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Abstract

Background: Recently, the association between inflammatory bowel disease (including ulcerative colitis and
Crohn’s disease) and BMD has attracted great interest in the research community. However, the results of the
published epidemiological observational studies on the relationship between inflammatory bowel disease and BMD
are still inconclusive. Here, we performed a two-sample Mendelian randomization analysis to investigate the causal
link between inflammatory bowel disease and level of BMD using publically available GWAS summary statistics.

Methods: A series of quality control steps were taken in our analysis to select eligible instrumental SNPs which
were strongly associated with exposure. To make the conclusions more robust and reliable, we utilized several
robust analytical methods (inverse-variance weighting, MR-PRESSO method, mode-based estimate method,
weighted median, MR-Egger regression, and MR.RAPS method) that are based on different assumptions of two-
sample MR analysis. The MR-Egger intercept test, Cochran’s Q test, and “leave-one-out” sensitivity analysis were
performed to evaluate the horizontal pleiotropy, heterogeneities, and stability of these genetic variants on BMD.
Outlier variants identified by the MR-PRESSO outlier test were removed step-by-step to reduce heterogeneity and
the effect of horizontal pleiotropy.

Results: Our two-sample Mendelian randomization analysis with two groups of exposure GWAS summary statistics
and four groups of outcome GWAS summary statistics suggested a definitively causal effect of genetically predicted
ulcerative colitis on TB-BMD and FA-BMD but not on FN-BMD or LS-BMD (after Bonferroni correction), and we
merely determined a causal effect of Crohn’s disease on FN-BMD but not on the others, which was somewhat
inconsistent with many published observational researches. The causal effect of inflammatory bowel disease on TB-
BMD was significant and robust but not on FA-BMD, FN-BMD, and LS-BMD, which might result from the cumulative
effect of ulcerative colitis and Crohn’s disease on BMDs.
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Conclusions: Our Mendelian randomization analysis supported the causal effect of ulcerative colitis on TB-BMD and
FA-BMD. As to Crohn’s disease, only the definitively causal effect of it on decreased FN-BMD was observed. Updated
MR analysis is warranted to confirm our findings when a more advanced method to get less biased estimates and
better precision or GWAS summary data with more ulcerative colitis and Crohn’s disease patients was available.

Keywords: Two-sample Mendelian randomization, Inflammatory bowel disease, Ulcerative colitis, Crohn’s disease, Bone
mineral density, Osteoporosis

Background
The incidence of aging-related disorders has dramatic-
ally increased in modern society for improved health-
care, socio-economic, and lifestyle changes which greatly
increased life expectancy [1]. Osteoporosis is a common,
aging-related systemic skeletal disease characterized by
decreased bone strength, micro-architectural deterior-
ation of bone tissue, and consequent increased fracture
risk [2, 3]. It is clinically diagnosed largely through
measurement of bone mineral density (BMD) at central
sites (the lumbar spine and the proximal femur) and
peripheral sites (including the distal forearm) as exam-
ined by dual-energy X-ray absorptiometry (DXA) [2, 4].
In the USA, the prevalence of osteoporosis is estimated
to increase to more than14 million cases in 2020, and
the burden is projected to increase to exceed 3 million
fractures and $25.3 billion each year by 2025 [5]. Clearly,
the severe clinical and economic consequences of osteo-
porosis urgently call for a concerted effort to identify the
risk factors causing osteoporosis and assess patients at
risk to allow for prevention and early intervention when
appropriate. The etiology of osteoporosis is not well
understood. It is well recognized that increasing age, fe-
male gender, and a wide range of clinical factors, medical
factors, behavior factors, nutritional factors, and genetic
factors are associated with the disease [2, 6–9]. Many
studies demonstrated that the potential risk factors includ-
ing cigarette smoking, heavy alcohol intake, caffeine in-
take, glucocorticoid therapy, low body mass index (BMI),
physical inactivity, gastrointestinal diseases, hematologic
disorders, and calcium and vitamin D deficiency may con-
tribute to low BMD and fractures [2, 10, 11].
Inflammatory bowel disease (IBD), which includes ul-

cerative colitis (UC) and Crohn’s disease (CD), is a
chronic, relapsing inflammatory condition of the gastro-
intestinal tract [12]. It affects more than 2.5 million
people in Europe, with increasing prevalence in Asia and
developing countries [13]. Recently, the association be-
tween IBD and BMD has gained great interest. However,
available epidemiological evidences on the effects of IBD
on the level of BMD are inconclusive. A population-
based prospective study containing 60 UC patients and
60 CD patients demonstrated that only minor changes
in BMD were observed in both CD and UC patients

during a 2-year period [14]. Another study found that
steroid-naive young male patients with IBD had lower
bone density values than healthy controls [15]. Some
studies have revealed that decreased BMD in individuals
with IBD was related to corticosteroid use but not the
disease itself [16]. And some studies concluded that
BMD is reduced in patients with CD but not in patients
with UC [17–19]. Given that the studies, which have
drawn inconsistent conclusions, were either based on
limited samples or only explored the correlations be-
tween IBD (including UC and CD) and BMD and osteo-
porosis, and the epidemiological observational studies
may be subjected to confounding factors and reverse
causality [20]. A study, like randomized controlled trials
(RCTs), directly inferring the causal relationship between
IBD and BMD and osteoporosis is helpful for the pre-
vention and early intervention of osteoporosis and con-
sequent fractures in high-risk populations. However,
RCTs are difficult or impractical to perform for they are
expensive, labor resource-intensive, time-consuming,
and ethical limitations. As an alternative, Mendelian
randomization (MR), mimic the design of RCT, is a
popular yet more convenient technique to test the caus-
ality between an exposure (IBD) and an outcome (BMD
or osteoporosis) [20].
Two-sample MR is a technique, using germline genetic

variants as instrument variables (IV) for exposure to
study the causal relations between the exposure pheno-
type and the outcome phenotype. It enables the use of
publically available results from very large genome-wide
association studies (GWAS) for both risk factor “expo-
sures” and disease “outcomes” and overcomes the typical
pitfalls present in observational studies. In order to ob-
tain unbiased estimates, MR need to fulfill three key as-
sumptions: IV1—genetic variants used in the analysis
should be significantly associated with the exposure;
IV2—genetic variants extracted as instrument variables
for exposure are independent of confounding factors
that are associated with the selected exposure and out-
come; and IV3—the genetic variants affects the outcome
only through the exposure and not via other biological
pathways (i.e., no horizontal pleiotropic effect) [21].
Here, a two-sample Mendelian randomization analysis
was performed to investigate the causal link between
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IBD (including UC and CD) and decreased BMD, in
which we used the summary statistics from GWAS data
of IBD (including UC and CD) and BMDs (including
total body BMD (TB-BMD), femoral neck BMD (FN-
BMD), lumbar spine BMD (LS-BMD), and forearm
BMD (FA-BMD)).

Methods
IBD and BMD GWAS summary statistics
To obtain a more comprehensive and reliable conclusion
of the causal link between IBD and BMDs, we selected
the largest GWAS published to date for IBD including
UC and CD [22]. Another study with a larger GWAS of
IBD was also included for replication purposes [23]. Full
summary statistics for the IBD (unit, logOR) GWAS are
available for download from the International IBD Gen-
etics Consortium’s website at https://www.ibdgenetics.
org/downloads.html. The datasets used for replication
are available at https://gwas.mrcieu.ac.uk/datasets/. The
femoral neck, lumbar spine, and forearm are the three
common skeletal sites of postmenopausal women and
men who are 50 years or older for measurement of BMD
based on DXA. Total body BMD (TB-BMD) GWAS
summary data is used to estimate the general effect of
IBD on whole-body BMD. TB-BMD measurement is the
most appropriate method for an unbiased assessment of
BMD variation in the same skeletal site from childhood
to old age [24]. GWAS summary statistics for BMDs
(unit, g/cm2) was downloaded from the GEnetic Factors
for OSteoporosis Consortium website (GEFOS, http://
www.gefos.org/). We also could download GWAS sum-
mary statistics of IBD and BMD from the publicly avail-
able GWAS catalog website (https://www.ebi.ac.uk/
gwas/downloads/summary-statistics) or IEU GWAS
database (https://gwas.mrcieu.ac.uk/datasets/). The cor-
responding effect estimates of SNP on IBD (including
UC and CD) and BMD had been adjusted for many
principal components. The diagnosis of IBD was based
on accepted radiologic, endoscopic, and histopathologic
criteria. Measurement of BMD was recommended utiliz-
ing dual-energy X-ray absorptiometry.
The summary statistics of the largest GWAS published

to date for IBD (N = 12,882 cases, 21,770 controls), UC
(N = 6968 cases, 20,464 controls), and CD (N = 5956
cases, 14,927 controls) was obtained from the Inter-
national IBD Genetics Consortium [22]. All participants
were of European ancestry.
Summary statistics of a combined analysis including

38,565 IBD cases and 37,747controls and immunochip-
wide association analyses with UC (N = 10,920 cases, 15,
977 controls) and CD (N = 14,763 cases, 15,977 controls)
were included for replication purposes [23]. To reduce the
possibility of population stratification, all participants were

of European ancestry. GWAS summary statistics were
downloaded from https://gwas.mrcieu.ac.uk/datasets/.
Three separate GWAS summary statistics of European

participants’ femoral neck bone mineral density (FN-
BMD, n = 32,735), lumbar spine bone mineral density (LS-
BMD, n = 28,498), and forearm bone mineral density (FA-
BMD, n = 8143) were downloaded from GEFOS; it is the
largest GWAS on DXA-measured BMD to date [8].
A meta-analysis comprising 56,284 individuals of

European ancestry was performed to investigate the gen-
etic determinants of total body bone mineral density
(TB-BMD) [24]. The meta-analyzed effect size estimates
were used in this study. The GWAS summary statistic of
TB-BMD was downloaded from the GEFOS website.

Genetic instrumental variables
From the GWAS summary data of IBD including UC
and CD, we conducted a series of quality control steps
to select eligible instrumental SNPs. Firstly, we extracted
SNPs associated with IBD with genome-wide signifi-
cance (P < 5 × 10−8). Secondly, it is important to ensure
that all the instrumental SNPs for the exposure are not
in linkage disequilibrium (LD), since instrumental SNPs
in strong LD may cause biased results. In this study, we
performed the clumping process (R2 < 0.001, window
size = 10,000 kb) with the European samples from the
1000 genomes project which were used to estimate LD
between SNPs. Among those pairs of SNPs that had LD
R2 above the specified threshold (R2 = 0.001) only the
SNP with the lower P value would be retained. SNPs ab-
sent from the LD reference panel were also removed.
Thirdly, SNPs with minor allele frequency (MAF) < 0.01
were removed. Fourthly, extracting data for the above-
selected SNPs from the outcome trait (BMDs) GWAS
summary. By default, if a particular requested SNP was
not present in the outcome GWAS, then a SNP (proxy)
that was in LD with the requested SNP (target) would
be searched for instead. LD proxies were defined using
1000 genomes of European sample data. The effect of
the proxy SNP on the outcome was returned, along with
the proxy SNP, the effect allele of the proxy SNP, and
the corresponding allele (in phase) for the target SNP.
Fifthly, the effect of ambiguous SNPs with non-
concordant alleles (e.g., A/G vs. A/C) and palindromic
SNPs with an ambiguous strand (i.e., A/T or G/C) was
corrected or the ambiguous and palindromic SNPs were
directly excluded from the above-selected instrument
SNPs in harmonizing process to ensure that the effect of
a SNP on the exposure, and the effect of that same SNP
on the outcome, corresponds to the same allele. These
stringently selected SNPs were used as the instrumental
variables for subsequent two-sample MR analysis.
According to the assumptions of MR analysis, the se-

lected instrumental SNPs should strongly associate with
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exposure. To test whether there was a weak instrumental
variable bias, namely genetic variants selected as instru-
mental variables had a weak association with exposure, we
calculated the F statistic (F = R2(n − k − 1)/k(1 − R2); R2,
variance of exposure explained by selected instrumental
variables, and we got the value of R2 in MR Steiger direc-
tionality test; n, sample size; and k, number of instrumen-
tal variables). If the F statistic is much greater than 10 for
the instrument-exposure association, the possibility of
weak instrumental variable bias is small [25].

Mendelian randomization estimates
MR analysis uses genetic variants as instrumental vari-
ables to estimate the causative effect of exposure vari-
ables on an outcome. In the study, we combined the
summary statistics (β coefficients and standard errors) to
estimate the causal associations between IBD (including
UC and CD) and BMDs (including TB-BMD, FN-BMD,
LS-BMD, and FA-BMD) using different methods. Since
it is unlikely that all genetic variants would be valid in-
strumental variables, several robust methods have been
proposed. The methods which included inverse variance
weighting (IVW), MR-Pleiotropy RESidual Sum and
Outlier (MR-PRESSO) method, mode-based estimate
(MBE) method, weighted median (WM), MR-Egger re-
gression, and robust adjusted profile score (MR.RAPS)
method were based on different assumptions.
The IVW method uses a meta-analysis approach to

combine Wald estimates for each SNP (i.e., the β coeffi-
cient of the SNP for BMD divides by the β coefficient of
the SNP for IBD) to get the overall estimates of the ef-
fect of IBD on BMD [26]. If there is no violation of the
IV2 assumption (no horizontal pleiotropy), or the hori-
zontal pleiotropy is balanced, an unbiased causal esti-
mate can be obtained by IVW linear regression [27].
Fixed and random effects IVW approaches are available.
If significant heterogeneity (P < 0.05) is observed, a
random-effect IVW model is applied. MR-PRESSO is a
method for the detection and correction of outliers in
IVW linear regression. MR-PRESSO has three compo-
nents, including (a) detection of horizontal pleiotropy
(MR-PRESSO global test), (b) correction for horizontal
pleiotropy via outlier removal (MR-PRESSO outlier test),
and (c) testing of significant differences in the causal es-
timates before and after correction for outliers (MR-
PRESSO distortion test). The MR-PRESSO outlier test
requires that at least 50% of the variants are valid instru-
ments, has balanced pleiotropy, and relies on the Instru-
ment Strength Independent of Direct Effect (InSIDE)
condition that instrument-exposure and pleiotropic ef-
fects are uncorrelated [28]. The mode-based method
clusters the SNPs into groups basing on the similarity of
causal effects and returns the causal effect estimate bas-
ing on the cluster that has the largest number of SNPs.

The causal estimate from the mode-based estimator is
unbiased if the SNPs contributing to the largest cluster
are valid instruments even if the majority of instruments
are invalid [29]. The median-based approach will provide
an unbiased estimate of the causal effect in the presence
of unbalanced horizontal pleiotropy even when up to
50% of SNPs are invalid IVs (e.g., due to pleiotropy)
[30]. If there is a particular direction of the horizontal
pleiotropic effect, then constraining the slope to go
through zero will introduce bias. Egger regression which
allows the intercept to pass through a value other than
zero will relax the constraint. The MR-Egger regression,
based on the assumption of InSIDE, performs a weighted
linear regression of the outcome coefficients on the ex-
posure coefficients [31]. Under the InSIDE assumption,
it gives a valid test of the null causal hypothesis and a
consistent causal effect estimate even when all the gen-
etic variants are invalid IVs [31]. However, MR-Egger es-
timates may be inaccurate and can be strongly
influenced by outlying genetic variants. The WM esti-
mate which does not require the InSIDE assumption has
been confirmed to have distinct superiorities over MR-
Egger for its improved power of causal effect detection
and lower type I error [30]. When the InSIDE assump-
tion is valid and the percentage of horizontal pleiotropic
variants is small (≤ 10%), the causal estimate of the MR-
PRESSO outlier adjustment is less biased and has better
precision (smaller standard deviation) than MR-Egger.
However, when the percentage of horizontal pleiotropic
variants is high (≥ 50%), the opposite is found [28]. The
weighted median has less bias but also less precision in
the causal estimate compared to the MR-PRESSO outlier
test, particularly when the percentage of horizontal
pleiotropic variants is < 50% [28]. Since we included
many weak instrumental variables in the analyses, we
carried out a recently proposed method called MR.RAPS
to make our results more reliable [32]. This method is
robust to both systematic and idiosyncratic pleiotropy
and can give a robust inference for MR analysis with
many weak instruments. It is able to correct for plei-
otropy using robust adjusted profile scores and is recom-
mended to routinely use the RAPS estimator in practice,
especially if the exposure and the outcome are both
complex traits.
If the estimates of different methods are inconclusive,

the link between exposure and outcome phenotype with
an adjusted P value < 0.05/5 = 0.01 (Bonferroni correc-
tion for multiple testing) is considered significant.

Pleiotropy and sensitivity analysis
We conducted the MR-Egger regression to assess the po-
tential pleiotropic effects of the SNPs used as IVs. The
intercept term in MR Egger regression can be a useful in-
dication of whether directional horizontal pleiotropy is
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driving the results of a MR analysis [33]. In MR-PRESSO
analysis, it attempts to reduce heterogeneity in the esti-
mate of the causal effect by removing SNPs that contrib-
ute to the heterogeneity disproportionately more than
expected. The number of distributions in MR-PRESSO
analysis was set to 1000. We used the IVW method and
MR-Egger regression to detect heterogeneity. The hetero-
geneities were quantified by Cochran Q statistic; a P value
of < 0.05 would be regarded as significant heterogeneity.
Additionally, to identify potentially influential SNPs, we
performed a “leave-one-out” sensitivity analysis to where
the MR is performed again but leaving out each SNP in
turn.

Procedures of MR analysis
In our study, we firstly performed MR analysis with all
the above-selected SNPs as IVs. If the MR-PRESSO ana-
lysis detected a significant horizontal pleiotropy, we shall
remove the outlier variants (with P value less than the
threshold in the MR-PRESSO outlier test) and perform
MR analysis again. After the MR-PRESSO outlier re-
moval step, if the heterogeneity was still significant, we
would perform MR analysis under the condition of re-
moving all the SNPs of which the P value was less than
1 in the MR-PRESSO outlier test. At last, if potentially
influential SNPs were identified in the “leave-one-out”
sensitivity analysis, we should draw the conclusion with
caution. A flow chart about the analytical methods and
how the MR analysis was performed step-by-step was
shown in Fig. 1.

Ethics
Our analysis used published study or publicly available
GWAS summary data. No original data was collected for
this manuscript, and thus, no ethical committee approval
was required. Each study included was approved by their
institutional ethics review committees, and all partici-
pants provided written informed consent.
All statistical analyses were conducted using R version

3.6.3 (R Foundation for Statistical Computing, Vienna,
Austria) using the Two-Sample MR package [27]. P
values < 0.05 were considered statistically significant. In
multiple testing, an adjusted P value after Bonferroni cor-
rection (P < 0.05/N, N = the number of testing methods)
was considered statistically significant.

Results
Selection of instrumental variables
Detailed information of LD-independent SNPs (after
clumping process) for exposure (IBD, UC, and CD) was
listed in Additional file 1. The listed SNPs would be ex-
cluded in the following situations: first, in the process of
extracting particular SNPs from the outcome (BMDs)
GWAS, a particular requested SNP was not present in

and a proxy that was in LD with the requested SNP
could not be searched from the outcome GWAS. Sec-
ond, the effect of ambiguous SNPs with non-concordant
alleles or palindromic SNPs with ambiguous strand
could not be corrected. Eventually, the number of SNPs
selected as IVs for exposure in further analyses would be
equal to or less than that listed in Additional file 1. F
statistics for every instrument-exposure association were
much greater than 10 in our study, demonstrating the
small possibility of weak instrumental variable bias.

Two-sample Mendelian randomization analysis for causal
link of IBD with BMDs
The MR estimates from different methods of assessing
the causal effect of IBD on BMDs were presented in
Table 1. MR estimates of assessing the causal effect of
IBD on BMDs at different steps were presented in Add-
itional file 2: Table S1. The results of Table 1 which con-
tained the last step of MR estimates of Additional file 2:
Table S1 demonstrated that genetically predicted IBD
was negatively associated with the level of TB-BMD
(IVW: β (95%CI) − 0.017 (− 0.029, − 0.0046), P = 0.0067;
MR.RAPS: β (95%CI) − 0.016 (− 0.028, − 0.0028), P = 0.017)
and FN-BMD (IVW: β (95%CI) − 0.019 (− 0.035, − 0.0032),
P = 0.018; MBE: β (95%CI) − 0.049 (− 0.084, − 0.013), P =
0.0079; WMM: β (95%CI) − 0.024 (− 0.047, − 0.00035), P =
0.047; MR.RAPS: β (95%CI) − 0.018 (− 0.034, − 0.0014), P =
0.034) in initial practice. However, no causal effect of IBD
on LS-BMD or FA-BMD was found in this part using an
adjusted P value after Bonferroni correction (P < 0.01). Het-
erogeneity tests highlighted the existence of heterogeneity
in TB-BMD (IVW, Q (df) 146.2 (118), P = 0.040; MR-Egger,
Q (df) 146.20 (117), P = 0.035). Our analysis suggested no
significant evidence of horizontal pleiotropy (as indicated
by MR-Egger regression intercept close to zero, with a P
value larger than 0.05). It was likely that there were SNPs
exhibited horizontal pleiotropy in this part (which then
tended to cancel out when the estimates were combined to-
gether in meta-analysis/Egger regression). The estimated ef-
fect sizes of the SNPs on both the exposure (IBD) and
BMD outcomes are displayed in scatter plots (Fig. 2). The
funnel plots providing an indication of where there existed
directional horizontal pleiotropy for each outcome were
shown in Additional file 3: Fig. S1. Plots of leave-one-out
analysis which were shown in Additional file 3: Fig. S2
demonstrated that there was a potentially influential SNP
driving the causal link between IBD and FN-BMD. Thus,
we need to carefully interpret the result and draw a cau-
tious conclusion.
In replication practice, the sample size of IBD was much

larger than that in initial practice. The results of Table 1
showed the strong causal link of IBD and TB-BMD (IVW: β
(95%CI) − 0.016 (− 0.027, − 5.46e−3), P= 0.0033; MR.RAPS:
β (95%CI) − 0.016 (− 0.027, − 4.39e−3), P= 0.0064) and FN-
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BMD (MBE: β (95%CI) − 0.042 (− 0.078, − 0.0054), P=
0.027; WMM: β (95%CI) − 0.028 (− 0.051, − 0.0044), P=
0.020), which were consistent with that in initial practice.
However, no causal effect of IBD on LS-BMD and FA-BMD
was found in this section. We detected no heterogeneity and
pleiotropy in this part. The scatter plots and funnel plots for
each outcome in replication practice were shown in Fig. 3
and Additional file 3: Fig. S3. Plots of the leave-one-out ana-
lysis (Additional file 3: Fig. S4) demonstrated that the causal
link between IBD and FN-BMD was driven by potentially

influential SNPs, and we should carefully interpret the result
and draw a cautious conclusion.
The F statistics for instrument IBD are 136.97 in the ini-

tial practice and 86.16 in the replication practice, demon-
strating the small possibility of weak instrumental variable
bias. As the results mentioned above, we may conclude the
causal effect of genetically predicted IBD on TB-BMD but
not on LS-BMD or FA-BMD. As to FN-BMD, the results
of MR analysis in initial practice and replication practice
were driven by potentially influential SNPs identified in the

Fig. 1 Flow chart about the analytical methods and how the MR analysis was performed step-by-step
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“leave one out” analysis, and we cannot draw a robust or
definitive conclusion.

Two-sample Mendelian randomization analysis for causal
link of UC with BMDs
Table 2 containing the MR estimates from different
methods of assessing the causal effect of UC on BMDs
demonstrated that genetically predicted UC was negatively

associated with the level of TB-BMD (IVW; β (95%CI) −
0.024 (− 0.037, − 0.012), P = 0.00011; WMM: β (95%CI) −
0.023 (− 0.041, − 0.0053), P = 0.013; MR.RAPS: β (95%CI)
− 0.024 (− 0.037, − 0.011), P = 0.00037) and FA-BMD
(IVW: β (95%CI) − 0.064 (− 0.096, − 0.032), P = 7.79e−5;
WMM: β (95%CI) − 0.052 (0.10, − 0.0052), P = 0.025;
MR.RAPS: β (95%CI) − 0.062 (− 0.095, − 0.029), P = 2.22e
−4). However, no causal effect of UC on FN-BMD or LS-

Fig. 2 Scatter plots for MR analyses of the causal effect of IBD on BMDs in initial practice. a TB-BMD. b FN-BMD. c LS-BMD. d FA-BMD. Analyses
were conducted using the conventional IVW, MBE, WMM, MR-Egger, and MR.RAPS methods. The slope of each line corresponding to the
estimated MR effect per method
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BMD was found in this initial practice using an adjusted P
value after Bonferroni correction (P < 0.01). MR estimates
of assessing the causal effect of UC on BMDs at different
steps were presented in Additional file 2: Table S2. MR-
Egger regression tests and heterogeneity tests suggested
no significant horizontal pleiotropy and heterogeneities in
this part. The scatter plots, funnel plots, and “leave-one-

out analysis” plots were shown in Fig. 4 and Add-
itional file 3: Fig. S5 and Fig. S6.
In the replication practice, Table 2 demonstrated the

negative causal link between UC and TB-BMD (using
the IVW, WMM, and MR.RAPS methods) and FA-BMD
(using the IVW, MR-Egger regression, and MR.RAPS
methods), which was consistent with that in initial

Fig. 3 Scatter plots for MR analyses of the causal effect of IBD on BMDs in replicative practice. a TB-BMD. b FN-BMD. c LS-BMD. d FA-BMD.
Analyses were conducted using the conventional IVW, MBE, WMM, MR-Egger, and MR.RAPS methods. The slope of each line corresponding to
the estimated MR effect per method
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practice. In the FN-BMD and LS-BMD groups, no causal
effect of UC on decreased FN-BMD or LS-BMD was
found. No directional horizontal pleiotropy and hetero-
geneities were detected in this section. The scatter plots
and funnel plots were shown in Fig. 5 and Add-
itional file 3: Fig. S7. Plots of the leave-one-out analysis
(Additional file 3: Fig. S8) demonstrated that there was

no potentially influential SNP driving the causal link and
our conclusion was of stability.
The F statistics for instrument UC in the initial practice

and the replication practice are 103.21 and 89.11, respect-
ively. Summarizing the results of Table 2, we could receive
the definite causal effect of genetically predicted UC on
TB-BMD and FA-BMD but not on FN-BMD or LS-BMD.

Fig. 4 Scatter plots for MR analyses of the causal effect of UC on BMDs in initial practice. a TB-BMD. b FN-BMD. c LS-BMD. d FA-BMD. Analyses
were conducted using the conventional IVW, MBE, WMM, MR-Egger, and MR.RAPS methods. The slope of each line corresponding to the
estimated MR effect per method

Wu et al. BMC Medicine          (2020) 18:312 Page 11 of 19



Two-sample Mendelian randomization analysis for causal
link of CD with BMDs
In the two-sample MR analysis, we found CD did not
have a causal link with the change of TB-BMD, LS-
BMD, and FA-BMD under different MR methods
(Table 3). MR estimates of assessing the causal effect of
CD on BMDs at different steps were presented in Add-
itional file 2: Table S3. As to FN-BMD, a negative causal

link was found using the IVW method (β (95%CI) −
0.019 (− 0.034, − 0.0050), P = 0.0083) and the MR.RAPS
method (β (95%CI) − 0.017 (− 0.032, − 0.0019), P =
0.027). No significant evidence of horizontal pleiotropy
and heterogeneities were detected in this section. The
scatter plots and funnel plots were shown in Fig. 6 and
Additional file 3: Fig. S9. The plots of the leave-one-out
analysis (Additional file 3: Fig. S10) demonstrated no

Fig. 5 Scatter plots for MR analyses of the causal effect of UC on BMDs in replicative practice. a TB-BMD. b FN-BMD. c LS-BMD. d FA-BMD.
Analyses were conducted using the conventional IVW, MBE, WMM, MR-Egger, and MR.RAPS methods. The slope of each line corresponding to
the estimated MR effect per method
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potentially influential SNPs driving the causal link be-
tween CD and BMDs.
In the replication practice, a negative causal link was

found between CD and FN-BMD using the IVW method
(β (95%CI) − 0.022 (− 0.036, − 0.0072), P = 0.0034), MBE
method (β (95%CI) − 0.033 (− 0.061, − 0.0062), P =
0.018), WMM (β (95%CI) − 0.028 (− 0.051, − 0.0049),
P = 0.018), and MR.RAPS method (β (95%CI) − 0.023 (−

0.038, − 0.0073), P = 0.0039). No significantly causal link
between CD and the change of TB-BMD, LS-BMD, or
FA-BMD was found under the different MR methods.
Heterogeneity tests demonstrated no existence of signifi-
cant heterogeneity except for FN-BMD (MR-Egger
Cochran statistics (df) 111.30 (88), P = 0.047). And no
directional horizontal pleiotropy was detected by MR-
Egger tests. The scatter plots and funnel plots were

Fig. 6 Scatter plots for MR analyses of the causal effect of CD on BMDs in initial practice. a TB-BMD. b FN-BMD. c LS-BMD. d FA-BMD. Analyses
were conducted using the conventional IVW, MBE, WMM, MR-Egger, and MR.RAPS methods. The slope of each line corresponding to the
estimated MR effect per method
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shown in Fig. 7 and Additional file 3: Fig. S11. The plots
of the leave-one-out analysis (Additional file 3: Fig. S12)
demonstrated no potentially influential SNPs driving the
causal link between CD and BMDs in the replication
practice.
The F statistics for instrument CD in the initial prac-

tice and replication practice are 160.18 and 102.38, re-
spectively. Summarizing the results above, we could

conclude there was a causal link of CD on FN-BMD, but
not on TB-BMD, LS-BMD, or FA-BMD.

Discussion
In this study, we used summary statistics from GWASs
to identify the causal relationships between IBD (includ-
ing UC and CD) and BMD at different skeletal sites. The
results suggested that UC causally decreased TB-BMD

Fig. 7 Scatter plots for MR analyses of the causal effect of CD on BMDs in replicative practice. a TB-BMD. b FN-BMD. c LS-BMD. d FA-BMD.
Analyses were conducted using the conventional IVW, MBE, WMM, MR-Egger, and MR.RAPS methods. The slope of each line corresponding to
the estimated MR effect per method
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and FA-BMD, the estimated effect sizes of UC on FN-
BMD were not significant with an adjusted P value after
Bonferroni correction, and UC did not definitely de-
crease LS-BMD, implying that the causal effects of UC
on BMD at different skeletal sites were different. Previ-
ous studies suggested that only cortical thickness and
cortical BMD were different, with smaller values in the
UC patients than controls, and no differences were
found in the trabecular or endocortical compartments
[34]. The adult human skeleton is composed of 80% cor-
tical bone and 20% trabecular bone overall. The vertebra
is composed of the cortical to trabecular bone in a ratio
of 25:75; this ratio is 50:50 in the femoral head and 95:5
in the radial diaphysis [35]. Thus, we inferred the differ-
ent effect of UC on BMDs at different skeletal sites may
be differently associated with various components of the
bone, since the bone from different skeletal sites differs
in composition (e.g., different proportions of the tra-
becular and cortical bones). Radial diaphysis and total
body have the highest percentage of the cortical bone in
the skeletal sites studied here. From our results, we
found that the genetically predicted UC significantly
caused a decrease in FA-BMD and TB-BMD. The fem-
oral head and the vertebra have the lowest percentage of
the cortical bone for the BMD phenotypes, and the ef-
fect of UC on FN-BMD and LS-BMD was not obvious.
Some publications reported that BMD was reduced in

patients with CD but not in patients with UC [18, 19].
Haschka et al.’s research demonstrated that CD patients
exhibited a more severe bone loss phenotype compared
with UC patients [34]. The possible reasons might be as
follows: CD is a systemic disease with a long premorbid
phase, while UC is a mucosal disease with an acute onset
and is often limited to the distal colonic tracts. In
addition, CD has important immunological differences
when compared to UC. The localization of CD is in the
small intestine, and intestinal resection may cause mal-
nutrition and estrogen deficiency [36]. However, in
Schoon et al.’s research, it concluded no significant dif-
ferences in BMD between patients with either CD or UC
[37]. In this two-sample MR analysis assessing the causal
link of IBD (including UC and CD) on BMDs, we deter-
mined a causal effect of genetically predicted UC on TB-
BMD and FA-BMD, but only get a causal effect of CD
on BMD, which was somewhat inconsistent with many
published observational researches. The reasons for the
difference between our MR analysis results and most
other observational researches may be explained as fol-
lows: firstly, the results of epidemiological observational
studies were affected by other related factors. For
example, Bernstein et al.’s publication revealed that de-
creased BMD in IBD patients was related to corticoster-
oid use but not the disease itself [16]. The results of
Andreassen et al.’s research with 113 CD patients and

113 healthy subjects, individually matched for gender,
age, and body weight, showed that BMD of patients with
CD was not different from that of healthy controls ex-
cept for a decreased BMD of the hip in female patients,
and gender, age, and body weight are the major determi-
nants of BMD in patients with CD [38]. And in this MR
analysis, the corresponding effect estimate of SNP on
IBD (including UC and CD) and BMD had been ad-
justed for many principal components. Secondly, the re-
sults of our MR analysis might be biased by pleiotropy.
We did not search through the Ensembl Project or Phe-
noScanner database as previous studies to screen genetic
variants which are associated with confounding factors
[39, 40]. We just performed the MR-PRESSO outlier test
to identify and remove outlier variants. However, we
deemed the possibility that pleiotropy significantly
biased the results of our analysis was tiny, as several ro-
bust methods for MR have been performed, which can
provide reliable inferences when some genetic variants
violate the IV assumptions. Otherwise, we included an
IBD (including UC and CD) GWAS dataset for replica-
tion purposes. It would make our conclusions more ro-
bust and reliable. Further MR analysis with more CD
patients or more advanced methods to get less biased es-
timates and better precision is warranted in the future to
confirm the relationship between CD and the level of
BMDs. The causal effect of IBD on TB-BMD was signifi-
cant and robust but not on FA-BMD or LS-BMD after
Bonferroni correction. As to FN-BMD, the causal effect
was the lack of stability. This might result from the cu-
mulative effect of UC and CD on BMDs.
There are two types of pleiotropy (vertical pleiotropy

and horizontal pleiotropy). Vertical pleiotropy occurs
when a variant is directly associated with the exposure
and another phenotype on the same biological pathway.
This does not lead to the violation of the IV assumptions
providing the only causal pathway from the genetic vari-
ant to the outcome passes via the exposure. Horizontal
pleiotropy occurs when the second phenotype is on a
different biological pathway, and so, there may exist dif-
ferent causal pathways from the variant to the outcome.
This would violate the IV3 assumption [41]. To solve
the problems that arise due to horizontal pleiotropy, sev-
eral robust MR methods besides IVW have been per-
formed in our study. The methods can be divided into
three categories: consensus methods (e.g., weighted me-
dian, mode-based method), outlier-robust methods (e.g.,
MR-PRESSO), and modeling methods (e.g., MR-Egger
and MR-RAPS), and the methods mentioned each pos-
sesses its own advantages [41]. Investigators should per-
form a range of robust methods that come from
different categories and that operate in different ways
and rely on different assumptions for valid inferences to
assess the reliability of MR analyses. The other measures
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that might be taken to reduce the effect of horizontal
pleiotropy were searching through the Ensembl Project
or PhenoScanner database to identify and exclude gen-
etic variants relating to confounding factors. We have
not admitted this measure as it would not necessarily
differentiate between horizontal and vertical pleiotropy,
where only the former would bias MR studies. On the
other hand, the exact biological function of many genetic
variants is unknown.
Our research was the first MR analysis of this topic. In

this study, we selected SNPs with genome-wide associ-
ation and independent inheritance without any LD as
IVs to detect the causal link between IBD (including UC
and CD) and BMDs. To make our conclusions more ro-
bust and reliable, the outlier variants identified by the
MR-PRESSO outlier test were removed step-by-step. We
also utilized several robust analytical methods based on
different assumptions of two-sample MR analysis with
four groups of outcome summary GWAS data (TB-
BMD, FN-BMD, LS-BMD, and FA-BMD) and two
groups of exposure summary GWAS data. Instead of
using just a few strong SNPs as IVs, we utilized many
(potentially hundreds of) stringently selected weak SNPs
as the IVs for our two-sample MR analysis, which usu-
ally substantially decreases the variance of the estimator.
Since we included many weak instrumental variables in
the analysis, the F statistic was used to assess the
strength of the association between the genetic variants
and exposure. The F statistics were much greater than
10 in our analysis, hinting the small possibility of weak
instrumental variable bias [25]. We also carried out the
MR.RAPS method, which can give a robust inference for
our MR analysis with many weak IVs. Lastly, the sum-
mary GWAS data we drew for IBD (including UC and
CD) and BMDs consisted uniquely of individuals of
European descent and had been adjusted for many prin-
cipal components, which would reduce potential bias.
Some limitations of our MR analysis need to be

considered. First, the exposure and outcome studies
used in two-sample MR analysis should not involve
overlapping participants. We were not able to esti-
mate the degree of overlap in the study. However,
bias from sample overlap can be minimized by using
strong instruments (e.g., F statistic much greater than
10), [42]. Second, the summary GWAS data merely
concern individuals of European descent, and our re-
sults may not be fully representative of the whole
population. So, we should carefully utilize our conclu-
sion in racially and ethnically diverse populations.
Third, we cannot expel the possibility that horizontal
pleiotropy affected our results, even though we took
steps to identify and exclude outlier variants. Fourth,
each method we utilized in the analysis has its own
strengths and weaknesses. However, the use of so

many methods based on different assumptions may
increase the possibility of getting inconsistent or con-
trary results and make the conclusion become
obscured.

Conclusion
In this study, our aim is to assess the causal effect of
IBD (including UC and CD) on decreased BMD by using
two-sample MR analysis. The results of our research got
a definitively causal effect of genetically predicted UC on
TB-BMD and FA-BMD but not on FN-BMD or LS-
BMD, and we merely determined a causal effect of CD
on FN-BMD, which was somewhat inconsistent with
many published observational researches. Updated MR
analysis is warranted to confirm our findings when a
more advanced method to get less biased estimates and
better precision or GWAS summary data with more UC
and CD patients was available. Foremost, our research
reminded clinicians that measures and concerted efforts
for prevention of bone loss and early intervention of
osteoporosis should be considered when IBD patients
are diagnosed.
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