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Antibody responses to a suite of novel
serological markers for malaria surveillance
demonstrate strong correlation with clinical
and parasitological infection across seasons
and transmission settings in The Gambia
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James G. Beeson7,8,9, Kevin K. A. Tetteh1, Immo Kleinschmidt10,11, Umberto D’Alessandro2 and Chris Drakeley1

Abstract

Background: As malaria transmission declines, sensitive diagnostics are needed to evaluate interventions and
monitor transmission. Serological assays measuring malaria antibody responses offer a cost-effective detection
method to supplement existing surveillance tools.

Methods: A prospective cohort study was conducted from 2013 to 2015 in 12 villages across five administrative
regions in The Gambia. Serological analysis included samples from the West Coast Region at the start and end of
the season (July and December 2013) and from the Upper River Region in July and December 2013 and April and
December 2014. Antigen-specific antibody responses to eight Plasmodium falciparum (P. falciparum) antigens—
Etramp5.Ag1, GEXP18, HSP40.Ag1, Rh2.2030, EBA175 RIII-V, PfMSP119, PfAMA1, and PfGLURP.R2—were quantified
using a multiplexed bead-based assay. The association between antibody responses and clinical and parasitological
endpoints was estimated at the individual, household, and population level.
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Results: Strong associations were observed between clinical malaria and concurrent sero-positivity to Etramp5.Ag1
(aOR 4.60 95% CI 2.98–7.12), PfMSP119 (aOR 4.09 95% CI 2.60–6.44), PfAMA1 (aOR 2.32 95% CI 1.40–3.85), and
PfGLURP.R2 (aOR 3.12, 95% CI 2.92–4.95), while asymptomatic infection was associated with sero-positivity to all
antigens. Village-level sero-prevalence amongst children 2–10 years against Etramp5.Ag1, HSP40.Ag1, and PfMSP119
showed the highest correlations with clinical and P. falciparum infection incidence rates. For all antigens, there were
increased odds of asymptomatic P. falciparum infection in subjects residing in a compound with greater than 50%
sero-prevalence, with a 2- to 3-fold increase in odds of infection associated with Etramp5.Ag1, GEXP18, Rh2.2030,
PfMSP119, and PfAMA1. For individuals residing in sero-positive compounds, the odds of clinical malaria were
reduced, suggesting a protective effect.

Conclusions: At low transmission, long-lived antibody responses could indicate foci of malaria transmission that
have been ongoing for several seasons or years. In settings where sub-patent infections are prevalent and fluctuate
below the detection limit of polymerase chain reaction (PCR), the presence of short-lived antibodies may indicate
recent infectivity, particularly in the dry season when clinical cases are rare. Serological responses may reflect a
persistent reservoir of infection, warranting community-targeted interventions if individuals are not clinically
apparent but have the potential to transmit. Therefore, serological surveillance at the individual and household level
may be used to target interventions where there are foci of asymptomatically infected individuals, such as by
measuring the magnitude of age-stratified antibody levels or identifying areas with clustering of above-average
antibody responses across a diverse range of serological markers.
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Background
As malaria transmission declines, the prevalence of infec-
tion becomes increasingly heterogeneous and focal. In low
transmission settings, highly sensitive diagnostics are
needed to measure subtle changes in malaria incidence,
evaluate the effectiveness of community-based interven-
tions, and monitor potential re-introduction after elimin-
ation. Evidence suggests that infections below the
detection limit of microscopy and rapid diagnostic tests
(RDTs) contribute to on-going transmission, but the mag-
nitude of their public health importance is yet to be deter-
mined [1–3]. Nucleic acid amplification tests (NAATs),
such as ultra-sensitive quantitative polymerase chain reac-
tion (qPCR), can detect less than 1 parasite per microlitre
[4, 5], but are still sensitive to fluctuations in parasite
density during the course of an infection.
Serological assays measuring antibody responses may

be a more stable diagnostic alternative, offering a cost-
effective detection method to supplement existing sur-
veillance tools. A number of studies in The Gambia have
observed spatio-temporal variations in antibody re-
sponses to malaria over time [6, 7], with similar observa-
tions in Tanzania [8], Equatorial Guinea [9], and South
Africa [10]. The majority of these studies measure long-
lived antibody responses, which can persist for years in
the absence of re-infection. By contrast, new serological
markers of recent malaria exposure have been developed
based on antigens that elicit shorter-lived antibody re-
sponses and may be capable of measuring changes in
malaria transmission dynamics over periods as short as
1–2 years [11, 12]. These markers require validation with

population-representative data from a range of endemic
settings, and longitudinal cohort studies provide a
unique opportunity for a multi-metric assessment of
transmission dynamics using clinical, parasitological, and
serological endpoints.
Using a suite of novel serological markers of malaria

exposure, this study aimed to determine the correlation
of antibody responses with clinical and parasitological
endpoints at the individual, household, and population
level in rural Gambia over 2 years and estimate the
strength of association between serological markers and
gold standard metrics of active malaria infection. These
findings can support the application of serology in meas-
uring recent malaria transmission and allow selection of
markers most suitable for use in future surveillance, par-
ticularly for reactive detection strategies in pre- and
post-elimination settings.

Methods
Data and sampling
To understand the dynamics of malaria infection and
the impact of annual mass drug administration (MDA),
a prospective cohort study was conducted from 2013 to
2015 in 12 villages across five administrative regions—
West Coast (WCR), North Bank (NBR), Lower River
(LRR), Central River (CRR), and Upper River (URR) Re-
gions- as described by Mwesigwa et al. [13]. Plasmodium
falciparum (Pf) prevalence measured by polymerase
chain reaction (PCR) ranged from 2.27 to 19.60% in the
Central River and Upper River Regions respectively
(Fig. 1). Residents above 6 months of age were enrolled
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in the study, and monthly surveys were conducted dur-
ing malaria transmission season from June to December
each year, during the dry season in April 2014, and prior
to the implementation of MDA in May and June 2014
and 2015 (Fig. 2). Individual finger prick blood samples
were collected for haemoglobin estimation and on filter
paper (Whatman 3 Corporation, Florham Park, NJ,
USA) for molecular and serological analysis. Clinical
malaria cases included individuals presenting with symp-
toms at health facilities (e.g. passive case detection) or
individuals identified in villages by study nurses with his-
tory of fever in the previous 24 h or axillary temperature
≥ 37.5 °C and a positive rapid diagnostic test (RDT) re-
sult (Paracheck Pf, Orchid Biomedical System, India).
The serological study presented here is a subset of the

Malaria Transmission Dynamics Study and included all
available samples (n = 4599) from a selection of monthly
surveys in four villages, totalling 1795 individuals (Fig. 2).

In the West Coast Region (Besse and N’Demban), sam-
ples processed for serological analysis were from surveys
conducted at the start of the transmission season in July
2013 (N = 534) and at the end of the season in Decem-
ber 2013 (N = 524). In the Upper River Region (URR),
serological analysis included all samples collected in
Njaiyal and Madina Samako in July 2013 (N = 778), De-
cember 2013 (N = 628), April (dry season) 2014 (N =
799), and December 2014 (N = 737) (Table 1). These re-
gions represent extremes of two transmission intensities,
with months selected at the start and end of the trans-
mission season. Samples from clinical PCD cases were
linked by study participant identification code to sam-
ples from the same individuals collected during routine
monthly surveys. To further estimate the association be-
tween individual-level antibody responses and concur-
rent clinical or Pf infection, whole-village monthly
survey samples in the West Coast Region and Upper

Fig. 1 Map of Malaria Transmission Dynamics Study with regions and study villages by PCR prevalence

Fig. 2 Study timelines. Malaria Transmission Dynamics Study timeline shown in black and green. Serological study timeline shown in blue for
West Coast and Upper River Regions (low and moderate transmission settings, respectively). Serological analysis was conducted on samples from
whole-village monthly surveys in N’demban and Besse in the West Coast Region (a), Njaiyal and Madina Samako in the Upper River Region (b),
and longitudinal samples from individuals with a positive rapid diagnostic test (RDT) or polymerase chain reaction (PCR) test result during the
Malaria Transmission Dynamics Study. Samples for serological analysis were processed on the Luminex MAGPIX; samples from monthly surveys
were analysed using microscopy, rapid diagnostic tests (RDTs), and polymerase chain reaction (PCR)
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River Region as described above were combined with an
additional subset of 1244 longitudinal samples from 316
individuals who experienced a positive RDT or PCR test
result or presented with clinical symptoms at any point
during the Malaria Transmission Dynamics Study
(Fig. 2). For these individuals, all available samples from
the study were processed to longitudinally capture their
serological responses before and after a positive RDT or
PCR test result.
This study was approved by The Gambia Govern-

ment/MRC Joint Ethics Committee (SCC1318). Verbal
consent was first obtained at village sensitisation meet-
ings, followed by individual written informed consent for
all participants. Parents/guardians provided written con-
sent for children less than 17 years, and assent was ob-
tained from children between 12 and 17 years.

Antigen selection and design
Antigens were selected from an initial screen of 856 can-
didates on an in vitro transcription and translation
(IVTT) protein microarray based on correlation with
malaria infection in children [11]. Antigens were gener-
ated and expressed in Escherichia coli (E. coli) as gluta-
thione S-transferase (GST)-tagged fusion proteins [20–
22], with the exception of PfAMA1 expressed in Pichia
pastoris as a histidine-tagged protein [15]. Protein purifi-
cation was conducted by affinity chromatography
(Glutathione Sepharose 4B, GE Healthcare Life Sciences)
or HisPur Ni-NTA (Invitrogen) for GST- and His-
tagged proteins, respectively, and concentration, quality,
and purity of antigen yield assessed using a Bradford
assay and SDS-PAGE. Bacterial lysate from culture of
untransformed E. coli was used in assay buffers to

Table 1 Sample size and study subject characteristics by region and survey month. Sample size (N) reported as number of individuals in
each village for each monthly survey and total number of compounds (with compound defined as a collection of households centrally
located around a main residence). Study subject characteristics reported as number and percentage of individuals out of total individuals
in each monthly survey. Dashed lines indicate survey months where serological analysis was not conducted in the West Coast Region

July 2013 December 2013 April 2014 December 2014

West Coast Region (WCR)

Sample size (N) Individuals Compounds

Besse 400 387 – – 69

N’Demban 134 137 – – 24

Subtotal WCR 534 524 – – 93

Gender, n (%)

Male 240 (46.5) 226 (45.0) – –

Female 276 (53.5) 276 (55.0) – –

Age category, n (%)

< 5 years 111 (21.4) 104 (20.6) – –

5–15 years 186 (35.9) 194 (38.4) – –

> 15 years 221 (42.7) 207 (41.0) – –

LLIN use 24 h, n (%) 517 (96.8) 490 (94.2) – –

Upper River Region (URR)

Sample size (N) Individuals Compounds

Njaiyal 381 180 290 283 28

Madina Samako 397 448 509 454 43

Subtotal URR 778 628 799 737 71

Gender, n (%)

Male 371 (47.9) 285 (45.7) 392 (49.4) 352 (47.9)

Female 403 (52.1) 339 (54.3) 402 (50.6) 383 (52.1)

Age category, n (%)

< 5 years 164 (21.5) 143 (23.3) 183 (23.3) 169 (23.5)

5–15 years 260 (34.1) 233 (37.9) 294 (37.5) 252 (35.0)

> 15 years 338 (44.4) 239 (38.9) 308 (39.2) 299 (41.5)

LLIN use 24 h, n (%) 278 (46.6) 244 (41.8) 278 (46.6) 294 (44.0)
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eliminate background reactivity to E. coli proteins that
were not specific to malaria target proteins.
Additionally, to account for potential non-malaria re-

activity against GST-tagged fusion proteins, GST-
coupled beads were included to quantify GST-specific
immunoglobulin (IgG) responses and correct for non-
specific binding. After laboratory processing, there were
71 participant samples with GST antibody responses
above 1000 median fluorescence intensity (MFI), which
was defined as the threshold to indicate potential non-
malaria-specific binding, and were excluded from further
analyses. Tetanus toxoid (TT, Massachusetts Biologic
Laboratories) was also included as an internal positive
control, assuming that vaccinated Gambians would show
antibody responses to this protein target. A summary of
antigen constructs and coupling conditions are detailed
in Table 2.

Laboratory procedures
Antigen-specific antibody responses were quantified
using the Luminex MAGPIX protocol described in Wu
et al. 2019 [23]. Plasma was eluted from 6mm dried
blood spots (DBS) (4 μl whole blood equivalent) and
shaken overnight at room temperature in 200 μl of pro-
tein elution buffer containing phosphate buffered saline
(PBS) (pH 7.2), 0.05% sodium azide, and 0.05% Tween-
20, yielding an initial 1:50 sample dilution. One day prior
to assay processing, samples were diluted to a final 1:500
dilution using 10 μl of the 1:50 pre-dilution sample and
90 μl of blocking Buffer B to prevent non-specific bind-
ing (1xPBS, 0.05% Tween, 0.5% bovine serum albumin
(BSA), 0.02% sodium azide, 0.1% casein, 0.5% polyvinyl
alcohol (PVA), 0.5% polyvinyl pyrrolidone (PVP), and
1500 μg/ml E. coli extract). Negative and positive con-
trols were also incubated 1 day prior in Buffer B, with
negative controls prepared at a 1:500 dilution and Gam-
bian pooled positive controls in a 6-point 5-fold serial
dilution (1:10–1:31,250). The positive control was based
on a pool of 22 serum samples from malaria hyper-
immune individuals in The Gambia, and ten individual
plasma samples from European malaria-naive adults
were used as negative controls.
Samples were prepared for diagnostic PCR as de-

scribed by Mwesigwa et al. [13]. Briefly, DNA was ex-
tracted from three 6-mm DBS using the automated
QIAxtractor robot (Qiagen). Negative and positive (3D7)
controls were included to control for cross contamin-
ation and DNA extraction efficiency, respectively. The
DBS were lysed by incubation in tissue digest buffer at
60 °C for 1 h and digested eluates were applied onto cap-
ture plates, washed, and the DNA eluted into 80 μl. The
extracted DNA (4 μl) was used in a nested PCR, amplify-
ing the multi-copy Plasmodium ribosomal RNA gene se-
quences using genus and species specific primers [24].

All PCR products were run using the QIAxcel capillary
electrophoresis system (Qiagen), using the screening
cartridge and 15–1000 bp-alignment marker. Results
were exported and double scored using both the QIAx-
cel binary scoring function and manually by visualisation
of the gel images and discrepancies were scored by a
third independent reader. All readers were blinded to
participant survey data.

Statistical analyses
Data analysis was based on total IgG levels to five antigens as
potential markers of sero-incidence [11]—early transcribed
membrane protein 5 (Etramp5.Ag1), gametocyte export pro-
tein 18 (GEXP18), heat shock protein 40 (HSP40.Ag1),
erythrocyte-binding antigen 175 RIII-V (EBA175), and re-
ticulocyte binding protein homologue 2 (Rh2.2030). Three
antigens associated with long-lived antibody response—P.
falciparum merozoite surface antigen 1 19-kDa carboxy-
terminal region (PfMSP119), P. falciparum apical membrane
antigen 1 (PfAMA1), and P. falciparum glutamate-rich pro-
tein, region 2 (PfGLURP.R2)—were included as a compari-
son, which have historically been used to assess sero-
conversion rates over time [8, 9] and have also previously
been studied in The Gambia [6, 7]. For antigens associated
with long-lived antibodies (PfMSP119, PfAMA1,
PfGLURP.R2), individuals residing in an endemic region pre-
viously exposed to malaria, but not recently infected, may
still have residual antibody levels that are significantly higher
than malaria-naïve individuals in non-endemic regions.
Therefore, a two-component Gaussian mixture model was
used to define distributions of negative and positive antibody
levels, expressed in units of median fluorescence intensity
(MFI). Sero-positivity thresholds were defined as the mean
log MFI values plus two standards deviations of the negative
distribution [25]. Mixture models were estimated using the
‘normalmixEM’ function in the ‘mixtools’ package v1.0.4 in R
version 3.6.1. For antigens associated with shorter-lived anti-
bodies where statistical evidence of a bimodal distribution of
antibody responses in the population was not strong given
the more rapid decay of antibody levels post-infection—
Etramp5.Ag1, GEXP18, HSP40.Ag1, EBA175, and
Rh2.2030—the sero-positivity threshold was defined by the
mean log MFI plus three standard deviations of 71 malaria-
naïve European blood donors used as negative controls.
Individual-level association between antibody response

and the concurrent odds of clinical malaria (passively de-
tected via the health facility or study nurses in the com-
munity) or asymptomatic P. falciparum infection (actively
detected using PCR from monthly survey samples) were
assessed using generalised estimating equations (GEE).
Analysis was adjusted for age group (1–5 years, 6–15
years, and greater than 15 years) and use of long-lasting
insecticide-treated nets (LLINs) in the last 24 h and
allowed for clustering at the compound level, where
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compound is a collection of households centrally located
around a main residence. The magnitude of the associ-
ation between antibody response and odds of infection
was evaluated for interaction with age group. Based on a
subset of longitudinal samples, individual-level association
between antibody response and recent infection in the
previous 4 months (as opposed to current infection at the
same time point) was also assessed using a GEE model,
adjusted for age group, LLIN use, and random effects at
the compound level, as above.
Using a GEE model, individual-level odds of clinical

malaria or asymptomatic infection was assessed for associ-
ation with residing in the same compound as a sero-
positive individual. Similarly, the association between indi-
vidual odds of infection and compound-level sero-
prevalence (< 50% or > 50%) was assessed using a mixed-
effects generalised linear model adjusted for age group
and LLIN use and random effects at the compound level,
which also accounts for the potential effect of geograph-
ical differences in transmission intensity. To ensure that
estimates are not biased by the sero-prevalence of small
compounds, analysis was weighted by the number of indi-
viduals in the compound (whose sero-status was assessed)
and only included compounds with at least four individ-
uals. Models were fit using the ‘geeM’ and ‘lme4’ packages
in R version 3.14.
Village-level sero-prevalence amongst children aged 2–

10 years in the West Coast Region and Upper River Re-
gion in July and December 2013 (n = 1001) was compared
against all-age clinical and P. falciparum infection inci-
dence rates from the same months, the latter of which
were previously reported by Mwesigwa et al. [13].
Monthly clinical and P. falciparum infection incidence
rates were defined respectively as the number of new clin-
ical cases or P. falciparum infections (PCR-positive indi-
viduals who were PCR-negative in the previous monthly
survey) divided by total person years at risk (PYAR). This
age range was selected to align with other routine surveil-
lance metrics, such as annual parasite index (API), com-
monly using this age group as a sentinel population. The
strength of the relationship between village-level incidence
rates and sero-prevalence for each antigen was assessed
using Pearson’s correlation coefficient. Data from April
and December 2014 were not included in the analysis be-
cause clinical incidence and Pf infection rates from these
surveys have not yet been reported.

Results
Village-level sero-prevalence
Data from 2001 individuals were available for analysis
of antibody responses from 5572 samples between
June 2013 and December 2014 (Fig. 2). Based on
whole-village monthly survey data in the West Coast
and Upper River Regions, slightly more than half of

participants were female in both the West Coast Re-
gion (55.0%) and the Upper River Region (54.3%), and
there was higher LLIN use in the West Coast Re-
gion (96.8%) compared to the Upper River Region
(46.6%) (Table 1). In the West Coast Region, P. fal-
ciparum infection rate in December 2013 (0.67 95%
CI 0.40–1.13) was three times higher than at the start
of the transmission season in July 2013 (0.23 95% CI
0.13–0.39) (Table 3). In the Upper River Region, P.
falciparum infection rate in December 2013 (2.87 95%
CI 2.36–3.50) was five times higher than July 2013
(0.56 95% CI 0.42–0.74) (Table 3). Sero-prevalence
amongst 2–10 years olds in the West Coast Region
ranged from 1.0% (95% CI 0.0–2.3) for Rh2.2030 in
July 2013 (start of the transmission season) to 13.7%
(95% CI 8.9–18.5) for Etramp5.Ag1 in December 2013
(end of transmission season) (Table 3). In the Upper
River Region, sero-prevalence across all antigens was
higher, ranging from 5.1% (95% CI 2.5–7.7) for
PfMSP119 in July 2013 to 36.3% (95% CI 30.2–42.3)
for GEXP18 in December 2013 (Table 3).
In the Upper River Region in 2014, no statistically sig-

nificant differences in sero-prevalence amongst 2–10
year olds were observed for any antigen (Additional file 1
– Table S1). It should be noted that MDA was imple-
mented in May–June 2014, so results may not be com-
parable to 2013 prior to intervention. Sero-prevalence in
this age group was highly correlated with clinical malaria
and P. falciparum infection incidence rates (Fig. 3,
Table 4).
In both regions in July and December 2013, correla-

tions between P. falciparum infection rate and sero-
prevalence were strongest for Etramp5.Ag1 (ρ = 0.99),
HSP40.Ag1 (ρ = 0.99), PfMSP119 (ρ = 0.99), and
Rh2.2030 (ρ = 0.94). Incidence of clinical malaria had the
strongest correlations with Etramp5.Ag1 (ρ = 0.97),
PfMSP119 (ρ = 0.95), PfGLURP.R2 (ρ = 0.92), and
HSP40.Ag1 (ρ = 0.90). After excluding December 2013
data from the Upper River Region as a potential outlier,
correlations with both clinical incidence and P. falcip-
arum infection rates remained high for Etramp5.Ag1
(p = 0.92 and p = 0.95, respectively) and PfMSP119 (p =
0.90 and p = 0.93, respectively). These correlations are
based on few data points, with only three observations
when excluding the Upper River Region in December
2013.

Individual-level association between clinical malaria,
asymptomatic P. falciparum infection, and concurrent
sero-positivity
The odds of clinical malaria were higher in individuals
sero-positive to six (out of eight) of the antigens ana-
lysed (Etramp5.Ag1, GEXP18, Rh2.2030, PfMSP119,
PfAMA1, and PfGLURP.R2) (Fig. 4a, Table 5). After
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adjusting for age and LLIN use, clinical malaria was as-
sociated with concurrent sero-positivity to four antigens
(Etramp5.Ag1, PfMSP119, PfAMA1, and PfGLURP.R2),
while odds of asymptomatic infection were strongly as-
sociated with sero-positivity to all antigens. Amongst in-
dividuals sero-positive for Etramp5.Ag1, there was
increased odds of both clinical malaria (aOR 4.60, 95%
CI 2.98–7.12, p < 0.001) and asymptomatic infection
(aOR 3.33, 95% CI 2.72–4.08, p < 0.001) (Table 5). Asso-
ciation with clinical malaria was slightly lower in individ-
uals sero-positive for PfMSP119 (aOR 4.09, 95% CI 2.60–

6.44, p < 0.001), PfGLURP.R2 (aOR 3.12, 95% CI 2.12–
4.59, p < 0.001), and PfAMA1 (aOR 2.32, 95% CI 1.40–
3.85 p = 0.001). Odds of asymptomatic infection in indi-
viduals sero-positive to GEXP18 (aOR 3.12, 95% CI
2.50–3.90, p < 0.001), Rh2.2030 (aOR 3.06, 95% CI 2.40–
3.89, p < 0.001), PfAMA1 (aOR 3.80, 95% CI 2.95–4.90,
p < 0.001), and PfGLURP.R2 (aOR 3.80 95% CI 2.92–
4.95, p < 0.001) was similar to Etramp5.Ag1. Addition-
ally, a subset of longitudinal samples were used to ex-
plore the dynamics of antibody responses following
infection. After adjusting for age group and LLIN use,

Table 3 Regional sero-prevalence (ages 2–10 years) by antigen and all-age incidence rates for clinical malaria and Pf infection. Mean
sero-prevalence (%) and incidence rates with 95% CI shown in parentheses

West Coast Region (WCR) Upper River Region (URR)

July 2013 December 2013 July 2013 December 2013

Clinical incidence rate 0.08 (0.04–0.21) 0.14 (0.04–0.44) 0.13 (0.04–0.39) 0.21 (0.1–0.51)

Pf infection rate 0.23 (0.13–0.39) 0.67 (0.40–1.13) 0.56 (0.42–0.74) 2.87 (2.36–3.50)

Sero-prevalence (ages 2–10 years)

n = 205 n = 197 n = 275 n = 324

Etramp5.Ag1 4.4% (1.6–7.2) 13.7% (8.9–18.5) 8.7% (5.4–12.1) 33.3% (27.4–39.3)

GEXP18 11.7% (7.3–16.1) 12.7% (8.0–17.3) 25.1% (20.0–30.2) 36.3% (30.2–42.3)

HSP40.Ag1 5.4% (2.3–8.5) 6.1% (2.8–9.4) 8.4% (5.1–11.6) 23.8% (18.4–29.1)

Rh2.2030 1.0% (0.0–2.3) 1.0% (0.0–2.4) 9.8% (6.3–13.3) 25.4% (19.9–30.9)

EBA175 1.5% (0.0–3.1) 1.0% (0.0–2.4) 7.3% (4.2–10.3) 15.8% (11.2–20.5)

PfMSP119 2.9% (0.6–5.2) 8.1% (4.3–11.9) 5.1% (2.5–7.7) 22.1% (16.8–27.3)

PfAMA1 4.4% (1.6–7.2) 4.1% (1.3–6.8) 17.8% (13.3–22.3) 33.3% (27.4–39.3)

PfGLURP.R2 4.4% (1.6–7.2) 8.1% (4.3–11.9) 16.4% (12.0–20.7) 30.4% (24.6–36.2)

Table 2 Summary of antigens in multiplex Luminex panel

Gene ID Antigen
name

Strain Antigen bead coupling
concentration (μg/mL)

Purification
tag

Location Description Reference

PF3D7_
0930300

PfMSP119 Wellcome 42.31 GST Merozoite
surface

19 kDa fragment of MSP1
molecule

[14]

PF3D7_
1133400

PfAMA1 FVO 3.90 Hisx6 Sporozoite/
merozoite

Apical membrane antigen 1 [15]

PF3D7_
1035300

PfGLURP.R2 F32 9.22 N/A Merozoite Glutamate-rich protein R2 [16]

PF3D7_
0731500

EBA175 RIII-
V

3D7 408.32 GST Merozoite Erythrocyte-binding antigen-
175 Region III-V

[17]

PF3D7_
1335400

Rh2.2030 D10 244.30 GST Merozoite Reticulocyte binding protein
homologue 2

[18]

PF3D7_
0532100

Etramp5.Ag1 3D7 34.93 GST iRBC/PVM Early transcribed membrane
protein 5

[19]

PF3D7_
0402400

GEXP18 3D7 625.00 GST Gametocytes Gametocyte exported protein
18

[11]

PF3D7_
0501100.1

HSP40.Ag1 3D7 42.54 GST iRBC/
gametocytes

Heat shock protein 40, type II [11]

– GST – 85.99 – – GST expression tag

– TT – 61.52 – – Tetanus toxoid

iRBC infected red blood cell, PVM parasitophorous vacuole membrane, GST glutathione S-transferase
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antibody responses to six out of eight antigens were sig-
nificantly associated with infection (clinical, RDT-
positive or PCR-positive) in the previous 4 months.
Antibody levels against Etramp5.Ag1 were most strongly
associated with previous infection (aOR 1.44 95% CI
1.19–1.75, p < 0.001), followed by PfAMA1 (aOR 1.33

95% CI 1.16–1.53, p < 0.001), EBA175 (aOR 1.26 95% CI
1.09–1.46, p = 0.002), GEXP18 (aOR 1.23 95% CI 1.03–
1.47, p = 0.021), PfMSP119 (aOR 1.21 95% CI 1.04–1.41,
p = 0.012), and Rh2.2030 (aOR 1.20 95% CI 1.03–1.39,
p = 0.020).

Individual-level odds of clinical malaria, asymptomatic
infection when residing in compounds with sero-positive
individuals
The odds of clinical malaria were reduced for individ-
uals residing in the same compound with an individ-
ual sero-positive to any of the eight antigens (Fig. 4b,
Table 6), from an 83% reduction if residing in the
same compound as an individual sero-positive for
Etramp5.Ag1 (aOR 0.17, 95% CI 0.03–0.89, p = 0.036)
to a 95% reduction if residing in the same compound
as someone sero-positive for PfAMA1 (aOR 0.05, 95%
CI 0.01–0.52, p = 0.011). Conversely, the odds of
asymptomatic infection were positively associated with
residing in the same compound as sero-positive indi-
viduals for five antigens (Etramp5.Ag1, GEXP18,
Rh2.2030, PfMSP119, and PfAMA1). Adjusted odds of
asymptomatic infection was nearly 3-fold higher if
residing with an individual sero-positive for Etram-
p5.Ag1 (aOR 2.87, 95% CI 1.62–5.07, p < 0.001) and
for GEXP18 (aOR 2.61, 95% CI 1.54–4.42, p < 0.001).

Table 4 Pearson’s correlation coefficients between regional
sero-prevalence (ages 2–10 years) and all-age incidence rates for
clinical malaria and Pf infection. Correlation estimates are based
on data from the West Coast Region (WCR) and Upper River
Region (URR) in July and December 2013. Correlations excluding
data from URR December 2013 are shown in brackets

Antigen Pearson’s correlation coefficient

Sero-prevalence vs. clinical
incidence rate

Sero-prevalence vs. Pf
infection incidence rate

Etramp5.Ag1 0.97 [0.92] 0.99 [0.95]

GEXP18 0.85 [0.42] 0.87 [0.34]

HSP40.Ag1 0.90 [0.56] 0.99 [0.48]

Rh2.2030 0.88 [0.36] 0.94 [0.28]

EBA175 0.85 [0.29] 0.91 [0.21]

PfMSP119 0.95 [0.90] 0.99 [0.93]

PfAMA1 0.85 [0.34] 0.89 [0.26]

PfGLURP.R2 0.92 [0.62] 0.93 [0.55]

Fig. 3 Pearson’s correlation between regional sero-prevalence (ages 2–10 years) and all-age incidence rates for clinical malaria and Pf infection.
Correlations between sero-prevalence and incidence rates for clinical malaria (new clinical episodes divided by person-years at risk) in red and Pf
infection (new PCR infections divided by person-years at risk) in blue were based on data from the West Coast Region (WCR) and the Upper River
Region (URR) in July and December 2013. Correlations excluding data from URR December 2013 shown in brackets
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If residing in a compound with individuals sero-
positive to Rh2.2030, PfMSP119, or PfAMA1, the odds
of asymptomatic infection were all nearly twice as
high as individuals living in compounds sero-negative
to these antigens (Table 6).
The prevalence of sero-positive compounds for long-

lived antibody responses varied by antigen and region
but remained generally stable throughout the transmis-
sion season. For PfMSP119, prevalence of sero-positive
compounds was 32.2% (95% CI 14.9–49.5) in July 2013
and 39.8% (95% CI 23.6–56.0) in December 2013, while
prevalence of compounds sero-positive for PfAMA1 and
PfGLURP.R2 ranged between 77.0% (95% CI 66.9–87.1)
in July 2013 and 80.7% (95% CI 71.5–89.9) in December
2013 (Additional file 1 – Table S1). In the Upper River
Region, nearly all compounds were sero-positive to
PfAMA1 and PfGLURP.R2, from 96.3% (95% CI 91.2–
100) in July 2013 to 100% in December 2014, but

prevalence was slightly lower for PfMSP119, which was
between 70.4% (95% CI 55.9–84.9) in July 2013 and
88.6% (95% CI 80.7–96.5) in December 2014. By con-
trast, prevalence of sero-positive compounds for short-
lived antibody responses were lower in both regions,
ranging from 41.4% (95% CI 25.3–57.5) for Etramp5.Ag1
to 63.2% (95% CI 50.5–76.0) for EBA175 in July 2013 in
the West Coast Region and from 72.2% (95% CI 58.2–
86.3) for Etramp5.Ag1 in July 2013 to 97.1% (95% CI
93.2–100) for GEXP18 in December 2014 in the Upper
River Region.

Association between individual-level clinical malaria,
asymptomatic infection, and compound sero-prevalence
When stratifying by compound-level sero-prevalence,
mean regression estimates found a reduced odds of clin-
ical malaria if residing in a compound with sero-
prevalence less than 50% for all antigens and an

Table 5 Odds of clinical malaria and asymptomatic infection by individual-level serological status, unadjusted and adjusted for age
group (< 5 years, 5–15 years, and > 15 years) and LLIN use in the last 24 h

Odds of clinical malaria or asymptomatic infection amongst sero-positive individuals, by antigen

Unadjusted Adjusted

OR 95% CI p value aOR 95% CI p value

Etramp5.Ag1

Clinical malaria 5.88 3.44–10.03 < 0.001 4.60 2.98–7.12 < 0.001

Asymptomatic infection 3.20 2.64–3.88 < 0.001 3.33 2.72–4.08 < 0.001

GEXP18

Clinical malaria 2.57 1.44–4.61 0.002 1.48 0.90–2.41 0.122

Asymptomatic infection 2.94 2.38–3.64 < 0.001 3.12 2.50–3.90 < 0.001

HSP40.Ag1

Clinical malaria 1.67 0.88–3.18 0.119 0.99 0.59–1.65 0.956

Asymptomatic infection 2.53 2.06–3.10 < 0.001 2.64 2.09–3.33 < 0.001

Rh2.2030

Clinical malaria 2.20 1.10–4.38 0.025 1.28 0.77–2.12 0.338

Asymptomatic infection 2.45 1.98–3.03 < 0.001 3.06 2.40–3.89 < 0.001

EBA175

Clinical malaria 1.37 0.67–2.81 0.390 1.54 0.86–2.75 0.147

Asymptomatic infection 2.09 1.74–2.51 < 0.001 2.86 2.21–3.72 < 0.001

PfMSP119

Clinical malaria 3.83 1.95–7.51 < 0.001 4.09 2.60–6.44 < 0.001

Asymptomatic infection 2.29 1.82–2.88 < 0.001 2.49 1.90–3.27 < 0.001

PfAMA1

Clinical malaria 2.21 1.25–3.90 0.006 2.32 1.40–3.85 0.001

Asymptomatic infection 2.62 2.12–3.24 < 0.001 3.80 2.95–4.90 < 0.001

PfGLURP.R2

Clinical malaria 2.17 1.28–3.68 0.004 3.12 2.12–4.59 < 0.001

Asymptomatic infection 2.38 1.96–2.89 < 0.001 3.80 2.92–4.95 < 0.001
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increased odds of clinical malaria in compounds with
greater than 50% sero-prevalence for four antigens
(Etramp5.Ag1, GEXP18, HSP40.Ag1, and PfMSP119)
(Fig. 5a, Additional file 2 - Tables S3, S7, S11, S19, and
S23). However, these results were not statistically signifi-
cant. There was strong statistical evidence for increasing
odds of asymptomatic infection with increasing com-
pound sero-prevalence for two antigens (Etramp5.Ag1
and PfMSP119) (Fig. 5b, Additional file 2 - Tables S4,
S24) and weaker statistical evidence for increasing odds
of asymptomatic infection for HSP40.Ag1 and Rh2.2030
(Additional file 2 - Tables S14, S16). Average compound
size in regions with less than 15% PCR prevalence (West
Coast, North Bank, Lower River and Central River Re-
gions) was 9.3 (95% CI 7.9–10.7) individuals, and in re-
gions with more than 15% PCR prevalence (Upper River
Regions South and North), average compound size was
slightly larger (16.3 95% CI 13.4–19.1 individuals)

(Additional file 1 – Figure S1). Across all compounds,
the average age range within a household was 54.2 years
(95% CI 51.2–57.1), with an average minimum age of
2.6 years (95% CI 2.1–3.0) and a maximum age of 56.7
years (95% CI 53.8–59.8) (Additional file 1 – Figure S1).
Antigens most associated with increased odds of

asymptomatic infection were Etramp5.Ag1, GEXP18,
and PfMSP119. For Etramp5.Ag1, aOR ranged from 2.52
(95% CI 1.49–4.28, p = 0.001) in compounds with less
than 50% sero-prevalence to aOR 8.17 (95% CI 5.23–
12.76, p < 0.001) in compounds with sero-prevalence
greater than 50%, compared to sero-negative com-
pounds as the baseline reference (Additional file 2 -
Table S4). For GEXP18, aOR ranged from 2.86 (95% CI
1.44–5.69, p = 0.003) to 8.85 (95% CI 3.54–22.08, p <
0.001) (Additional file 2 - Table S8). For PfMSP119, aOR
ranged from 2.13 (95% CI 1.30–3.50, p = 0.003) to aOR
8.75 (95% CI 4.96–15.43, p < 0.001) (Additional file 2 -

Table 6 Odds of clinical malaria and asymptomatic Pf infection by compound serological status. Estimates are weighted by
compound size and shown as unadjusted odds ratios (OR) and adjusted odds ratios (aOR) for age group (< 5 years, 5–15 years, and
> 15 years)

Odds of clinical malaria or asymptomatic Pf infection for individuals residing in sero-positive compounds

Unadjusted Adjusted

OR 95% CI p value aOR 95% CI p value

Etramp5.Ag1

Clinical malaria 0.19 0.03–1.06 0.059 0.17 0.03–0.89 0.036

Asymptomatic infection 2.83 1.62–4.96 < 0.001 2.87 1.62–5.07 < 0.001

GEXP18

Clinical malaria 0.13 0.02–0.90 0.039 0.11 0.02–0.73 0.022

Asymptomatic infection 2.65 1.58–4.47 < 0.001 2.61 1.54–4.42 < 0.001

HSP40.Ag1

Clinical malaria 0.14 0.02–0.80 0.027 0.13 0.02–0.70 0.018

Asymptomatic infection 1.32 0.77–2.28 0.316 1.38 0.79–2.41 0.257

Rh2.2030

Clinical malaria 0.07 0.01–0.48 0.006 0.06 0.01–0.35 0.002

Asymptomatic infection 1.69 0.96–2.99 0.070 1.92 1.10–3.36 0.022

EBA175

Clinical malaria 0.07 0.01–0.61 0.016 0.07 0.01–0.57 0.013

Asymptomatic infection 1.00 0.50–2.01 0.992 1.02 0.50–2.09 0.954

PfMSP119

Clinical malaria 0.15 0.03–0.87 0.034 0.12 0.03–0.50 0.004

Asymptomatic infection 1.87 1.15–3.06 0.012 1.95 1.19–3.20 0.008

PfAMA1

Clinical malaria 0.06 0.01–0.62 0.018 0.05 0.01–0.52 0.011

Asymptomatic infection 1.96 1.01–3.81 0.046 1.99 1.00–3.93 0.048

PfGLURP.R2

Clinical malaria 0.06 0.01–0.53 0.012 0.05 0.01–0.43 0.006

Asymptomatic infection 1.59 0.85–2.97 0.145 1.52 0.77–3.01 0.228
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Table S24). For HSP40.Ag1, EBA175, and PfAMA1, sta-
tistically strong evidence for increased odds of asymp-
tomatic infection was only observed in compounds with
greater than 50% sero-prevalence (Additional file 2 - Ta-
bles S12, S20, S28).
The spatial distribution of infections at both the start

and end of the transmission season (June–July 2013 vs.
August–December 2013) suggests that clinical mal-
aria and asymptomatic infection is localised near

households with Etramp5.Ag1 sero-positive individuals
(Fig. 6). There are a number of Etramp5.Ag1 sero-
positive households at both the start and during the wet
season without concurrent clinical or asymptomatic in-
fections present. However, this is more pronounced for
PfAMA1, where sero-positivity could reflect a longer his-
tory of exposure than Etramp5.Ag1 (Additional file 3 –
Figure S1). While there are a limited number of clinical
cases between June and July 2013, from August to

Fig. 5 Odds of clinical malaria by compound sero-prevalence (a) and odds of asymptomatic infection by compound sero-prevalence (b).
Analyses is adjusted for age group (< 5 years, 5–15 years, and > 15 years) and LLIN use in the last 24 h and weighted by compound size

Fig. 4 Odds clinical malaria and asymptomatic infection by a individual sero-positivity status b residing in the same compound as a sero-positive
individual. Analyses is adjusted for age group (< 5 years, 5–15 years, and > 15 years) and LLIN use in the last 24 h and weighted by compound size
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Fig. 6 Household geolocation of Etramp5.Ag1 sero-positive individuals, clinical malaria, and Pf infections across four villages. Spatial distribution of
infections shown for lower transmission (N’demban) and higher transmission (Besse) villages in the West Coast Region (WCR) and lower
transmission (Njaiyal) and higher transmission (Madina Samako) villages in the Upper River Region (URR). Infections at the start of the wet season
(June–July 2013) shown on the left and during the wet and transmission season (August–December 2013) on the right
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December 2013, these cases occur in proximity to
households with asymptomatic and Etramp5.Ag1 sero-
positive individuals (Fig. 6).

Discussion
We investigated the association between antibody re-
sponses and clinical and parasitological endpoints at the
individual, household, and population level across The
Gambia. At the individual level, clinical malaria was
highly correlated with concurrent sero-positivity to
Etramp5.Ag1, PfMSP119, PfAMA1, and PfGLURP.R2,
while asymptomatic infection was correlated with sero-
positivity to all antigens included in this study. The
strongest associations were between asymptomatic infec-
tion and sero-positivity to Etramp5.Ag1 and PfAMA1.
Village-level sero-prevalence amongst children 2–10
years against antigens Etramp5.Ag1, HSP40.Ag1, and
PfMSP119 showed the highest correlations with clinical
incidence and Pf infection rates. In addition to current
infection, antibody responses to several antigens, par-
ticularly Etramp5.Ag1, were associated with prior infec-
tion in the last 4 months, highlighting the potential for
cross-sectional serological surveillance to identify areas
of recent malaria exposure, even after parasites have
been cleared and are no longer detectable by PCR. To
better inform how these antigenic targets can be used to
estimate time since infection, future research is needed
to quantify the half-life of antibody responses and deter-
mine the sensitivity and specificity for identifying previ-
ous infection across varying epidemiological settings.
This will require more detailed cohort studies with in-
tensive follow-up for extended periods (ideally more
than 1 year) and with sufficient sample sizes to capture
individual heterogeneity [26].
At the household level, individuals had increased odds

of asymptomatic infection when residing in a compound
with greater than 50% sero-prevalence to all antigens,
with the highest odds associated with sero-prevalence to
Etramp5.Ag1, GEXP18, and PfMSP119. While these re-
sults cannot confirm a causal relationship between sero-
logical responses and clinical outcomes or asymptomatic
infection, they indicate that infected individuals tend to
be concurrently sero-positive to most of the serological
markers assessed. There was strong evidence of reduced
odds of clinical malaria for individuals residing in the
same compound as an individual sero-positive to any of
the antigens, suggesting a protective effect. In fact, previ-
ous studies suggest that several of the antigens investi-
gated in this study—EBA175, Rh2, PfGLURP.R2,
PfAMA1, and PfMSP1—have a functional role in medi-
ating protective immunity if antibodies are acquired at a
sufficiently high magnitude [27–29].
While PfMSP119 and PfAMA1 have been used ex-

tensively to measure medium- and long-term trends

in transmission intensity, these markers may be less
sensitive to changes in transmission at higher ende-
micities or to short-term fluctuations due to the rapid
acquisition of antibodies and the long half-life of
sero-positivity for some blood-stage antigens [30–33].
Individuals with clinical malaria or with long-lived
antibody responses in low transmission regions of
western Gambia could indicate foci of malaria trans-
mission that have been ongoing for several transmis-
sion seasons or years. In areas where parasite density
is low and often missed by RDTs and microscopy,
using serological markers could support targeted in-
terventions to clear or eliminate these residual reser-
voirs of human infection. Antigens in this study
associated with shorter-lived antibodies—Etramp5.Ag1,
GEXP18, and HSP40.Ag1—were positively correlated
with clinical malaria and asymptomatic infection.
Antibody responses to these antigens have been
shown to decrease rapidly after infection in Ugandan
children [34]. The cellular localisation of these anti-
genic targets makes them less likely to play a central
role in mediating functional immunity, unlike antigens
associated with longer-lived antibodies such as
PfAMA1, PfMSP119, and EBA175. In settings where
most infections are sub-patent and fluctuate above or
below the detection limit of PCR, detecting the short-
lived antibody responses in individuals or households
could imply recent infectivity, particularly in the dry
season when clinical cases are rare.
While factors such as the method for determining

sero-positivity cut-off values could affect estimates of
sero-prevalence or the magnitude of association between
endpoints [35], the observations in this study have im-
portant implications. In particular, there is a very con-
sistent trend of compound sero-positivity being a risk
factor for asymptomatic infection in contrast to being
protective against clinical malaria. The complex dynam-
ics between clinical and parasitic immunity are not
fully explained through epidemiological data alone as
previous studies have observed lower PCR density in
areas of higher transmission intensity [36]. Fluctuations
in sero-positivity levels may be a strong indicator of a
persistent human reservoir of infection, warranting
community-targeted interventions if individuals remain
infected but are not clinically apparent and continue to
transmit. Household serological status could be used for
targeting interventions where there are foci of asymp-
tomatically infected individuals.
Immuno-epidemiological studies will be subject to var-

iations in antigen-specific antibody dynamics, as well as
the antigenicity of recombinant constructs. Differences
in sequence selection and expression systems may result
in recombinant proteins that differ slightly from natural
epitope conformation or exposure. It is unclear the
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degree to which these subtle variations affect the
strength of antibody detection between recombinant an-
tigens. While this study focuses primarily on total IgG
responses, quantification of antibody levels using a com-
bination of isotypes or subclasses may allow for im-
proved detection of sero-incidence. For example, some
studies have found that IgG3 antibodies bind more
weakly or have a reduced serum half-life relative to IgG1
[37, 38], suggesting that naturally acquired antibody re-
sponses can be skewed with respect to isotype and sub-
class. Studies on switch class variants for both malaria
and other infectious pathogens have found that antibody
affinity and avidity will differ between antigens of the
same pathogen or even between different domains of a
single antigen [39, 40]. This can be due to factors such as
age and gender, antigen density, strain of the organism,
and epitope specificity [38, 41, 42]. Ultimately, current evi-
dence on the associations of antigen-specific IgG sub-
classes with both exposure and immunity to malaria is
varied [43, 44]. Antigens will fall along a continuum of
suitability as either biomarkers of acute infection to corre-
lates of protective immunity [28], and these subtleties
need to be considered when selecting targets for surveil-
lance. The assays used in this study have allowed us to
quantify antibody responses to specific antigens. There-
fore, it will also be valuable to investigate the optimal
combinations of antigens associated with both short- and
long-lived antibodies in surveillance, which could be more
routinely used to account for the breadth of antibody re-
sponse in a population [45–47]. Individual level variations
could also be overcome by using multiple variants or
chimeric antigen constructs [48].
Changing household sero-prevalence throughout the

season may influence the precision of estimates, which
could be overcome with more frequent sampling of study
participants, such as 3-month intervals depending on anti-
body decay rates. The findings in this study suggest that
household sero-prevalence may be a robust proxy for past
malaria exposure. It is simultaneously associated with in-
creased risk of asymptomatic infections, but reduced risk
of clinical malaria (potentially due to partial immunity).
However, the biological relationship between household
serological status and the risk of clinical or parasitic infec-
tion could be better investigated and confirmed through
controlled observational cohort studies.
Our study findings indicate that a number of new

serological markers of malaria exposure could be useful
for epidemiological surveillance in highly seasonal mal-
aria transmission areas. There is potential for several of
the antigenic targets explored to be used for population-
wide screening, all of which have also been optimised
for use on a multiplexed bead-based platform in re-
search settings. Further translating this to a lateral flow
device may offer opportunities for widespread

application if clear use-cases can be established [49]. In
light of the strong association between serological status
and increased asymptomatic infection, serological plat-
forms may have direct utility as a screening tool in active
or reactive case detection strategies, most of which have
relied on clinical index cases presenting at health facil-
ities and have shown variability in effectiveness [50]. As
malaria transmission declines, surveillance using a di-
verse panel of antigenic targets can complement existing
and emerging diagnostic tools for monitoring changes in
transmission. This can include methods such as age-
stratified sero-prevalence to estimate sero-conversion
rates or measuring age-specific antibody intensity, where
estimates of the magnitude of antibody response can
often detect more subtle serological changes in the
population [51]. Specific monitoring for the presence of
individuals or households with higher than age-expected
antibody levels, as has been explored in other elimin-
ation settings such as Indonesia [52] and South Africa
[10], can also be used to identify areas with clustering of
high antibody responses as potential reservoirs of infec-
tions and guide the spatial targeting of interventions.
Serology could also play a role in documenting the ab-
sence of malaria transmission, inform baseline risk
stratification of study arms in randomised trials, or be
used as secondary endpoints in efficacy trials [49]. How-
ever, further field testing of these strategies in future
studies will be needed, as well as standardised methods
for characterising serological responses at the village or
cluster level, and determining optimal sampling time-
frames or sentinel populations for use in routine
surveillance.

Conclusions
As more countries move towards malaria elimination,
including several in sub-Saharan Africa, sensitive surveil-
lance tools will be needed to further understand the dy-
namics between the parasite, host, and vector at very
low levels of transmission. Integrating serological
markers of recent exposure into existing field diagnostics
and case reporting will become increasingly important in
estimating the human reservoir of malaria infection, un-
derstanding patterns of transmission, and designing tar-
geted elimination strategies.
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