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Abstract

Background: Identifying hotspots of tuberculosis transmission can inform spatially targeted active case-finding
interventions. While national tuberculosis programs maintain notification registers which represent a potential
source of data to investigate transmission patterns, high local tuberculosis incidence may not provide a reliable
signal for transmission because the population distribution of covariates affecting susceptibility and disease
progression may confound the relationship between tuberculosis incidence and transmission. Child cases of
tuberculosis and other endemic infectious disease have been observed to provide a signal of their transmission
intensity. We assessed whether local overrepresentation of child cases in tuberculosis notification data corresponds
to areas where recent transmission events are concentrated.

Methods: We visualized spatial clustering of children < 5 years old notified to Peru’s National Tuberculosis Program
from two districts of Lima, Peru, from 2005 to 2007 using a log-Gaussian Cox process to model the intensity of the
point-referenced child cases. To identify where clustering of child cases was more extreme than expected by
chance alone, we mapped all cases from the notification data onto a grid and used a hierarchical Bayesian spatial
model to identify grid cells where the proportion of cases among children < 5 years old is greater than expected.
Modeling the proportion of child cases allowed us to use the spatial distribution of adult cases to control for
unobserved factors that may explain the spatial variability in the distribution of child cases. We compare where
young children are overrepresented in case notification data to areas identified as transmission hotspots using
molecular epidemiological methods during a prospective study of tuberculosis transmission conducted from 2009
to 2012 in the same setting.

Results: Areas in which childhood tuberculosis cases are overrepresented align with areas of spatial concentration
of transmission revealed by molecular epidemiologic methods.
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Conclusions: Age-disaggregated notification data can be used to identify hotspots of tuberculosis transmission and
suggest local force of infection, providing an easily accessible source of data to target active case-finding

intervention.
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Background

The End TB Strategy’s ambitious goals to reduce tuber-
culosis incidence require new interventions to interrupt
transmission [1]. This has led to a renewed interest in
active case-finding strategies, in which risk groups are
screened to identify infectious individuals before they
present to care [2, 3]. Because untargeted community-
based active case-finding has not consistently demon-
strated population-level benefits [4-7], there has been
interest in new practical approaches to focus case-
finding to population groups among whom risk is
concentrated. One such approach is to target active
case-finding to hotspots, areas in which transmission is
most intense [8]. While evidence supporting the impact
of targeting screening in hotspots is currently limited
[9], mathematical modeling suggests that such targeting
can produce substantial population-wide reductions in
transmission [10, 11].

Conclusive evidence of hotspot transmission typically
relies on access to detailed spatial and pathogen genetic
data [12-14]. While spatial information is often available
in public health reporting systems (e.g., home location),
in high-transmission/lower-income settings, resources
for genetic sequencing of pathogens are typically only
available in research studies. Thus, methods to robustly
identify hotspots from routine reporting data would be
valuable [15]. However, given that high local rates of tu-
berculosis notifications may reflect spatially aggregated
risk for progression of infection, migration of individuals
infected with tuberculosis into the area [16], or spatial
heterogeneity in diagnostic capacity [17], finding new
ways to probe routine surveillance data to find evidence
of local transmission is a priority.

Spatial differences in the age distribution of tubercu-
losis cases in a single city may provide a signal for local
transmission intensity [18]. In locations where disease
transmission is more intense, cases are systematically
younger than in locations where disease transmission is
less intense [19]. We aimed to test this previously pos-
ited, but to our knowledge yet untested, idea that areas
where children are overrepresented in tuberculosis case
notification data are areas where recent transmission
events are concentrated. We tested this hypothesis using
case notification data from Lima, Peru, where we were
able to compare our inference to a prospective

molecular epidemiology study conducted in the same
setting several years later [20, 21]. This comparison pro-
vided an opportunity to examine whether routinely col-
lected tuberculosis notification data can be used to
identify transmission hotspots.

Methods

Study setting and population

We examined data from all tuberculosis cases notified to
Peru’s National Tuberculosis Program from two of
Lima’s four health districts, Lima Ciudad and contiguous
catchment areas of Lima Este, between January 1, 2005
and December 31, 2007. Patient demographic and clin-
ical information was available within the notification
data as well as household address, which was identified
on high-resolution maps created using Google Earth.
Additional details of the study design and mapping pro-
cedures have been described previously [22, 23].

Our interest was in identifying areas in which young
children were overrepresented in these routinely col-
lected notification data from 2005 to 2007 and whether
they correlated with areas identified as transmission hot-
spots during a prospective study of tuberculosis trans-
mission conducted from 2009 to 2012 [21]. The latter
study included molecular epidemiological
characterization of culture-positive cases of drug-
susceptible and drug-resistant tuberculosis from adults
older than 15years using 24-loci mycobacterial inter-
spersed repetitive units-variable-number tandem repeats
(MIRU-VNTR). Spatial aggregation of Mycobacterium
tuberculosis (M.tb) strains identified by MIRU-VNTR
genotype was presumed to indicate transmission.

Data visualization and modeling

We visualized spatial clustering of child cases <5 years
old in the notification data using a log-Gaussian Cox
process (LGCP) to model the intensity function driving
the point process describing the distribution of child
cases. We used the [gcp package and defined the Gauss-
ian process with an exponential covariance function and
weakly informative priors on all model parameters (de-
tails provided in Additional file 1: Supplementary Infor-
mation) [24]. All data visualization and analysis were
performed using R 4.0.1.
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Next, we aimed to determine if the clustering of child
cases observed in the exploratory maps was more ex-
treme than would be expected by chance alone. Point-
level census and covariate data that may explain spatial
variability in the distribution of child cases through ef-
fect on overall risk were not available for this analysis.
Due to the large number of unique spatial locations ob-
served in the data (10,198) and the well-known difficul-
ties associated with using a Gaussian process to analyze
point-referenced spatial data when the sample size is
large [25], we opted for a method that approximates the
point-referenced model while offering computational
improvements [26]. Specifically, we overlaid a grid on
the convex hull of the case notification data and mod-
eled the proportion of reported tuberculosis cases that
occurred among children in each grid cell using a hier-
archical Bayesian spatial modeling framework. We chose
the grid cell sizes to be small in order to ensure that the
risk within each grid cell was homogeneous. We consid-
ered multiple sizes in subsequent sensitivity analyses. As
the size of the grid cells gets smaller, our approximation
to the point-referenced geostatistical model improves.

By modeling the proportion of the tuberculosis cases
that were children (as opposed to simply modeling the
number of child cases), we used the distribution of adult
cases to control for unobserved factors that may explain
the spatial variability in the distribution of child cases.
Under this modeling framework, we expect that the local
proportion of child cases will be higher than the ex-
pected proportion of child cases over the entire study
area in areas where there is local transmission. The hier-
archical model structure allows us to identify where this
occurs and allows us to describe the certainty with
which the proportion is higher.

To do this, we use a logistic regression framework to
model the grid cell-specific proportions such that:

Y; | 6; ~ Binomial(#n;, 6;),i =1,...,m

9,
1 4 = .
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where Y; is the number of child cases observed in grid
cell i, n; is the total number of child and adult cases in
the grid cell, m is the total number of grid cells, and 6;
represents the proportion of the total cases in the grid
cell that are due to children. We define child cases as
those <5years old and adult cases as those > 15 years
old to clearly separate recent infection among young
children from more distant infection among adults
(expecting that cases among older children and young
adults between ages 5 and 15 represent a mix of recent
infection and infection that happened earlier in their
lives). We model these proportions on the logit scale as
a function of an overall mean, y (fixed effect), and a grid
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cell-specific deviation from that mean, ¢; (random
effect).

We anticipate that the proportion of child cases in grid
cells that are close together may be similar. To account
for this potential spatial correlation and to obtain
spatially smoothed risk estimates, we estimated the ¢;
parameters using a conditional autoregressive (CAR)
model such that:

5 PZ;‘:IWU(]ﬁ}- 2
¢i|¢4:77PNN Zn 1 ) Zn 1
priwit+1-p priwi+1-p

where ¢_; is the vector of parameters excluding ¢, w;; is
equal to one if grid cells i and j share a common border
or point and is equal to zero otherwise, 7> describes the
variability in the ¢; parameters, and p €(0,1) describes
their strength of spatial correlation. As a result, this
model is flexible enough to accommodate a wide range
of spatial patterns as well as the possibility that there is
no spatial variability in the proportion of child cases (i.e.,

near zero indicates that all ¢; are near zero). Add-
itionally, examining the posterior distributions of ¢, al-
lows us to determine if the grid cell proportion differs
substantially from the overall mean.

We selected weakly informative prior distributions for
all model parameters and used the CAR.Leroux function
in the CARBayes package to obtain posterior samples for
all parameters [27]. Details are provided in Add-
itional file 1: Supplementary Information [28]. Using the
posterior samples from each ¢, we estimate the poster-
ior probability that ¢; is larger than zero, which would
suggest recent transmission based on our hypothesis.

Results

Analysis of notification data

Of the total 11,711 notified tuberculosis cases over the
study period, there were 332 children <5 years old, and
10,352 adults > 15 years old. The LGCP modeled inten-
sity of the cases among children <5 years old is given in
Fig. 1.

We fit the hierarchical Bayesian spatial model to the
case notification data collected from 2005 to 2007 aggre-
gated into a 200 m x 200 m grid within the convex hull
of the data. The model suggested six grid cells in which
>95% of the posterior distribution of the random effect
terms were above zero and an additional eight grid cells
in which >90% of the posterior distribution was above
zero (Fig. 2). Examination of the posterior estimate of
the spatial correlation parameter, p, suggested that the
excess variability observed in the data was spatially
structured (posterior mean 0.75, 95% credible interval
0.24-0.98). Posterior summaries of the remaining pa-
rameters are provided in Additional file 1: Table S1.
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Fig. 1 Disease mapping of young children in Peru’s National Tuberculosis Program data. Log-Gaussian Cox process modeled intensity of the
cases of tuberculosis among children < 5 years old notified to the Peru’s National Tuberculosis Program within two of Lima’s four health districts,
Lima Ciudad and contiguous catchment areas of Lima Este, between January 1, 2005 and December 31, 2007
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Comparison to prospective molecular epidemiological
study

Figure 3a, reproduced with permission from Zelner et al.,
shows areas in which there was statistically significant
spatial aggregation of specific M.th MIRU-VNTR geno-
types, consistent with localized transmission of these
strain types [21]. In Fig. 3b, we overlay the grid from
Fig. 2 to demonstrate the proximity between areas where
children <5 years old are overrepresented in case notifi-
cation data and areas where specific strains are concen-
trated. In Additional file 1: Figs. S1-S2, we show that
these findings are insensitive to assumed grid cell size

and age cutoffs for the definitions of young child and
adult cases. Figure 4a, also reproduced with permission
from Zelner et al., shows the spatial variation in annual
per capita incidence of tuberculosis by healthcare catch-
ment area [21]. We similarly overlay the grid from Fig. 2
to create Fig. 4b to demonstrate the proximity between
areas where child cases are overrepresented and high
local incidence.

Discussion
In this paper, we evaluated whether routinely collected,
age-disaggregated notification data can be used to

<
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Fig. 2 Identifying areas with local overrepresentation of young children in tuberculosis notification data. Hierarchical Bayesian spatial model fit to
the child cases < 5 years old and adult cases > 15 years old in the notification data aggregated into 200 m x 200 m grid cells overlaid on the
convex hull of the data. The model suggested six grid cells (red) in which > 95% of the posterior distribution of the random effect terms were
above zero, and an additional eight grid cells (orange) in which >90% of the posterior distribution was above zero. The proportion of child cases
in these grid cells is greater than expected over the study region, suggesting recent tuberculosis transmission based on our hypothesis
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Fig. 3 Comparing tuberculosis transmission inference of hotspots of active transmission. a Reproduced with permission from Zelner et al.
demonstrating regions (shaded) identified as tuberculosis transmission hotspots. Different color shading denotes clusters of different drug-
sensitive and drug-resistant strains identified by MIRU-VNTR genotype. b A grayscale reproduction of this figure is overlaid on the modeled 200
m x 200 m grid from Fig. 2. We highlight those grid cells in red and orange, where the modeled proportion of child cases < 5 years old is greater
than expected, to demonstrate the proximity between areas with higher local childhood tuberculosis notification and areas with conclusive
evidence of transmission. MIRU-VNTR, 24-loci mycobacterial interspersed repetitive units-variable-number tandem repeats

identify hotspots of spatially concentrated tuberculosis
transmission. Our analysis, based on routine data col-
lected from 2005 to 2007, pinpointed a region where
child cases of tuberculosis were overrepresented relative
to the number of adult cases in the area. This region
was previously identified as an area of high transmission
using molecular genetic data from a prospective study
conducted from 2009 to 2012 [21]. This concordance of
transmission inference obtained using different methods
and datasets supports the use of routinely collected age-
disaggregated notification data to identify areas of local
transmission intensity.

Child cases have been suggested as a useful signal of
transmission intensity for tuberculosis as well as other

infectious disease [29]. For example, a number of studies
used the age prevalence of tuberculin-skin test positivity
to measure risks of infection from household and com-
munity exposure [30, 31]. Previous studies have sug-
gested that areas with high childhood tuberculosis case
notification rates may correspond to areas of active
transmission [32—34]; however, only one included covar-
iates to account for potential non-transmission explana-
tions of the spatial distribution of child cases [34]. Thus,
our analysis is the first to provide molecular and epi-
demiological evidence to corroborate inferences of local
tuberculosis transmission with attempts to control for
unobserved, spatially heterogeneous, non-transmission
factors that may explain the distribution of child

Annual Tuberculosis Cases/100K “

0 100 200 300

Fig. 4 Comparing per capita tuberculosis incidence to putative hotspots. a Figure reproduced with permission from Zelner et al. demonstrating
the spatial variation in annual per-100 thousand incidence of drug-sensitive and drug-resistant tuberculosis by healthcare catchment area. b A
grayscale reproduction is overlaid on the 200 m x 200 m grid from Fig. 2 to demonstrate the proximity between the colored grid cells, where the
modeled proportion of child cases < 5 years old is greater than expected, and an area of high local incidence of tuberculosis
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cases (such as risk factors for progression of infection,
migration of infected individuals into the area, and/
or local diagnostic capacity).

Considering that both the routine notification data
and the prospective molecular epidemiology study in-
cluded tuberculosis cases separated by as many as
6 years, we also note that the identified hotspot appears
to have been persistent over several years. This suggests
that tuberculosis transmission hotspots identified from
notification data may be observable for long enough pe-
riods of time to guide targeted interventions, such as
spatially focused active case-finding.

It is important to note several simplifying assumptions
in our analysis. Given the absence of detailed informa-
tion on the distribution of covariates in the source popu-
lation, we incorporated all spatial heterogeneity in the
distribution of child cases into the random effect term of
the model. As a result, our model necessarily attributes
all spatial variability in the modeled proportions to pos-
sible recent transmission. If there are other non-
transmission-related factors that impact the proportion
of total cases that occurred in children, this could lead
to a grid cell being incorrectly labeled as a transmission
“hotspot.” However, given the consistency of our results
with the previous findings that more directly measure
transmission, this may not be a major issue in this work.
Our hierarchical Bayesian spatial modeling approach (as
well as the LGCP intensity modeling approach) is flex-
ible enough to incorporate local covariate data as regres-
sion components. Future study should include such
information when available.

Though we provide compelling evidence, we must be
cautious interpreting that age-disaggregated data will al-
ways provide a reliable signal of transmission. Molecular
evidence of transmission against which we compare
transmission inference was only available for those > 15
years old. Thus, we are unable to biologically link child-
hood cases to the identified clusters of transmission.
Furthermore, accurately diagnosing tuberculosis among
children is difficult. While it is clear that missing child
cases in notification data likely underestimate transmis-
sion, it is unclear how false positives may affect signal
detection. In addition, though we demonstrate that the
putative hotspot persists over time, it is not possible to
assess how mobility over the time period through which
all data from these two studies was collected may affect
hotspot detection. It is important to note that our find-
ings do not imply an either-or choice between genetic
and age-incidence data: future analyses exploring the im-
pact of combining granular molecular genetic data with
age-incidence data in a single model could improve the
predictive capacity of such models.

This methodology may be adapted to settings in
which high-resolution residence data is not readily

Page 6 of 7

available. For example, in settings where residential
geocoding is not feasible, it may be reasonable to
model the proportion of child cases in the smallest
recorded unit to which the household belongs (such
as modeling the proportion in the neighborhood,
community, and/or administrative unit).

Conclusions

In summary, we show that age-disaggregated tubercu-
losis notification data may be used to investigate poten-
tial hotspots of tuberculosis transmission. This suggests
that the use of models leveraging widely available data
should be explored as tools for targeting case-finding
and treatment efforts in high-transmission locations in
the hope of maximizing the direct and indirect protect-
ive benefits of active screening approaches.
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1186/512916-020-01702-x.

Additional file 1 : Supplementary Information, Table S1, Figure
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