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Abstract

Background: Whether earlier onset of puberty is associated with higher cardiovascular risk in early adulthood is not
well understood. Our objective was to examine the association between puberty timing and markers of cardiovascular
structure and function at age 25 years.

Methods: We conducted a prospective birth cohort study using data from the Avon Longitudinal Study of Parents and
Children (ALSPAC). Participants were born between April 1, 1991, and December 31, 1992. Exposure of interest was age
at peak height velocity (aPHV), an objective and validated growth-based measure of puberty onset. Outcome measures
included cardiovascular structure and function at age 25 years: carotid intima-media thickness (CIMT), left ventricular
mass index (LVMI) and relative wall thickness (RWT), pulse wave velocity (PWV) and systolic blood pressure (SBP).
Multiple imputation was used to impute missing data on covariates and outcomes. Linear regression was used to
examine the association between aPHV and each measure of cardiac structure and function, adjusting for maternal
age, gestational age, household social class, maternal education, mother’s partner’s education, breastfeeding, parity,
birthweight, maternal body mass index, maternal marital status, maternal prenatal smoking status and height and fat
mass at age 9. All analyses were stratified by sex.

Results: A total of 2752–4571 participants were included in the imputed analyses. A 1-year older aPHV was not
strongly associated with markers of cardiac structure and function in males and females at 25 years and most results
spanned the null value. In adjusted analyses, a 1-year older aPHV was associated with 0.003mm (95% confidence
interval (CI) 0.00001, 0.006) and 0.0008mm (95% CI − 0.002, 0.003) higher CIMT; 0.02m/s (95% CI − 0.05, 0.09) and 0.02
m/s (95% CI − 0.04, 0.09) higher PWV; and 0.003mmHg (95% CI − 0.60, 0.60) and 0.13mmHg (95% CI − 0.44, 0.70)
higher SBP, among males and females, respectively. A 1-year older aPHV was associated with − 0.55 g/m2.7 (95% CI −
0.03, − 1.08) and − 0.89 g/m2.7 (95% CI − 0.45, − 1.34) lower LVMI and − 0.001 (95% CI − 0.006, 0.002) and − 0.002 (95%
CI − 0.006, 0.002) lower RWT among males and females.

Conclusions: Earlier puberty is unlikely to have a major impact on pre-clinical cardiovascular risk in early adulthood.
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Background
Cardiovascular disease (CVD) is a major cause of morbid-
ity and mortality worldwide, with 7.8 million premature
CVD deaths estimated in 2025 if current trajectories are
not altered [1, 2]. CVD risk originates in early life and
tracks through the life course [3, 4]. Onset of puberty is a
transitional period between childhood and adulthood with
intense hormonal activity, including the release of gonado-
tropins, leptin, sex-steroids and growth hormone, leading
to physical bodily changes and the appearance of second-
ary sexual characteristics. The most striking feature of pu-
berty is a spurt in height which occurs in males in late
puberty and is highly correlated with secondary sexual
characteristics such as enlargement of larynx, deepening
of voice and genitalia development [5]. Conversely, growth
spurts tend to start earlier in girls, often coinciding with
breast development and menarche, but with shorter dur-
ation in comparison to boys [6–9]. Age at puberty onset
has been decreasing for several decades, with increasing
childhood adiposity (a condition of being severely over-
weight, or obese) thought to play a substantial role [10].
Several studies to date have examined the association

between earlier puberty timing and CVD risk, with
conflicting findings [11–17]. A key limitation of many
studies including observational cohort studies and
Mendelian randomisation (MR) designs has included
lack of adjustment for early childhood adiposity or use
of indirect measures of adiposity such as BMI for adjust-
ment, resulting in residual confounding of the puberty
timing-CVD risk associations by early life adiposity [11,
12, 14, 15, 18, 19]. In addition, though age at menarche
offers a reliable marker of puberty timing in females,
most previous studies have assessed puberty timing
using self-reported measures among males such as voice
change, facial hair and pubic hair [20, 21], leading to
measurement error [22]. Thus, studies examining the as-
sociation between objectively measured puberty timing
and CVD risk in males and females, while adjusting for
direct measures of childhood adiposity are required to
better understand the aetiology of puberty timing and
CVD risk in early life.
Using the objective growth-based measure of puberty

onset (age at peak height velocity [aPHV]), we aimed to
better understand the association between puberty tim-
ing and pre-clinical cardiovascular risk in early adult-
hood using markers of cardiovascular structure and
function at age 25 years (carotid intima-media thickness,
left ventricular mass index and relative wall thickness,
pulse wave velocity and systolic blood pressure).

Methods
Study participants
We used data from the Avon Longitudinal Study of Par-
ents and Children (ALSPAC), a prospective birth cohort

study based in Southwest England [23–25]. The women in-
vited to participate in this study were pregnant with an ex-
pected delivery date between April 1, 1991, and December
31, 1992, and living in one of the three Bristol-based health
districts. A detailed description of this study is available
elsewhere [23–25].
The initial number of pregnancies enrolled was 14,541.

When the oldest children were approximately 7 years
of age, an attempt was made to increase the initial
sample with eligible children who did not join the
study originally. This resulted in an additional 913
children being enrolled. Therefore, the total sample
size was 15,454 pregnancies. Of these 14,901 were
alive at 1 year of age. In the three decades since en-
rolment, ALSPAC has used questionnaires completed
by both parents and children, routine medical data
and research clinics as methods of follow-up. The
clinics took place when the participants were 7, 9, 10,
11, 13, 15, 17 and 25 years old [23–27].
Ethical approval for the ALSPAC study was obtained

from the ALSPAC Law and Ethics Committee and Local
Research Ethics Committees. Informed consent for the
use of data collected via questionnaires and clinics was
obtained from participants following the recommenda-
tions of the ALSPAC Law and Ethics Committee at the
time. The study website contains details of all the data
that is available through a fully searchable data diction-
ary and variable search tool: http://www.bristol.ac.uk/
alspac/researchers/our-data/ [28].

Exposure
Assessment of timing of puberty
Puberty is a period of intense hormonal activity and
rapid growth, of which the most striking feature is the
spurt in height [6]. aPHV is a validated measure of pu-
berty timing [6] captured using Superimposition by
Translation and Rotation (SITAR), a non-linear multi-
level model with natural cubic splines which estimates
the population average growth curve and departures
from it as random effects [29, 30]. Using SITAR, PHV
was identified in ALSPAC participants using numerical
differentiation of the individually predicted growth
curves, with aPHV being the age at which the maximum
velocity is observed [29–31]. Repeated height data in-
cluded measurements from research clinics and were
used here to derive aPHV using SITAR. Individuals with
at least one measurement of height from 5 years to < 10
years, 10 years to < 15 years and 15 years to 20 years were
included. Data were analysed for males and females sep-
arately. The model was fitted using the SITAR package
in R version 3.4.1, as described elsewhere [31]. Further
details on how aPHV was derived are described else-
where [31, 32].
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Outcomes
Assessment of cardiovascular risk
Carotid intima-media thickness, left ventricular mass
index and relative wall thickness, pulse wave velocity
and systolic blood pressure were measured at research
clinics at age 25 years. Participants fasted for 6 h before
the clinic, with the exception of those participants with a
diagnosis of diabetes or a condition that would not allow
fasting. Carotid intima-media thickness scans of the left
and right common carotid arteries were performed using
a CardioHealth Panasonic system with a 13–5MHz lin-
ear array broadband transducer according to a standar-
dised protocol. Carotid intima-media thickness has been
validated in several studies as a strong predictor of
CVD-risk [33–35]. Participants lay on a couch with their
arms by their side, while a trained researcher performed
the ultrasound test on both sides of their neck. Right
and left carotid intima-media thickness measurements
were taken to be the average of 3 end-diastolic measure-
ments of the far-wall of the common carotid artery over
a length of 5–10mm, and 10 mm adjoining the bifur-
cation. The mean of both right and left carotid intima-
media thickness measures was calculated and used here.
Echocardiography was performed by two experienced

echo-cardiographers using a Philips EPIQ 7G Ultra-
sound System equipped with a X5-1 transducer in ac-
cordance with American Society of Echocardiography
guidelines; these techniques are described elsewhere
[36]. Left ventricular mass, assessed by ultrasound, was
indexed to height2.7 to adjust for body surface area. Rela-
tive wall thickness was calculated using left ventricular
internal diameter in diastole and thickness of the left
ventricular posterior wall and septal wall. Pulse wave vel-
ocity was measured using a Vicorder device (Skidmore
Medical, Bristol, UK) at femoral and carotid artery level
which has been validated in previous studies in adoles-
cents [37]. Ten pulse wave velocity measurements were
taken within ≤ 0.5 m/s of each other. These were aver-
aged to give a measurement of arterial stiffness. Systolic
blood pressure was measured (typically from the right
arm) with the subject in a sitting position using an
Omron 705-IT machine [36].

Covariates
We selected potential confounders a priori and used a
directed acyclic graph (DAG) to encode this causal
knowledge of this research question. In summary, we
have included only covariates in our model, which we
believe to be common causes of the exposure and out-
come and have excluded any variables that might be
potential mediators of the association [38]. Therefore,
we considered the following as possible confounders
of the association between aPHV and cardiovascular
structure and function at age 25 years; maternal age,

gestational age at birth, household social class, mater-
nal education, mother’s partner’s education, breast-
feeding of baby until 3 months, parity, birthweight,
maternal body mass index (BMI), maternal marital
status, maternal smoking status during first 3 months
of pregnancy, and height and DXA-determined fat
mass at age 9.
Maternal age was reported in the mother’s antenatal

questionnaires. Gestational age at birth was estimated
from clinical records. Household social class was mea-
sured as the highest of the mother’s or her partner’s oc-
cupational social class using data on job title and details
of occupation collected about the mother and her part-
ner from the mother’s questionnaire at 32 weeks gesta-
tion. Social class was derived using the standard
occupational classification (SOC) codes developed by the
UK Office of Population Census and Surveys and classi-
fied as I professional, II managerial and technical, IIINM
non-manual, IIIM manual and IV&V part skilled occu-
pations and unskilled occupations.
A questionnaire at 32 weeks gestation asked mothers

to report on educational attainment, which was cate-
gorised as below O-Level (Ordinary Level; exams taken
in different subjects usually at age 15–16 at the comple-
tion of legally required school attendance, equivalent to
today’s UK General Certificate of Secondary Education),
O-Level only, A-Level (Advanced-Level; exams taken in
different subjects usually at age 18) or university degree
or above.
Breastfeeding information was collected via ques-

tionnaires administered at 4 weeks, 6 months and 15
months. Parity was defined as the number of previous
pregnancies that had resulted in a live or stillborn in-
fant collected at 18 weeks gestation. Birthweight was
extracted from medical records. Maternal height and
weight data were self-reported from a questionnaire
administered at 12 weeks gestation; these were used
to calculate maternal BMI. Marital status was ob-
tained from antenatal questionnaires and classified as
never married, married and widowed, divorced, or
separated. Smoking in the first trimester of pregnancy
was self-reported by mothers at 18 weeks gestation;
responses to smoking any tobacco (cigarettes, cigars,
pipes, or other) were grouped as follows: no smoking,
< 10 per day, 10–19 per day or greater than 19 per
day, and were re-categorised as a dichotomous vari-
able (smoking: yes/no).
Height and fat mass of offspring was measured at

clinics at age 9 years. Standing height was measured
to the last complete mm using the Harpenden Stadi-
ometer. Fat mass (in kg, less head) was derived from
whole body DXA scans performed using a GE Lunar
Prodigy (Madison, WI, USA) narrow fan beam
densitometer.
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Statistical analysis
Statistical analysis was performed using Stata MP 14.2.
Linearity of association between aPHV and cardiovascu-
lar structure and function in males and females was
assessed by comparing fit of models regressing carotid
intima-media thickness, left ventricular mass index and
relative wall thickness, pulse wave velocity, and systolic
blood pressure on fourths of aPHV (treated as a con-
tinuous exposure) to models regressing carotid intima-
media thickness, left ventricular mass index and relative
wall thickness, pulse wave velocity and systolic blood
pressure on fourths of aPHV (treated as a categorical ex-
posure); models were then formally compared using a
likelihood ratio test. Data on aPHV and all cardiovascu-
lar outcomes were normally distributed. We used linear
regression to examine the association between aPHV
and each measure of cardiac structure and function. All
analyses were stratified by sex to examine whether asso-
ciations of aPHV and each outcome differed for males
and females.

Dealing with missing data
There were 1197–2193 participants with complete data
for aPHV, each outcome and all covariates. Cardiac
structure and function were also measured at the 18 year
ALSPAC clinic. To increase efficiency and minimise se-
lection bias, we used multivariate multiple imputation to
impute missing data on covariates and outcomes in all
participants that had a measure of aPHV and had a
measure of the outcome at the age 18 year or age 25 year
research clinic (N = 4339 for carotid intima-media thick-
ness, N = 2752 for left ventricular mass index, N = 2776
for relative wall thickness, N = 3964 for pulse wave vel-
ocity and N = 4571 for systolic blood pressure). We car-
ried out 20 cycles of regression switching and generated
20 imputation datasets [39]. We then examined associa-
tions of aPHV and outcomes in these multiple imputed
datasets; results are averaged across the results from
each of these 20 datasets using Rubin’s rules, taking ac-
count of uncertainty in the imputation so that the stand-
ard errors for any regression coefficients (used to
calculate 95% confidence intervals) take account of un-
certainty in the imputations and uncertainty in the esti-
mate [39]. See Additional file 1: Table S1 for a list of the
variables included in the multiple imputation models
and how they were entered into the models.
We repeated the main adjusted analysis in the ob-

served dataset, among participants with complete-case
data on exposure, outcome and covariates (N = 1199 for
carotid intima-media thickness, N = 1197 for left ven-
tricular mass index, N = 1203 for relative wall thickness,
N = 1394 for pulse wave velocity and N = 2193 for sys-
tolic blood pressure).

Results
The distribution/proportions of baseline characteristics
by fourths of age at peak height velocity are shown in
Table 1, and the characteristics of the cohort included in
the analysis (by sex) are shown in Additional file 1:
Table S2. A total of 2752–4571 participants were in-
cluded in the imputed analyses. The mean aPHV was
13.54 years in males and 11.73 years in females. Findings
from linearity tests of the association between aPHV and
cardiac structure and function demonstrated little evi-
dence of departures from linearity, allowing aPHV to be
examined as a continuous exposure (Additional file 1:
Table S3). The distribution of variables in observed and
imputed data is shown in Additional file 1: Tables S4-S8;
distributions of most variables were broadly similar be-
tween observed and imputed datasets with some minor
differences only for socio-economic position indicators
which were slightly higher in the observed datasets.

Age at peak height velocity and cardiovascular structure
and function
Males
There was little evidence of association between aPHV
and cardiac structure and function in males, with results
mostly spanning the null value. For example, in
confounder-adjusted analyses, a one-year older aPHV
was associated with 0.003 mm (95% confidence interval
(CI) 0.00001, 0.006) higher carotid intima-media thick-
ness, 0.02 m/s (95% CI − 0.05, 0.09) higher pulse wave
velocity and 0.003 mmHg (95% CI − 0.60, 0.60) higher
systolic blood pressure at 25 years. A 1-year older aPHV
was associated with a − 0.55 g/m2.7 (95% CI − 0.03, −
1.08) lower left ventricular mass index and − 0.001 (95%
CI − 0.006, 0.002) lower relative wall thickness at 25
years (Table 2).

Females
Similar to males, there was little evidence of association
observed between aPHV and cardiac structure and func-
tion in females, with results mostly spanning the null
value. In confounder-adjusted analyses, a one-year older
aPHV was associated with 0.0008 mm (95% CI − 0.002,
0.003) higher carotid intima-media thickness, 0.02 m/s
(95% CI − 0.04, 0.09) higher pulse wave velocity and
0.13 mmHg (95% CI − 0.44, 0.70) higher systolic blood
pressure at 25 years. A one-year older aPHV was associ-
ated with a − 0.89 g/m2.7 (95% CI − 0.45, − 1.34) lower
left ventricular mass index and − 0.002 (95% CI − 0.006,
0.002) lower relative wall thickness at 25 years (Table 2).
Unadjusted and confounder adjusted results were

not materially different for each outcome in males
and females (Table 2).
Adjusted associations of aPHV with measures of car-

diac structure and function among participants with

Maher et al. BMC Medicine           (2021) 19:78 Page 4 of 8



complete-case data on exposure, outcome and covariates
were comparable to the main results obtained using im-
puted datasets (Additional file 1: Table S9).

Discussion
This study aimed to better understand the association
between puberty timing and cardiovascular structure
and function at age 25 years using aPHV as an objective
growth-based measure of puberty onset and carotid
intima-media thickness, left ventricular mass index and

relative wall thickness, pulse wave velocity and systolic
blood pressure as pre-clinical measures of cardiovascular
risk. There was little evidence of association between
aPHV and cardiovascular structure and function at 25
years, with results spanning the null in all but left ven-
tricular mass index for which the association was
inverse.
Previous studies have shown that a ∼ 5 g/m2 higher left

ventricular mass index can be predicted to correspond
to a 7–20% increase in CVD morbidity and mortality

Table 1 Distribution/proportions of baseline characteristics by fourths of age at peak height velocity based on imputed data

Quartile 1, n (%) Quartile 2, n (%) Quartile 3, n (%) Quartile 4, n (%)

Household social class

Professional 182 (16.78) 188 (17.38) 218 (20.02) 213 (19.67)

Managerial/technical 501 (46.18) 479 (44.09) 517 (47.64) 514 (47.45)

Non-manual 248 (22.87) 273 (25.19) 230 (21.22) 235 (21.75)

Manual/part skills/unskilled 154 (14.17) 145 (13.34) 121 (11.12) 121 (11.13)

Maternal education 182 (16.78) 188 (17.38) 218 (20.02) 213 (19.67)

Less than O level 217 (20.03) 181 (16.72) 164 (15.16) 197 (18.18)

O level 372 (34.24) 392 (36.02) 368 (33.83) 330 (30.51)

A level 298 (27.49) 293 (27.04) 339 (31.20) 323 (29.80)

Degree or above 198 (18.24) 219 (20.22) 215 (19.81) 233 (21.51)

Mother’s partner’s education

Less than O level 312 (28.73) 261 (24.14) 246 (22.64) 237 (21.87)

O level 230 (21.19) 232 (21.39) 223 (20.52) 250 (23.07)

A level 300 (27.65) 331 (30.51) 321 (29.56) 300 (27.66)

Degree or above 243 (22.43) 260 (23.96) 296 (27.28) 297 (27.40)

Breastfeeding until 3 months

Exclusively 389 (35.83) 407 (37.53) 408 (37.59) 383 (35.35)

Non-exclusively 523 (48.12) 514 (47.37) 555 (51.12) 570 (52.61)

Never 174 (16.05) 164 (15.10) 122 (11.29) 130 (12.04)

First-born child 559 (51.51) 506 (46.67) 547 (50.42) 516 (47.64)

Maternal marital status

Never married 143 (13.14) 139 (12.79) 127 (11.74) 144 (13.29)

Married 883 (81.42) 896 (82.60) 913 (84.01) 891 (82.28)

Widowed/divorced/separated 59 (5.44) 50 (4.61) 46 (4.25) 48 (4.43)

Maternal smoking status

No 892 (82.20) 930 (85.68) 931 (85.82) 924 (85.28)

Yes 193 (17.80) 155 (14.32) 154 (14.18) 159 (14.72)

Mean (SE) Mean (SE) Mean (SE) Mean (SE)

Maternal age at delivery (years) 29.25 (0.14) 29.35 (0.14) 29.64 (0.13) 29.74 (0.14)

Gestational age (weeks) 39.54 (0.05) 39.48 (0.05) 39.32 (0.05) 39.37 (0.05)

Birthweight (kg) 3.35 (0.01) 3.41 (0.01) 3.44 (0.01) 3.50 (0.01)

Maternal BMI (kg/m2) 23.13 (0.11) 22.80 (0.11) 22.63 (0.11) 22.70 (0.11)

Height at age 9 (cm) 141.36 (0.19) 138.95 (0.19) 139.12 (0.18) 138.29 (0.18)

Fat mass at age 9 (kg) 37.52 (0.25) 33.69 (0.21) 33.22 (0.20) 31.87 (0.18)

Abbreviations: SE standard error, BMI body mass index
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[40–42]. Given the small differences in left ventricular
mass index per year older aPHV found here, our find-
ings suggest that earlier puberty is unlikely to have a
major impact on pre-clinical cardiovascular risk in early
adulthood.

Comparison with other studies
Several studies to date have examined the association
between puberty timing and clinical endpoints such as
CVD and traditional cardiovascular risk factors such as
blood pressure and adiposity, with conflicting findings
[11–13, 18, 20, 21, 43]. However, these studies used dif-
ferent measures of puberty timing (objective vs. self-
report) [43, 44] and had varying degrees of adjustment
for confounding (particularly early childhood adiposity)
[11–13, 18] and different ranges in follow-up and age of
measurement of outcomes [17, 21, 45].
In contrast, fewer studies have examined associations

of puberty timing with measures of cardiac structure
and function, which are used clinically to assess arterial
stiffness, left ventricular hypertrophy and cardiac remod-
elling [44]. Hardy and colleagues found evidence of an
association between later puberty timing (measured
using age at menarche) and lower left ventricular mass
and relative wall thickness in females in the National
Study of Health and Development (NSHD) (N = 1385),
though results attenuated after adjustment for childhood
or adult adiposity [44]. In contrast, there was no strong
evidence of an association between puberty timing (mea-
sured via physical examination) and any measure of car-
diac structure or function in males in the NSHD, a
finding comparable to ours [44]. Our findings are also
comparable to results from the Young Finns Cohort
(N = 794) which demonstrated no strong evidence of as-
sociations between puberty timing (measured via age at
menarche) and carotid intima-media thickness in fe-
males at age 30–39 years [17]. Similarly, in a study of
800 women aged 50 to 81 years in Southern Germany,
age at menarche was not associated with carotid intima-

media thickness in both unadjusted and confounder-
adjusted analyses [45].

Strengths and limitations
Strengths of this study include use of an objective meas-
ure of puberty timing (aPHV) based on prospective, re-
peated measures of height from age 5 years to 20 years
which is a more accurate marker of puberty timing than
self-reported measures. We also used measures of pre-
clinical CVD, which strongly predict later cardiovascular
risk. We adjusted for childhood adiposity using DXA fat
mass at age 9, allowing us to adjust for directly mea-
sured pre-pubertal adiposity, a key limitation in several
previous studies [11–13, 18]. However, there are also
several limitations; a limitation of our adiposity adjust-
ment may include the possibility that DXA fat mass is
measured after pubertal onset for a small proportion of
participants (N = 1 for males, N = 41 for females) giving
rise to the possibility of collider bias if DXA fat mass at
age 9 is a mediator of the puberty timing-cardiac risk as-
sociation. However, we believe that any bias introduced
due to this is minimal, given that prior work in this co-
hort has shown that puberty has little impact on post-
pubertal fat mass gain [32] (suggesting fat mass is an un-
likely mediator of any associations of puberty timing
with health outcomes) and that analyses without adjust-
ment for fat mass were similar to confounder-adjusted
results. Nevertheless, though we have shown that our
approach to adjustment for adiposity here is not likely to
have introduced bias to our results, the direction of
causality of the relationship between adiposity and pu-
berty timing is complex given the potential shared gen-
etic architecture between the traits. In addition, the
outcome measures used may be subject to measurement
error which may have led to biased estimates. However,
any measurement error is likely to be non-differential
and would therefore bias our results towards to the null
[46, 47]. Further limitations include potential for selec-
tion bias due to missing data and attrition from the

Table 2 Associations between age at peak height velocity and cardiac structure and function in males and females at age 25

Males Females

Outcome Crude estimate (95% CI)a Adjusted estimate (95% CI)a,b Crude estimate (95% CI)a Adjusted estimate (95% CI)a,b

CIMT 0.0001 (− 0.002, 0.003) 0.003 (0.00001, 0.006) − 0.0007 (− 0.003, 0.002) 0.0008 (− 0.002, 0.003)

LVMI − 1.00 (− 0.50, − 1.50) − 0.55 (− 0.03, − 1.08) − 1.17 (− 0.74, − 1.59) − 0.89 (− 0.45, −1.34)

RWT − 0.003 (− 0.007, 0.0009) − 0.001 (− 0.006, 0.002) − 0.002 (− 0.006, 0.001) − 0.002 (− 0.006, 0.002)

PWV − 0.04 (− 0.11, 0.02) 0.02 (− 0.05, 0.09) − 0.03 (− 0.09, 0.01) 0.02 (− 0.04, 0.09)

SBP − 0.97 (− 0.40, − 1.54) 0.003 (− 0.60, 0.60) − 1.20 (− 0.69, − 1.71) 0.13 (− 0.44, 0.70)

aPHV age at peak height velocity, CI confidence interval, CIMT carotid intima-media thickness, LVMI left ventricular mass index, RWT relative wall thickness, PWV
pulse wave velocity, SBP systolic blood pressure
aAssociation of a one-year older aPHV with each outcome
bAdjusted for maternal age, gestational age, household social class, maternal education, mother’s partner’s education, breastfeeding of baby until 3 months,
parity, birthweight, maternal body mass index, maternal marital status, maternal smoking status during first 3 months of pregnancy, and height and fat mass of
offspring at age 9
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cohort. However, the use of multivariate multiple imput-
ation aimed to minimise bias and a loss of statistical
power by imputing missing covariate and outcome data,
and results in multiply imputed and complete-case data
were similar. However, replication of findings in studies
with larger sample sizes may be needed in order to pro-
vide more precise estimates of associations. Moreover,
our outcomes were measured at age 25 years, and while
the pre-clinical measures of CVD used here are strong
predictors of later cardiovascular risk [33, 48], young
adulthood might be too early to detect changes in car-
diac structure and function that progress with age.
Therefore, future studies examining a puberty timing
and CVD risk relationship in older populations may be
worthwhile. Finally, the vast majority of the ALSPAC co-
hort are of White ethnicity [23], and a key limitation of
our study is the generalisability of the findings to non-
White ethnicities.

Conclusion
Age at peak height velocity was not strongly associated
with measures of cardiac structure and function among
males and females at age 25 years. Earlier puberty is un-
likely to have a major impact on pre-clinical cardiovas-
cular risk in early adulthood.
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