (10%) [12].
In Dutch hospitals, patients and HCWs were cohorted

in COVID wards, where HCWs used PPE during patient
care, in addition to the basic infection control measures
applied. With these measures, nosocomial transmission
was considered well-controlled during the first wave of
the pandemic, although outbreaks have been reported
sporadically [13]. Yet, with the emergence of more trans-
missible variants, current infection control measures
may become less effective. While COVID-19 vaccine
rollout is underway, it is still unclear how they affect
transmission and how their efficacy is affected by the
new SARS-CoV-2 variants. We, therefore, explored the
relative effectiveness of different infection prevention
strategies for HCWs in hospitals in the absence of vac-
cination using an agent-based model of nosocomial
SARS-CoV-2 transmission. First, we fitted the model to
real-life data from the University Medical Center Ut-
recht (UMCU) during the period February–August
2020. Next, we evaluated the impact of various interven-
tions on transmission, HCW absenteeism and test posi-
tivity as a marker of intervention efficiency for a more
transmissible variant (e.g., B.1.1.7) and draw general con-
clusions for infection control in hospitals with a similar
structure.

Methods
Agent-based model
We developed an agent-based model that describes the
dynamics of SARS-CoV-2 transmission in a hospital
allowing for importations of infections from the commu-
nity (Fig. 1A). We modelled a hospital comprising four
ward types: (1) general COVID wards, (2) general non-
COVID wards, (3) COVID intensive-care units (ICUs)
and (4) non-COVID ICUs. Within the hospital, we
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distinguish patients, nurses and doctors. Patients are as-
sumed to occupy a hospital bed in a single room. HCWs
(nurses and doctors) work in duty shifts. HCWs meet
patients in a number of rounds per shift (Additional
file 1: Table S1), and HCWs meet other HCWs in the
common staff room of each ward.
Individuals may be in one of the disease states:

susceptible (S), asymptomatically infected (IA), pre-
symptomatically infected (IP), infected with moderate
symptoms (IM), infected with severe symptoms (IS) and
recovered (IR). We did not explicitly model other re-
spiratory tract infections with similar symptoms. Hence,
all symptomatic individuals are necessarily infected with
SARS-CoV-2. We did not model death in our
simulations.
All infected individuals are assumed to be infectious

following a time-varying infectiousness curve. We de-
note infectiousness over time since infection τ by β(τ),
i.e., it is the mean rate at which an individual infects
others at time τ after its time of infection. The
reproduction number R (average number of secondary
cases caused by an infected individual) is given by inte-
grating β(τ) over time since infection R ¼ R∞

0 βðτÞdτ. As-
suming the mean generation time ω(τ) to be equivalent
with the observed mean serial interval, we calculated the
infectiousness profile by β(τ) = ω(τ)R. Based on this, the
individual’s infectiousness follows a Weibull distribution
with a mean of 6 days (Fig. 1C) [14] and the
reproduction number is a scaling factor of the

infectiousness profile. We assumed the infectiousness to
differ between asymptomatic and symptomatic infected
individuals, defined by βA(τ) and βS(τ), respectively.
Then, β(τ) can be decomposed into

β τð Þ ¼ PAβA τð Þ þ 1−PAð ÞβS τð Þ

where PA represents the proportion of asymptomatic
infections. Asymptomatic individuals are assumed to
have an infectiousness proportional to that of symptom-
atic individuals, i.e., βA = xA · βS, xA ≤ 1. Integrating over
each of the two terms leads to the respective contribu-
tion to the overall reproduction number:

R ¼ RA þ RS ¼
Z ∞

0
PA � xA � βS τð Þdτ

þ
Z ∞

0
1−PAð ÞβS τð Þdτ:

Transmission events can occur between patients and
HCWs and among HCWs. We assumed no patient-to-
patient transmission as patients are assumed to occupy
single-bed rooms. Only HCWs in their asymptomatic or
pre-symptomatic phase contribute to transmission. We
assumed that the incubation period has a Gamma distri-
bution with mean 5.5 days [15].
Patients may be admitted to the hospital for non-

COVID reasons or with moderate or severe COVID-19
symptoms. In the first case, they may be susceptible,
pre-symptomatically or asymptomatically infected.
Symptomatically infected patients are admitted to

Fig. 1 Schematics for agent-based model. A Diagram of the agent-based model including the agents in the main environment (hospital) and
community importations. The hospital population is divided into healthcare workers (nurses and doctors) and patients. Patients may be admitted
from the community either with moderate (red) or severe (dark red) COVID-19 symptoms or for non-COVID reasons. Patients may be in a pre-
symptomatic stage (light red) when hospitalized to non-COVID wards. Healthcare workers may get infected in the community (red dashed line).
B Disease progression diagram. Individuals are in either of the following categories: susceptible (S), asymptomatically infected (IA), pre-
symptomatically infected (IP),moderately infected (IM), severely infected (IS) and recovered (R). Infected individuals are assumed to be infectious
following a time-varying infectiousness presented in C. C Probability density of infectiousness of an infected individual and incubation period
over time since infection
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COVID wards (moderate symptoms) or COVID ICUs
(severe symptoms). Patients in non-COVID wards that
develop symptoms during their stay are immediately
transferred to COVID wards. We assumed that moder-
ately and severely infected patients recover after 14 and
35 days, respectively [16].

Data and parametrization
We used data from the UMCU to parametrize the num-
ber of wards and beds per ward (Additional file 1 pp. 2).
We used the number of patients admitted to the UMCU
for non-COVID reasons and their length of stay for the
time period 2014–2017 and assumed a 50% decrease in
admissions during the study period (Additional file 1:
Table S1). The daily number of COVID-19 hospitaliza-
tions and their length of stay distribution was based on
UMCU data from 27 February until 24 August 2020
(Additional file 1: Figure S1-S2). The simulations started

on 30 December 2019 with a hospital at 100% occu-
pancy without any SARS-CoV-2-infected individuals.
The first COVID-19 admissions occurred on 27 Febru-

ary 2020. To account for admissions of patients that are
infected but not (yet) symptomatic and HCWs who were
(unknowingly) infected in the community, we used daily
national numbers of SARS-CoV2 infectious individuals
estimated by the Dutch National Institute for Public
Health and the Environment (RIVM) from 17 February
until 24 August 2020 (Additional file 1 pp. 2) [17]. We
additionally used publicly available age-specific
hospitalization rates in the Netherlands in 2012 and age-
specific SARS-CoV-2 infection incidence rates in Ut-
recht province to scale the daily probability of being in-
fected in the community for non-COVID patients and
HCWs arriving in the hospital [18, 19].
Based on a published meta-analysis, we assumed that a

fixed percentage of 20% and 31% of SARS-CoV-2

Fig. 2 Comparison of the scenarios with the wild-type and a more transmissible SARS-CoV-2 variant. Both scenarios assume 90% effective PPE
use in COVID wards. For the wild-type scenario (black), model simulations were performed with RS = 1.25 (reproduction number of
symptomatically infected individuals) and RA = 0.5 (reproduction number of asymptomatically infected individuals). For the baseline scenario
(blue), model simulations were performed with RS = 1.95 and RA = 0.8 (with 56% higher transmissibility with respect to the wild-type SARS-CoV-2
variant). Horizontal dashed lines represent a reproduction number of 1. Summary statistics were calculated for 100 simulations. A Simulated mean
number of beds occupied by patients in COVID wards per day (black curve) and 95% uncertainty interval (grey shaded area). Red points
represent real-life data on the daily number of beds occupied by COVID-19 patients at the UMCU between 27 February and 24 August 2020. B
Number of nosocomial transmissions as predicted by the models. Full rectangular bar height represents the mean total number of nosocomial
transmissions during the whole study period. Grey error bars represent 95% uncertainty intervals. Patients acquiring a SARS-CoV-2 nosocomial
infection may be diagnosed in the hospital (due to symptom onset during hospital stay or detection by an intervention) or discharged to the
community in a pre-symptomatic or asymptomatic state. Rectangular bars with black borders represent mean number of individuals (patients
and HCWs) infected with SARS-CoV-2 and diagnosed in the hospital. Lighter rectangular bars represent the remaining mean number of patients
discharged to community undiagnosed. C Violin and box plots of the overall effective reprduction numbers (RE, for pre-/symptomatic and
asymptomatic patients and HCWs combined) for the nosocomial spread in the wild-type and baseline scenario. D Violin and box plots of RE for
the nosocomial spread in the wild-type and baseline scenario (separate values for pre-/symptomatic and asymptomatic individuals). Since HCWs
are assumed to immediately self-isolate upon symptom onset, the reproduction number is assigned to the pre-symptomatic state
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infections in patients and HCWs, respectively, were
asymptomatic (see also Table 1) [20].
First, we chose the basic reproduction numbers RS and

RA such that the numbers of occupied beds by COVID-19
patients predicted by our model were in good agreement
with real-life UMCU data on the number of COVID-19
patients at UMCU during the first epidemic wave by vis-
ual inspection (Table 1 and Fig. 2A). During this calibra-
tion, a change in the basic reproduction numbers RS and
RA resulted in a change of the individual’s infectiousness
per time unit and thus the probability of transmission per
contact. The remaining parameters did not change. These
reproduction numbers incorporated the effects of typical
(but not COVID-specific) infection prevention measures
in the hospital. We will refer to the model parameterized
with these reproduction numbers as the wild-type sce-
nario. This scenario also assumed that HCWs use 90% ef-
fective PPE (i.e., 90% reduction in infectiousness) in
COVID wards and isolate at home immediately upon
symptom onset for 7 days, after which they return recov-
ered to work. Next, we introduced a more transmissible
SARS-CoV-2 variant into the hospital, keeping all other
parameters — including PPE use in COVID wards and
self-isolation after symptom onset — the same. Based on
recent results for B.1.1.7, we assumed a 56% increase in
transmissibility [25]. We will refer to the model parame-
trized with these higher reproduction numbers as our
baseline scenario. Various intervention scenarios were
compared to this baseline scenario.

Diagnostic performance of the PCR test
We assumed a PCR test specificity of 100% and distin-
guished two scenarios for the test sensitivity: (1) a time-
invariant perfect sensitivity of 100% and (2) a sensitivity
increasing with time since infection with a maximum
sensitivity of 93.1% close to symptom onset and declin-
ing afterward (time-varying sensitivity) [14]. We consid-
ered two sensitivity analyses to test the impact of PCR
test sensitivity assumptions on our results (Additional
file 1 pp.3 and Fig S1). Hospital staff typically self-
quarantine from symptom onset, get tested and receive
their test results within hours (based on UMCU data).
We, therefore, assumed no delay between testing and re-
ceiving test results and that HCWs do not contribute to
virus transmission after symptom onset.

Infection control interventions
Baseline scenario
In the baseline scenario, HCWs were assumed to use
PPE in COVID wards when attending to patients, but
not during breaks or in other parts of the hospital. The
baseline reduction factor (PPE effectiveness) was as-
sumed to be 90%, which includes both perfect-use PPE
efficacy and expected PPE use adherence level. We as-
sumed that 95% of the HCWs work in the same ward as
during their previous shift.
All interventions described below were in addition to

the baseline scenario. An overview of all scenarios is
given in Table 2.

Table 2 Overview of all simulated scenarios. The main characteristics of the scenarios simulated in our agent-based model are
presented
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Intervention: PPE in all wards
In this scenario, all HCWs used 90% effective PPE in all
(non-COVID and COVID) wards. However, no PPE was
used when HCWs meet each other off-ward. We per-
formed sensitivity analyses assuming PPE effectiveness
of 50% and 70%.

Intervention: HCW cohorting (no ward change)
This scenario restricted HCWs to work only in specific
wards and did not allow any ward changes. This scenario

represents the most optimistic scenario where both
nurses as well as physicians are assumed to be eligible
for cohorting to the same degree.

Intervention: regular HCW screening
All HCWs were tested for SARS-CoV-2 either with (a) a
test with perfect sensitivity every 3 days or a test with
time-varying sensitivity, (b) every 3 days or (c) every 7
days. If tested positive, HCWs were assumed to immedi-
ately self-isolate at home for 7 days.

Fig. 3 Effective reproduction numbers for the nosocomial spread of the SARS-CoV-2 variant for each simulation scenario. Results shown are
based on RS = 1.95 and RA = 0.8 (reproduction numbers for the SARS-CoV-2 variant with 56% higher transmissibility with respect to the wild-type
SARS-CoV-2 variant). Horizontal dashed lines represent a reproduction number of 1. Summary statistics were calculated for 100 simulations. A For
each intervention scenario, violin and boxplots of the overall effective reproduction numbers (for pre-/symptomatic and asymptomatic patients
and HCWs combined) are shown. B For each intervention scenario, violin and boxplots of the effective reproduction numbers for pre-/
symptomatic and asymptomatic individuals are shown. Since HCWs are assumed to immediately self-isolate upon symptom onset, the
reproduction number is assigned to the pre-symptomatic state. For screening every 3 days and 7-day contact tracing prior to symptom onset of
SARS-CoV-2 infected HCWs, we considered two different test sensitivity scenarios: time-invariant perfect test sensitivity (perfect sens) and time-
varying test sensitivity.
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Intervention: HCW contact tracing
If a HCW developed symptomatic SARS-CoV-2 infec-
tion, all contacts in the hospital during a time window of
either two or 7 days before symptom onset were traced
and tested. We will refer to these scenarios as 2-day con-
tact tracing and 7-day contact tracing. For 2-day contact
tracing, contacts were always tested assuming a time-
varying test sensitivity. For 7-day contact tracing, we dis-
tinguished between perfect and time-varying sensitivity
sub-scenarios. In the perfect sensitivity sub-scenario,
contacts were instantaneously tested on the day of
symptom onset of the index (the HCW). In the time-
varying test sensitivity sub-scenario, the test was per-
formed on the day of symptom onset if the contact with
the index was more than 5 days ago. Otherwise, it was
performed on day five after the contact. Exposed HCWs
awaiting tests were assumed to wear PPE during contact
with any patient and with other HCWs. In case of a
positive test, patients were moved to a COVID ward
while infected HCWs were sent home for self-isolation
for 7 days and replaced by susceptible HCW. We did
not model any absences of HCWs with disease symp-
toms caused by other respiratory pathogens.

Outcome measures
We computed the effective reproduction number RE

(average number of secondary cases caused by an in-
fected individual) to evaluate an intervention’s effective-
ness. We calculated an overall RE for an average individual
(patients and HCWs combined) but also stratified RE by
patients, HCWs and symptom status. The reproduction
numbers of patients were calculated for those who eventu-
ally developed symptoms ðRpat

S Þ and those who remained

without symptoms ðRpat
A Þ . Since HCWs were assumed to

immediately self-isolate upon symptom onset, we calcu-
lated R during pre-symptomatic (Rhcw

S ) and asymptomatic
states ðRhcw

A Þ. To evaluate the maximum demand on hos-
pital capacity, we considered the total number of nosoco-
mial infections among patients and HCWs over time. In
addition, we computed the percentage of absent HCWs
due to self-isolation (because of symptom onset or detec-
tion via screening or contact tracing) over time. We
assessed the efficiency of screening and contact tracing in-
terventions by their positivity rates (percentage of detected
infected individuals among tested individuals). We did not
include individuals that developed symptoms prior to be-
ing tested in the positivity rate calculations since those
were already detected and isolated in our model. For every
scenario and outcome measure, we calculated the mean
and 95% percentiles over 100 simulation runs (95% uncer-
tainty interval). We calculated positivity rates over time
merging data from all simulation runs and computed 95%
Bayesian beta-binomial credibility intervals.

A detailed description of the full model and the pa-
rameters can be found in the appendix (Additional file 1,
[26–33]). We performed sensitivity analyses to test the
robustness of our results (Table 1) and the respective re-
sults are shown in the appendix (Additional File 2, [26–
33]). The data and full code are available from https://
github.com/htahir2/covid_intra-hospital_model.git.

Results
We observed good agreement between the number of
patients in COVID wards predicted by our wild-type
scenario and the real-life UMCU data during the first
wave for RS = 1.25 and RA = 0.5. However, the model
slightly overestimates hospitalizations for the second half
of the first wave (Fig. 2A). We subsequently assumed the
introduction of a SARS-CoV-2 variant with a 56% in-
crease in transmissibility (based on B.1.1.7 data), result-
ing in RS = 1.95 and RA = 0.8. Keeping all other
parameters the same, including HCWs using PPE in
COVID wards and self-isolating at symptom onset, the
total number of nosocomial transmissions increased by

Fig. 4 Number of nosocomial transmissions of the SARS-CoV-2
variant for each simulation scenario. Results shown are based on RS
= 1.95 and RA = 0.8 (reproduction numbers for the SARS-CoV-2
variant with 56% higher transmissibility with respect to the wild-type
SARS-CoV-2 variant). Summary statistics were calculated for 100
simulations. The full rectangular bar height represents the mean
total number of nosocomial transmissions during the whole study
period. The grey error bars represent the corresponding 95%
uncertainty intervals. Patients that acquire a SARS-CoV-2 nosocomial
infection may be diagnosed in the hospital (due to symptom onset
during hospital stay or due to detection by an intervention) or
discharged to the community in a pre-symptomatic or
asymptomatic state. The rectangular bars with the black border
represent the mean number of individuals (patients and HCWs)
infected with SARS-CoV-2 and diagnosed in the hospital. The lighter
rectangular bars represent the remaining mean number of patients
discharged to community undiagnosed. For screening every 3 days
and 7-day contact tracing, we considered two different test
sensitivity scenarios: time-invariant perfect test sensitivity (perfect
sens) and time-varying imperfect test sensitivity.
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303% (Fig. 2B) and the overall effective reproduction
number increased by 62.5% (Fig. 2C). Rhcw

S and Rpat
S in-

creased the most to 0.94 and 0.6, respectively (Fig. 2D),
indicating that pre-symptomatic individuals pose the
highest risk for onward transmissions.

Intervention effects on reproduction numbers
In the context of this SARS-CoV-2 variant with higher
transmissibility, the baseline scenario of 90% effective
PPE use in COVID wards yielded an overall RE of
0.65 (Fig. 3A). Extending PPE use to non-COVID
wards reduced RE by an additional 85%, to 0.1.
Restricting HCWs to work only in specific wards
yielded a reduction in RE of 5% (to 0.62). The effect
of HCW screening on RE highly depended on the test
sensitivity. With time-varying test sensitivity, screen-
ing every 3 or 7 days reduced RE to 0.59 and 0.63
(reductions of 9% and 3%), respectively. When perfect
sensitivity was assumed, screening every 3 days re-
duced RE by 63%, to 0.24. The impact of contact tra-
cing also depended on the test sensitivity
assumptions, but to a lesser extent. For perfect test
sensitivity, 7-day contact tracing reduced RE by 32%,
to 0.44. For time-varying test sensitivity, the 2-day

and 7-day contact tracing scenarios reduced RE to
0.41 and 0.39 (reductions of 37% and 40%), respect-
ively. The additional reductions of RE by the interven-
tion scenarios over and above the baseline scenario
were most prominent for pre-symptomatic HCWs
(Fig. 3B).

Intervention effects on numbers of nosocomial infections
PPE use in all wards or HCW screening every 3 days
with perfect test sensitivity would prevent 93.7% and
82.7% of all transmissions, respectively (Fig. 4), and both
interventions would also prevent outbreaks among pa-
tients and HCWs (Fig. 5). Reductions in nosocomial in-
fections were much smaller for regular screening
interventions with time-varying test sensitivity: screening
every 3 days would lead to a 20.4% reduction and
screening once a week to a 10.1% reduction. Testing
with perfect test sensitivity followed by 7-day contact
tracing was more effective (55.8% reduction of transmis-
sions) than regular screening every 3 or 7 days. Testing
with time-varying sensitivity followed by 2-day or 7-day
contact tracing was similarly effective as testing with
perfect sensitivity followed by 7-day contact tracing (re-
ductions of 61.4% and 64.1%, respectively). HCW
cohorting would decrease the total number of

Fig. 5 Number of nosocomial infections among patients and HCWs over time for all simulation scenarios with the SARS-CoV-2 variant. Results
shown are based on RS = 1.95 and RA = 0.8 (reproduction numbers for the SARS-CoV-2 variant with 56% higher transmissibility with respect to
the wild-type SARS-CoV-2 variant). For each scenario, the 7-day moving average of the mean prevalence (over 100 simulation runs) is shown. A
Number of hospital-acquired infections among patients. B Number of hospital-acquired infections among HCWs. For screening every 3 days and
contact tracing 7 days prior to symptom onset of SARS-CoV-2 infected HCWs, we considered two different test sensitivity scenarios: time-invariant
perfect test sensitivity (perfect sens) and time-varying imperfect test sensitivity
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nosocomial infections by 13%. Note that our model pre-
dicted that approximately 30% of patients that either got
admitted with SARS-CoV-2 or acquired the infection in
the hospital were detected either due to testing at symp-
tom onset or testing as part of an intervention (Add-
itional file 2: Fig. S1). The remaining 70% of infected
patients were discharged undiagnosed and without
symptoms.

Intervention effects on HCW absenteeism
Our baseline scenario predicted a maximum HCW ab-
senteeism of 5.4%, including absenteeism due to symp-
toms or home isolation (Fig. 6). When comparing
intervention scenarios to the baseline scenario, HCW
absenteeism is lowest for PPE use in all wards (a max-
imum of 2.3%). The maximum absenteeism percentages
were 5.2% for HCW cohorting, 5.1% for regular screen-
ing with perfect test sensitivity, 8.6% for regular screen-
ing with time-varying test sensitivity every 7 days and
6.6% every 3 days, 4.0% for 7-day contact tracing with
testing assuming perfect sensitivity, 3.6% for 2-day con-
tact tracing with testing assuming time-varying sensitiv-
ity and 3.9% for 7-day contact tracing with testing
assuming time-varying sensitivity.

Efficiency of screening and contact tracing interventions
HCW screening every 3 days with a perfect test would
lead to the lowest test positivity rate of all testing-based
interventions (Fig. 7A). Screening of HCWs every week
compared to every 3 days yields higher positivity rates
with its mean reaching a maximum value of 5.1%. The
positivity rate of screening interventions linearly in-
creases with increasing prevalence (Additional file 2:
Figure S1).
Positivity rates for contact tracing interventions are

much higher than for screening interventions, reaching
as high as 15.1% when a perfect test sensitivity is as-
sumed (Fig. 8A). The maximum positivity rates for 2-day
and 7-day contact tracing with time-varying test sensitiv-
ities are only slightly lower at 11.3% and 10.4%, respect-
ively (Fig. 8B, C). Positivity rates of contact tracing
interventions are stable across prevalence values (Add-
itional file 1: Figure S2).
Sensitivity analyses show that our findings do not

change significantly when the assumed PPE effectiveness
is reduced to 70%. When PPE effectiveness is assumed
to be as low as 50%, screening every 3 days with perfect
sensitivity becomes more effective than PPE use in all
wards. However, PPE use in all wards is still more effect-
ive than all other interventions (Additional file 2 p. 2).

Fig. 6 Daily percentage of absent HCWs during the hospital epidemic for each simulation scenario. Results shown are based on RS = 1.95 and RA
= 0.8 (reproduction numbers for the SARS-CoV-2 variant with 56% higher transmissibility with respect to the wild-type SARS-CoV-2 variant). The 7-day
moving average of the mean percentage (over 100 simulation runs) of HCWs absent from work due to symptom onset or a detected SARS-CoV-2
infection screening or contact tracing is shown. For screening every 3 days and contact tracing 7 days prior to symptom onset of SARS-CoV-2 infected
HCWs, we considered two different test sensitivity scenarios: time-invariant perfect test sensitivity (perfect sens) and time-varying imperfect test sensitivity
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Discussion
During the first epidemic wave of the wild-type SARS-
CoV-2 in the Netherlands, nosocomial transmission was
considered to be of relative minor importance. Our re-
sults suggest that a more transmissible virus variant
could significantly increase the total number of nosoco-
mial transmissions if hospital prevention measures
would not be expanded beyond those implemented dur-
ing the first wave (HCWs using PPE with assumed 90%
effectiveness in COVID-19 wards and self-isolating at
home after symptom onset). Our findings suggest that
universal PPE use in all hospital wards is the most effect-
ive intervention to reduce the reproduction number and
absenteeism. These results are consistent with a previous
modelling study and previous findings on significant re-
ductions of nosocomial-acquired SARS-CoV-2 infections
after implementation of universal masking policies [1,
11, 13, 34–37].
In our model, HCW cohorting only had a small impact

on nosocomial transmissions, which is due to the fact
that we assumed 90% effective PPE use in the COVID
wards in all scenarios. Several studies have reported ele-
vated risks for HCWs working in COVID-19 patient
care [5, 6]. Our results suggest that maintaining suffi-
cient PPE supplies in hospital settings may reduce the

need for implementing additional HCW cohorting
strategies.
Our model also suggested that regular screening of

HCWs could have a strong impact, but only if the test
sensitivity is high throughout the infectious period. Tests
with imperfect time-varying sensitivity miss many infec-
tions during the pre-symptomatic phase. Indeed, our
model identified pre-symptomatically infected HCWs as
drivers of transmission both to patients and to other
staff. This is consistent with a descriptive study on
HCWs in France where contacts causing the transmis-
sions took place in the pre-symptomatic phase of the
index case in 30% of all cases and in almost 50% of
HCW-HCW transmissions [33]. Our results also agree
with previous modelling studies suggesting that regular
screening of HCWs was less effective than effective PPE
use.
Contact tracing was highly effective in limiting noso-

comial transmissions in our model, especially when
traced contacts are tested at least 5 days after their ex-
posure and precautionary measures are undertaken in
the meantime. If traced HCWs are immediately tested,
self-isolated and replaced by susceptible HCWs, this can
lead to increased transmission, a phenomenon that was
also observed by Scarpino et al. [38]. The authors used a

Fig. 7 Positivity rates over time for screening interventions. Results shown are based on RS = 1.95 and RA = 0.8 (reproduction numbers for the
SARS-CoV-2 variant with 56% higher transmissibility with respect to the wild-type SARS-CoV-2 variant). Positivity rates were calculated by the
number of positive detected HCWs among the number of tested HCWs using data of all simulation runs combined (points). The shaded regions
represent the 95% Bayesian beta-binomial credibility intervals. HCWs who developed symptoms prior to the day of testing were not included in
the positivity rate as we assume that they were already correctly identified. A Screening every 3 days with time-invariant perfect test sensitivity.
B Screening every 3 days with time-varying imperfect test sensitivity. C Screening every 7 days with time-varying test sensitivity
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network model and evidence from data on influenza and
dengue outbreaks to show that replacing infected indi-
viduals in essential societal roles with susceptibles may
lead to accelerated transmission. Our results indicate
that allowing traced HCWs to work with PPE in all hos-
pital wards is more effective in limiting transmission. Fi-
nally, our model suggests that contact tracing yields
higher positivity rates than screening interventions, not
only at high prevalence but also during periods of low
infection rates, making this also a potentially successful
and cost-effective infection control strategy in hospital
settings. Our findings reinforce the recommendation by
Paltansing et al to test all close contacts of a SARS-CoV-
2-positive case immediately and subsequently on day 3
and 7 regardless of symptoms and to allow HCWs to
work with surgical masks while awaiting their test results
[13].
Our study has several limitations. First, we assumed

that transmission occurs solely via HCWs in the absence
of a direct patient-to-patient contact pathway, as has
been used before in an individual-based model of noso-
comial influenza transmission [39]. Assuming similar

transmission modes for SARS-COV-2, we consider this
assumption reasonable for hospital settings in Western
countries where direct patient-to-patient contact is rare.
When this assumption is violated, our estimated impact
of HCW-based interventions is likely to be overesti-
mated. Second, we considered SARS-CoV-2 as a cause
of symptoms and neglected other respiratory tract infec-
tions. Thus, real-life positivity rates of contact tracing
may be lower than presented in this study. Third, while
we have included age-specific hospitalization rates for
patients admitted with SARS-CoV-2 and different pro-
portions of asymptomatic infections for HCWs and pa-
tients, we have neglected age-structure in our
transmission model. A possible extension of our model
would be the inclusion of age-dependent susceptibility
and infectiousness parameters. However, since the con-
sidered interventions in our model are not differential
with respect to age, we do not expect any impact on the
relative effect of the interventions. Further, our HCW
cohorting intervention scenarios assume the same de-
gree of cohorting both for nurses and physicians. In real-
ity, cohorting strategies are only feasible for nurses. As

Fig. 8 Positivity rates over time for contact tracing interventions. Results shown are based on RS = 1.95 and RA = 0.8 (reproduction numbers for
the SARS-CoV-2 variant with 56% higher transmissibility with respect to the wild-type SARS-CoV-2 variant). The positivity rate is computed by the
percentage of positive tested contacts among all traced contacts using data of all 100 simulation runs merged. Positivity rates are assigned to the
day of symptom onset of the index case, i.e., HCW that developed symptoms due to a SARS-CoV-2 infection. Traced contacts who developed
symptoms due to a SARS-CoV-2 infection are excluded from contact tracing as we assume that they are always correctly identified. The plot
shows the 7-day moving average (coloured line) and the 95% Bayesian beta-binomial confidence interval (shaded area). A Tracing contacts of
symptomatically infected HCWs of the last 2 days before symptom onset using a diagnostic test with perfect test sensitivity. B Tracing contacts of
symptomatically infected HCWs of the last 2 days before symptom onset with testing 5 days after contact with the index case assuming time-
varying test sensitivity. C Tracing contacts of symptomatically infected HCWs of the last 7 days before symptom onset with testing 5 days after
contact with the index case assuming time-varying test sensitivity
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such, the estimated effect of this intervention is likely to
be overestimated. Since the estimated effect of HCW
cohorting was estimated to be small, we expect it to be
even smaller when implemented in the real world.
Moreover, the duration of contacts, SARS-CoV-2 rein-
fections, visitors or other ancillary staff, delays between
symptom onset and isolation or delays between test ap-
plication and test result were not included. Finally, while
we identified one parameter set for which our model re-
sults fitted the available data well, it is possible that
other parameter sets exist that would produce a compar-
able fit. We have not used formal fitting procedures to
match our model results to the data given the large
number of parameters. However, qualitatively, our con-
clusions were robust in sensitivity analyses to variation
of the most important model parameters. While our
model was developed using data of a large Dutch teach-
ing hospital and of the first wave of the COVID-19 epi-
demic in the Netherlands, our results can be generalized
to other hospitals with a similar structure and may be
relevant for subsequent waves and future infectious
disease outbreaks.

Conclusions
In conclusion, our model demonstrates that PPE use in
all wards is the most effective measure to substantially
reduce nosocomial spread of SARS-CoV-2 variants with
higher transmissibility. However, contact tracing and
regular screening using high-sensitivity tests are also ef-
fective interventions, which might be preferred in some
settings.
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