Rohnisch et al. BMC Medicine (2020) 18:187

https://doi.org/10.1186/512916-020-01655-1 B M C M ed |C| ne

®

Check for
updates

Identification of metabolites associated
with prostate cancer risk: a nested case-
control study with long follow-up in the
Northern Sweden Health and Disease Study

Hanna E. Réhnisch', Cecilie Kyrg?, Anja Olsen? Elin Thysell®, Géran Hallmans® and Ali A. Moazzami'”

Abstract

Background: Prostate cancer is the second most frequently diagnosed cancer in men. Metabolomics can
potentially provide new insights into the aetiology of prostate cancer by identifying new metabolic risk factors. This
study investigated the prospective association between plasma metabolite concentrations and prostate cancer risk,
both overall and by stratifying for disease aggressiveness and baseline age.

Methods: In a case-control study nested in the Northern Sweden Health and Disease Study, pre-diagnostic
concentrations of 148 plasma metabolites were determined using targeted mass spectrometry- and nuclear
magnetic resonance-based metabolomics in 777 prostate cancer cases (follow-up 2 5 years) and 777 matched
controls. Associations between prostate cancer risk and metabolite concentrations were investigated using
conditional logistic regression conditioned on matching factors (body mass index, age and sample storage time).
Corrections for multiple testing were performed using false discovery rate (20%) and Bonferroni. Metabolomics
analyses generated new hypotheses, which were investigated by leveraging food frequency questionnaires (FFQs)
and oral glucose tolerance tests performed at baseline.

Results: After correcting for multiple testing, two lysophosphatidylcholines (LPCs) were positively associated with
risk of overall prostate cancer (all ages and in older subjects). The strongest association was for LPC C17:0 in older
subjects (OR=2.08; 95% Cl 1.45-2.98; p < 0.0001, significant also after the Bonferroni correction). Observed
associations with risk of overall prostate cancer in younger subjects were positive for glycine and inverse for
pyruvate. For aggressive prostate cancer, there were positive associations with six glycerophospholipids (LPC C17:0,
LPC C20:3, LPC C20:4, PC ae (C38:3, PC ae C38:4 and PC ae C40:2), while there was an inverse association with
acylcarnitine C18:2. Moreover, plasma LPC C17:0 concentrations positively correlated with estimated dietary intake
of fatty acid C17:0 from the FFQs. The associations between glycerophospholipids and prostate cancer were
stronger in case-controls with normal glucose tolerance.
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Conclusions: Several glycerophospholipids were positively associated with risk of overall and aggressive prostate
cancer. The strongest association was observed for LPC C17:0. The associations between glycerophospholipids and
prostate cancer risk were stronger in case-controls with normal glucose tolerance, suggesting a link between the

glucose metabolism status and risk of prostate cancer.

Keywords: Prostate cancer, Metabolomics, Nested case-control study, Nuclear magnetic resonance spectroscopy,
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Background

Prostate cancer is the second most common cancer
among men worldwide [1]. The rapid increase in inci-
dence during recent decades may owe partly to extrinsic
factors (diet and lifestyle) [2, 3]. Insulin-like growth fac-
tor I (IGF-I), overweight and obesity have been consist-
ently identified as risk factors for prostate cancer [4, 5].
In addition, associations with risk of prostate cancer
have been observed positively with intake of dairy prod-
ucts and calcium, and inversely with plasma concentra-
tions of alpha-tocopherol and selenium; however, the
evidences are limited [5].

Using metabolomics to measure a large number of low
molecular weight compounds (metabolites) in biofluids,
reflecting the final read-out of gene-environment inter-
actions [6-8], may help to identify novel risk factors for
prostate cancer.

To the best of our knowledge, seven previous studies,
conducted within three cohorts, have investigated the as-
sociation between pre-diagnostic levels of plasma and
serum metabolites and the risk of prostate cancer inci-
dence [9-15]. The results of these studies differ some-
what as regards metabolites associated with disease risk.
The differences may be partly explained by the use of
different metabolomics methodologies, varying charac-
teristics of the study populations and dissimilarities in
the experimental designs (e.g. sample size, fasting status,
follow-up time, matching factors and disease subtype
categorisation). Therefore, the identification of metabo-
lites associated with risk of prostate cancer warrants fur-
ther investigation.

By carefully monitoring individual metabolites, we and
others have previously shown that the concentrations of
circulating metabolites are subjected to changes in re-
sponse to a meal [16—18]. For example, concentrations
of phospholipids, amino acids and their breakdown
products, glycolytic products, acylcarnitines and ketone
bodies vary by up to 80% 0-3 h after a meal [16] and by
up to 100% 0-8h after a meal [17]. The variation in
concentration of metabolites because of varying time
since last meal is not related to the estimation of risk
and may therefore hinder identification of metabolites
associated with disease risk. This variation can be re-
duced by including only case-control sets for which

plasma samples are collected after overnight fasting.
Moreover, prostate cancer can pass through a period of
latency during which the subclinical disease may cause
metabolic changes [13]. These changes are not directly
related to the aetiology of the disease and should there-
fore be avoided. The possibility of such changes can be
reduced by including only cases with a long minimum
follow-up time (e.g. time between sample collection and
diagnosis =5 years). However, the two largest studies
previously performed did not include only (1) case-
control sets with fasting samples or (2) cases with a long
follow-up time in all subgroups analysed [13, 15]. In
addition, baseline age-specific association with risk of
prostate cancer has been shown for IGF-1 [19]. However,
to our knowledge, it has not been investigated whether
the association between metabolites and prostate cancer
risk varies with baseline age [9-15].

The aim of this study was to investigate the prospect-
ive association between metabolite concentrations and
risk of prostate cancer in a case-control study nested
within the Northern Sweden Health and Disease Study
(NSHDS) cohort. Subgroup analyses were performed
after stratification by disease subtype (non-aggressive,
aggressive) and baseline age (40-50, 60 years). In order
to reduce the variation in concentrations of metabolites
that are not directly related to estimation of disease risk,
i.e. the variation caused by eating a meal or by subclin-
ical prostate cancer, we only included case-control sets
with fasting samples and cases with a minimum follow-
up time of at least 5 years (= 5 years). In addition, for the
first time, we applied combined targeted mass spectrom-
etry (MS) and nuclear magnetic resonance (NMR)
spectroscopy-based metabolomics approach to quantify
a larger number of metabolites. Metabolomics analyses
led to the generation of new hypotheses, which were
corroborated for the first time by leveraging food fre-
quency questionnaires (FFQs) and a complementary oral
glucose tolerance test (OGTT) performed at baseline.

Methods

The Northern Sweden Health and Disease Study

The NSHDS is a population-based cohort that started in
1985 [20]. In brief, residents in the Swedish province of
Visterbotten were invited to a health assessment at 40,
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50 and/or 60 years of age. In the assessment, each par-
ticipant underwent a health examination, including
measurement of height, weight and blood pressure. In
addition, an OGTT was performed with a 75-g oral glu-
cose load, according to the World Health Organization
(WHO) standards, and all participants were asked to
complete a validated FFQ. The FFQ covered various
food items from which dietary intake of different nutri-
ents, e.g. different fatty acids (FAs), can be calculated
[21]. Nutrient intake was calculated by multiplying the
daily intake of different food items calculated from the
FFQ by the nutrient content of each food item extracted
from a food composition database at the Swedish Na-
tional Food Administration [22]. Finally, participants
were asked to donate blood for future research purposes.
The blood sample from each participant was drawn after
overnight fasting; separated into buffy coat, erythrocytes
and (heparin) plasma aliquots; and then stored at — 80 °C
(within 2h of collection) at the Medicinal Biobank,
Umed University. All participants gave written informed
consent to participate in the study. The study was ap-
proved by the Research Ethics Committee of Umed Uni-
versity Hospital and the Regional Ethics Committee in
Uppsala (no. 2013-124).

Study design

A nested case-control study on prostate cancer was de-
signed within the NSHDS cohort. Among the 38,467
men who participated in the health survey between 1985
and 2007, 1664 were diagnosed with prostate cancer
based on national registries to which reporting is man-
dated by law (e.g. patients’ registry, cancer registry and
cause of death registry) during the follow-up period until
2012. A total of 777 cases were selected for the present
study after applying some inclusion/exclusion criteria.
The criteria for inclusion were as follows: (1) overnight
fasting, (2) no previous cancer incidence before prostate
cancer diagnosis, (3) =5 years between the time of sam-
ple collection (baseline) and prostate cancer diagnosis
and (4) no type 2 diabetes (T2D) diagnosed at baseline
(declared during the health assessment).

Each selected case was classified as having either an
aggressive or non-aggressive subtype of the disease,
based on the International Union Against Cancer classi-
fication system [23, 24]. Aggressive prostate cancer was
defined as poorly differentiated tumour (Gleason’s score
8-10 or grade 3 in the three-level WHO grading system,
with grade 3 indicating the lowest level of differentiation
[19, 25, 26]), non-localised tumour (T3-4), lymph node
metastasis (N1), bone metastasis (M1), serum prostate-
specific antigen (PSA) level above 50 ng/mL at diagnosis
or fatal prostate cancer by March 2007 (irrespective of
tumour characteristics at diagnosis). Cases not classified
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as having an aggressive form of the disease were in-
cluded in the group of non-aggressive cases.

One control was selected for each prostate cancer case
among men who were alive, free of any cancer history at
the time of diagnosis of the corresponding case and had
a plasma sample collected after overnight fasting. Cases
and controls were matched according to age, body mass
index (BMI) and duration of sample storage in the
freezer. The windows used for matching factors to select
a control for each case from NSHDS cohort were as fol-
lows: age + 210 days, BMI # 0.8 kg/m?> and sample stor-
age in freezer + 220 days. None of the selected controls
had a T2D diagnosis at baseline.

During selection of cases and controls from NSHDS
for the present study, we set a criteria to exclude cases
and controls who declared having T2D in the health as-
sessment at the time of sample collection (baseline).
However, the metabolomics analysis led to new hypoth-
eses which were investigated after retrieving the data
from an OGTT performed at baseline. Using the OGTT
data, we identified some new cases and controls with
T2D according to the WHO criteria [27] at baseline, but
whose T2D had not been declared in the health
assessment.

In NSHDS, at enrolment, the participants were invited
at even decades, ie. 40, 50 and 60 years of age. There-
fore, the present study included participants who were
40 (n =45 sets), 50 (1 =288 sets) and 60 (1 =444 sets)
years old. This allowed the stratification of case-control
sets into age-specific subgroups [19, 24]. Because of the
lower prevalence of prostate cancer in younger partici-
pants, we included 40- and 50-year-olds in the same
subgroup (younger, 40-50 years, n = 333 sets), while 60-
year-olds were included in another subgroup (older, 60
years, n = 444 sets).

Sample analysis

Targeted MS- and NMR-based metabolomics

Plasma samples were analysed using both targeted MS-
and NMR-based metabolomics (Additional file 1). The
targeted MS-based metabolomics was performed using
the AbsoluteIDQ p180 assay (BIOCRATES, Innsbruck,
Austria), quantifying 188 metabolites [28]. The targeted
NMR-based metabolomics was performed using an au-
tomated quantification algorithm (AQuA), which was
specifically developed in our laboratory for large epi-
demiological studies quantifying 67 metabolites from the
NMR spectra of human plasma [29].

Metabolite inclusions and exclusions

Metabolites with occurrence below 50% in samples from
the nested cohort or an analytical coefficient of variation
(CV) above 15% in quality control (QC) samples were
excluded from the statistical analyses. The quality
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control criteria were fulfilled by 103 (out of 188) metab-
olites in the targeted MS analysis and by 45 (out of 67)
metabolites in the targeted NMR analysis, which were
used in statistical analysis (Additional file 2).

Statistical analyses

Identification of metabolites associated with risk of prostate
cancer

The association between each individual metabolite and
the risk of prostate cancer was assessed using a condi-
tional logistic regression model conditioned on matching
factors (BMI, age and sample storage time). The metab-
olite concentrations were log,-transformed, and thus,
linear estimates were per doubling. This derived the
crude odds ratio (ORpuqe), the 95% confidence interval
(CI) and the corresponding p value (pcuge) for each as-
sociation. Analyses were repeated after stratification by
disease subtype (non-aggressive, aggressive) and baseline
age (40-50, 60 years). The conditional logistic regression
analyses were conducted using the PHREG procedure in
SAS (version 9.3, SAS Institute Inc., Cary, NC), with the
case-control sets as strata.

Correction for multiple testing was performed using
two approaches of varying stringency/conservancy, in
consistence with previous studies (low stringency: [9];
high stringency: [12]). For the low stringency approach,
false discovery rate (FDR) correction (significance level
at 20%) was performed using the Q-value package [30]
in RStudio (version 3.0.3, R Foundation for Statistical
Computing Platform, Vienna, Austria). This approach
was employed for holistic interpretation of results and
hypothesis generation. For the high stringency approach,
the Bonferroni correction was employed, using the num-
ber of metabolites as number of variables (a = 0.05/148).

For statistically significant metabolites (FDR 20%), each
conditional logistic regression model was further adjusted
for BMI and exact age (continuously) in one model and
additionally for alcohol intake (< 10, 10-19, 20-39, 240 g/
day) and smoking (no, past, current, unknown) in another
model [13]. The estimated risk for each metabolite by the
adjusted models did not differ from the unadjusted model
by more than 10%, and therefore, only results from the
unadjusted model are presented.

Possible differential associations by age or disease type
were investigated for each of the metabolites that were
statistically significant after correction for multiple test-
ing (FDR 20%). This was done by associating individual
plasma metabolites with prostate cancer risk allowing
for different associations for each of the two categories
for disease type and baseline age, respectively (for dis-
ease type: binary, non-aggressive, aggressive; for age: bin-
ary, 40-50, 60 years). Each comparison was made using
a Wald test for the hypothesis of equal regression coefti-
cients. Log-transformed metabolite data were used.
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For statistically significant metabolites (FDR 20%),
each conditional logistic regression model was also re-
peated for subgroups by follow-up time (<10, >10
years). Possible differential associations by follow-up
time were performed as described above.

Categorical logistic regression analysis was also per-
formed for each metabolite (FDR 20%) based on quartile
values. Each subject was assigned to a quartile based on
cut-off values derived from the distribution of concen-
trations in the control group. The first quartile was used
as a referent level.

Correlation analyses

Spearman’s correlation coefficient was used to assess the
correlation between metabolite concentrations (lysopho-
sphatidylcholines, LPCs) and baseline characteristics
(glucose values from the OGTT and estimated daily in-
take of different FAs from the FFQ). Correlation analysis
was performed using the CORR procedure in SAS (ver-
sion 9. 3, SAS Institute Inc., Cary, NC).

Status of glucose metabolism at baseline and risk of
prostate cancer
Metabolomics findings led to a hypothesis of a link be-
tween baseline glucose metabolism and risk of prostate
cancer. The subjects in this study underwent an OGTT
at enrolment, so the status of glucose metabolism at
baseline, i.e. normal glucose tolerance (NGT), impaired
fasting glucose (IFG) and impaired glucose tolerance
(IGT) or T2D, could be determined using the WHO cri-
teria [27]. A categorical logistic regression analysis
(NGT as the referent) was used to assess the association
between the status of glucose metabolism and risk of
prostate cancer (overall, and by restricting to aggressive
or non-aggressive cases and stratifying by baseline age).
Conditional logistic regression analyses were repeated
after excluding case-controls with abnormal glucose metab-
olism at baseline (ie. IFG, IGT or T2D) and thereby
restricting to case-controls with NGT. These analyses were
limited to metabolites found to be associated with prostate
cancer risk after correction for multiple testing (FDR 20%).
This was performed to examine whether the associations
between these metabolites and prostate cancer risk were
improved in matched case-controls with NGT.

Results

Baseline characteristics

Table 1 presents baseline characteristics (clinical mea-
sures, blood parameters, status of glucose metabolism
based on OGTT results and estimated daily intakes of
different FAs reported in the FFQ) for the respective
case-control sets included in the present study. Values
are presented for the entire study population and for the
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40-60 years (n =777:777)

40-50 years (n =333:333)

60 years (n =444:444)

Controls

Cases

Controls

Cases

Controls

Cases

Clinical characteristics®?

Age (years)

59.8 (40.3-60.3)

59.8 (40.4-60.3)

50.0 (40.1-50.3)

50.0 (40.1-50.4)

60.0 (59.7-60.3)

60.0 (59.5-60.4)

BMI (kg/m2)C 258 (21.8-315) 25.7 (21.7-314) 255(220-31.3) 255(220-31.3) 26.1 (21.6-31.6) 260 (214-31.5)

Height (cm) 177 (167-187) 177 (167-186) 179 (167-189) 178 (168-187) 176 (167-186) 176 (166-186)

Weight (kg) 81 (66-100) 81 (66-101) 81 (67-101) 81 (66-101) 82 (65-100) 81 (65-101)

SBP (mmHag) 130 (110-165) 130 (110-165) 125 (106-155) 25 (105-153) 137 (110-170) 138 (110-170)

DBP (mmHg) 82 (65-100) 83 (65-100) 80 (64-98) 80 (65-99) 85 (70-100) 85 (70-100)
Dietary intake (FFQ)*?

Energy (kcal/day) 1952 (1116-3183) 1974 (1141-3091) 1910 (1126-3032) 1985 (1155-3140) 1972 (1116-3262) 1940 (1129-3082)

Total fat (g/day) 74.1 (39.4-133) 752 (40.3-129) 754 (42.7-133) 77.7 (37.6-129) 732 (36.4-135) 726 (40.5-131)

FA C14:0 (g/day) 334 (1.34-7.28) 330 (15 18) 3.64 (1.59-7.30) 360 (1.61-7.48) 3.08 (1.25-7.22) 3.14 (1.44-6.58)

FA C16:0 (g/day) 14.9 (7.39-27.9) 1(7.89-28.1) 16.3 (8.54-28.3) 8 (8.11-285) 1(7.02-27.2) 13.8 (7.73-274)

FA C17:0 (g/day) 0.13 (0.03-0.33) 3 (0.04-0.34) 0.15 (0.04-0.33) 0.14 (0.04-0.35) 0.12 (0.03-0.34) 0.13 (0.04-0.32)

FA C18:2 (g/day) 7.23 (3.62-15.0) 7.24 (3.64-14.8) 7.74 (428-17.2) 7.99 (3.82-15.7) 6.90 (3.39-134) 6.61 (3.51-14.1)

FA C20:4 (g/day) 0.07 (0.03-0.17) 0.07 (0.03-0.17) 0.08 (0.03-0.18) 0.08 (0.04-0.18) 0.07 (0.03-0.15) 0.07 (0.03-0.16)
Blood parameters (OGTT; mmol/L)>P

Glucose (0 h) 5.5 (4.6-6.6) 55 (45-6.7) 54 (4.6-64) 54 (44-6.6) 5.5 (4.7-6.7) 55 (45-6.8)

Glucose (2 h) 6.5 (4.0-9.5) 64 (4.1-93) 6.3 (3.9-86) 6.0 (3.8-87) 6.7 (41-10.3) 6.7 (44-9.8)
Status of glucose metabolism®®

NGT 541 (70) 580 (75) 255 (77) 272 (82) 286 (65) 308 (69)

IFG 67 (9) 70 (9) 26 (8) 27 (8) 41 (9) 43 (10)

IGT 138 (18) 93 (12) 46 (14) 23 (7) 92 (21) 70 (16)

T2D 27 (3) 314 5() 10 3) 22 (5) 219

Abbreviations: SBP systolic blood pressure, DBP diastolic blood pressure

“Data on each baseline characteristic were available for > 95% of the case-controls

PContinuous variables are listed as median (5th-95th percentile), and categorical variables are listed as N (%)

“Matching factors: age and BMI (and sample storage time)

subgroups of younger (40-50 years) and older (60 years)
subjects, respectively.

Case characteristics

Table 2 displays the characteristics of prostate cancer
cases for the entire study population and for the sub-
groups of younger and older subjects. The median age at
prostate cancer diagnosis was 67 years (range 45.9-80.2
years), and the median time between sample collection
(baseline) and prostate cancer diagnosis was 10.3 years
(range 5.0-19.9 years). For younger cases, the follow-up
time was 11.8 (5.1-19.5) years, while for older cases, it
was 9.5 (5.0-19.9) years. Overall, 22% of cases were classi-
fied as having an aggressive form of the disease (Table 2).

Identification of metabolites associated with risk of
prostate cancer

Metabolites with nominal p value < 0.05

The metabolites associated with prostate cancer risk be-
fore and after stratification by disease subtype and

baseline age (nominal p value <0.05; Additional file 3)
are shown in Fig. 1. Several glycerophospholipids (LPCs
and phosphatidylcholines (PCs)) and glycine were fre-
quently associated with risk of prostate cancer (OR > 1).
The associations observed for glycerophospholipids were
typically stronger for risk of aggressive disease and in
older subjects. The association observed for glycine was
generally stronger for risk of overall and non-aggressive
disease in younger subjects. Pyruvate, arginine, ornithine
and acylcarnitine C18:2 were frequently associated with
risk of prostate cancer (OR < 1).

Metabolites significant after correction for multiple testing

Metabolites with a significant association with risk of
prostate cancer after correction for multiple testing
(FDR 20% and Bonferroni) are shown in Table 3
(Additional file 4). Higher plasma concentrations of LPC
C17:0 and LPC C18:0 were associated with higher risk of
overall prostate cancer, and each respective association
was stronger in older subjects. Importantly, the



Rohnisch et al. BMC Medicine (2020) 18:187

Table 2 Case characteristics at the time of diagnosis
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N (%)

40-60 years (n=777)

40-50 years (n=333) 60 years (n =444)

Follow-up time

25, < 10years 368 (47)

2 10years 409 (53)
Age at diagnosis

< 65 years 282 (36)

2 65 years 495 (64)
Tumour differentiation®

Poorly 114 (15)

Highly/intermediately 656 (84)

Missing 7 (1)
Primary tumour

Non-assessed (TX) 15 (2)

Non-palpable (T1) 433 (56)

Localised (T2) 248 (32)

Non-localised (T3-T4) 74 9)

Missing 7 (1)
Serum PSA

<50ng/mL 703 (90)

> 50 ng/mL 67 (9)

Missing 7 (1)

Disease aggressiveness®

Non-aggressive 608 (78)

Aggressive 169 (22)

118 (35) 250 (56)
215 (65) 194 (44)
276 (83) 6(1)
57 (17) 438 (99)
33 (10) 81 (18)
299 (90) 357 (81)
1(0) 6 (1)
93 6 (1)
209 (63) 224 (50)
94 (28) 154 (35)
18 (5) 56 (13)
3(1) 4 (1)
314 (94) 389 (88)
18 (6) 49 (11)
1(0) 6 (1)
289 (87) 319 (72)
44 (13) 125 (28)

?Poorly differentiated tumour: Gleason’s sum score 8-10 or grade 3 (in the three-level WHO grading system). Highly/intermediately differentiated tumour:

Gleason’s sum score <7 or grade 1-2 (in the three-level WHO grading system)

PAggressive case subjects: poorly differentiated (Gleason sum’s score 8-10 or grade 3), non-localised tumour (i.e. primary tumour stage T3-4), lymph node
metastasis (N1), bone metastasis (M1), serum PSA concentration > 50 ng/mL or fatal prostate cancer by March 2007

association between LPC C17:0 and overall prostate can-
cer risk in older subjects was significant after the Bonfer-
roni correction. Higher plasma concentration of glycine
and pyruvate was associated with higher and lower risk
of overall prostate cancer in younger subjects, respect-
ively. Higher concentrations of six glycerophospholipids
(LPC C17:0, LPC C20:3, LPC C20:4, PC ae C38:3, PC ae
C38:4 and PC ae C40:2) were associated with higher risk
of aggressive prostate cancer, while higher concentra-
tions of acylcarnitine C18:2 were associated with lower
risk of aggressive prostate cancer. The association ob-
served for LPC C17:0 was stronger in older subjects,
where individuals in the top quartile had 3.9-fold higher
odds of developing aggressive disease (Table 3). None of
the associations with non-aggressive prostate cancer risk
(Fig. 1) was significant after correction for multiple test-
ing. There was heterogeneity between the two age cat-
egories (40-50, 60 years) for LPC C17:0, LPC C18:0 and
glycine (Additional file 5). Only PC ae C38:0 showed
heterogeneity between disease subtype categories

(aggressive, non-aggressive; Additional file 5). There was
no heterogeneity between follow-up time categories (5—
10, > 10 years; Additional file 6).

Lysophosphatidylcholines
LPCs attracted particular interest in the analyses, since the
majority of metabolites identified belonged to this class of
glycerophospholipids (Table 3). Based on Spearman’s cor-
relation coefficients, two clusters of LPCs were identified
in the correlation matrix (Fig. 2a). There were significant
positive correlations between the LPCs in each cluster.
The first cluster included LPCs with <20 carbons in the
FA moiety, and the second cluster included LPCs with >
20 carbons in the FA moiety. The LPCs associated with
prostate cancer risk (Table 3) belonged to the first cluster.
The OR values obtained for the individual LPCs in the
first cluster (<20 carbons) had a pattern highly similar to
that of the total sum of LPCs (Fig. 2b; Additional file 7).
After normalisation of each individual LPC to the total
sum of LPCs, the associations between LPC C18:0, LPC
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Carnitine -
Choline 4

Glutamine

Glycine

Histidine
Ornithine -
Pyruvate +
Arginine A
Ornithine -
Taurine 4
Cl18:2 4
C3
C4 4
C5 4
LPC C16:0 -
LPC C17:0 +
LPC C18:0 -
LPC C18:1 -
LPC C20:3 -
LPC C20:4 4
PC aa C38:5 A
PC aa C40:3 A
PC aa C40:4 4
PC ae C36:1 A
PC ae C36:2 -
PC ae C36:5 -
PC ae C38:3 A
PC ae C38:4
PC ae C40:0 -
PC ae C40:1 A
PC ae C40:2 -
PC ae C40:5 -
PC ae C40:6 -
PC ae C42:2

NMR

MS

OR
5.0

4.0

0.0

Overall

Fig. 1 Odds ratio (OR) values for the association between individual metabolites (LPC, lysophosphatidylcholine; PC, phosphatidylcholine) and
prostate cancer risk in different subgroups. OR > 1, red; OR < 1, blue; nominal p value < 0.05, filled black circles. Top: metabolites measured with
nuclear magnetic resonance (NMR). Bottom: metabolites measured with mass spectrometry (MS). Subgroups: overall prostate cancer (40-60 years,
777 matched case-control sets; 40-50 years, 333 sets; 60 years, 444 sets), non-aggressive prostate cancer (40-60 years, 608 sets; 40-50 years, 289
sets; 60 years, 319 sets) and aggressive prostate cancer (40-60 years, 169 sets; 40-50 years, 44 sets; 60 years, 125 sets)

Non- Aggressive
aggressive

C20:3 and LPC C20:4 and risk of prostate cancer were no  Lysophosphatidylcholines and dietary fatty acids

longer significant, while the association between LPC C17:  The correlations between plasma concentration of LPCs
0 and risk of prostate cancer remained significant (Fig. 2b; and daily dietary intake of the corresponding FA (esti-
Additional file 7). This finding clearly distinguished LPC  mated from the baseline FFQ) were investigated. The
C17:0 from other LPCs in the first cluster.

strongest correlation was observed between the plasma
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Table 3 Relationship between baseline metabolite concentration and risk of prostate cancer after correction for multiple testing

Age Metabolite Linear estimates® OR (95% CI) for quartilesb
OR (95% Cl) Pcrude Q1 Q2 Q3 Q4
Overall prostate cancer
40-60 years LPC C17:0 1.59 (1.21-2.08) 0.0007 1.00 (referent) 144 (1.07-1.96)* 143 (1.06-1.94)* 1.63 (1.20-2.21)*
LPC C180 1.59 (1.17-2.18) 0.0034 1.00 (referent) 1.08 (0.81-1.45) 1.32 (1.00-1.75) 1.36 (1.02-1.81)*
40-50 years Glycine 1(1.21-3.69) 0.0084 1.00 (referent) 1.13 (0.70-1.83) 2 (0.70-1.81) 1.75 (1.09-2.82)*
Pyruvate 0.65 (0.48-0.89) 0.0066 1.00 (referent) 0.62 (040-0.97)* 1.04 (0.69-1.57) 046 (0.29-0.74)*
60 years LPC C170 2.08 (1.45-2.98) <0.0001* 1.00 (referent) 1.97 (1.29-3.01)* 0 (1.37-3.24)* 256 (1.67-3.93)*
LPC C180 1.83 (1.22-2.75) 0.0037 1.00 (referent) 0.95 (0.64-1.39) 1.30 (0.89-1.90) 1.54 (1.07-2.22)*
Aggressive prostate cancer
40-60 years LPC C170 267 (1.48-4.83) 0.0011 1.00 (referent) 1.64 (0.80-3.38) 269 (1.29-5.60)* 335 (1.66-6.76)*
PC ae C383 329 (1.50-7.24) 0.0030 1.00 (referent) 1.54 (0.77-3.10) 1.98 (0.96-4.12) 2.52 (1.28-4.97)*
PC ae C384 2.69 (1.25-5.76) 0.0110 1.00 (referent) 1.32 (0.68-2.56) 1.70 (0.85-3.39) 224 (1.17-429)*
LPC C20:4 1.99 (1.15-344) 00142 1.00 (referent) 1.24 (0.59-2.59) 1.98 (0.98-4.02) 213 (1.08-4.23)*
LPC C20:3 205 (1.12-3.75) 0.0206 1.00 (referent) 141 (0.76-2.61) 1.97 (1.03-3.77)* 1.83 (0.96-348)
PC ae C40:2 249 (1.25-4.97) 0.0095 1.00 (referent) 1.02 (0.54-1.94) 1.69 (0.90-3.18) 1.85 (1.00-341)*
182 1(0.29-0.89) 0.0167 1.00 (referent) 0.80 (0.46-1.40) 048 (0.25-0.92)* 0.55 (0.30-1.00)*
60 years LPC C170 3.02 (1.52-6.01) 0.0016 1.00 (referent) 1.63 (0.69-3.84) 7 (0.92-5.15) 390 (1.70-8.99)*

Abbreviations: LPC lysophosphatidylcholine, PC phosphatidylcholine

“Listed metabolites were significant after correction for multiple testing (FDR 20%) according to p values (pcuqe) from conditional logistic regression analyses
using log, transformed metabolite data (Additional file 3). Associations significant after the Bonferroni correction (for 148 independent tests; 0.05/148 = 0.000338)

in the log,-based statistical analyses are indicated by the asterisk symbol (¥)

PThe listed metabolites were also analysed by conditional logistic regression using quartiles (details on the quartile-based statistical analyses are presented in
Additional file 4). Associations with p value < 0.05 in the quartile-based statistical analyses are indicated by the asterisk symbol (¥)

concentration of LPC C17:0 and estimated daily intake
of FA C17:0 (Additional file 8).

Lysophosphatidylcholines and glucose metabolism

LPCs in the first cluster (<20 carbons) displayed a nega-
tive correlation with glucose values from the OGTT,
while the correlations between LPCs in the second clus-
ter (with >20 carbons) and glucose values from the
OGTT were generally non-significant (Fig. 3a). The cor-
relations between LPCs in the first cluster and post-load
glucose values (2h) were stronger than the correspond-
ing correlations to pre-load glucose values (0 h; Fig. 3a).

Status of glucose metabolism and prostate cancer risk

LPCs (<20 carbons) were consistently associated with
risk of prostate cancer (Fig. 2b) and displayed negative
correlations with glucose values from the OGTT
(Fig. 3a). Further investigation of whether glucose me-
tabolism status at baseline (i.e. NGT, IFG, IGT or T2D)
was associated with prostate cancer risk revealed that
IGT was associated with lower risk of prostate cancer
(p<0.05; Fig. 3b; Additional file 9). The associations
were often stronger in younger subjects than in older
subjects (Fig. 3b). For metabolites found to be associated
with risk of prostate cancer after correction for multiple
testing (Table 3), we investigated whether the associa-
tions were altered after limiting the analyses to case-

control sets with NGT at baseline. The results showed
that associations for some LPCs with <20 carbons in the
FA moiety and for some PCs appeared stronger (p < 0.05),
but the associations for pyruvate and acylcarnitine C18:2
were not changed (Fig. 4; Additional file 10). The associa-
tions for glycine became stronger for overall and non-
aggressive prostate cancer in younger subjects (p < 0.05).

Discussion

Main findings

LPC C17:0 and LPC C18:0 were associated with risk of
overall prostate cancer (Table 3; OR > 1), and the associ-
ation appeared stronger in older subjects (for LPC C17:0,
it was still significant after the Bonferroni correction). In
younger subjects, glycine and pyruvate were associated
with risk of overall prostate cancer (Table 3; glycine: OR >
1; pyruvate: OR<1). Several glycerophospholipids and
acylcarnitine C18:2 were associated with aggressive pros-
tate cancer risk (glycerophospholipids: OR > 1; acylcarni-
tine C18:2: OR< 1) (Table 3). The strongest association
was found in older subjects for LPC C17:0, where individ-
uals in the top quartile had 3.9-fold higher odds of devel-
oping aggressive prostate cancer (Table 3).

Strengths and limitations
The combined targeted MS- and NMR-based metabolo-
mics methodology used in the present study provided
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absolute metabolite quantities with low analytical vari-
ation, and the use of two separate techniques increased
the metabolite coverage. The validity of the metabolo-
mics findings was tested using a holistic approach, in
which metabolomics-based hypotheses were corrobo-
rated by data generated at baseline (FFQ and OGTT).
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The use of plasma samples collected after overnight fast-
ing reduced the variation in concentrations of metabo-
lites resulting from varying time since the last meal. A
long minimum follow-up time (=5 years) reduced the
possibility of metabolic alterations due to subclinical
prostate cancer at baseline. Each case-control set was
matched for BMI and age, to account for the known risk
factors for prostate cancer. The study was limited by in-
cluding individuals from only one European country and
by employing only targeted metabolomics, which mea-
sures a limited number of metabolites compared with an
untargeted approach.

Other studies

Seven previous studies have investigated the association
between metabolite levels and the risk of prostate cancer
incidence in prospectively collected human blood sam-
ples [9-15]. Three of these studies were nested within
the Alpha-Tocopherol, Beta-Carotene Cancer Prevention
Study (ATBC) [11, 12, 14]; one within the Prostate,
Lung, Colorectal and Ovarian Cancer Screening Trial
(PLCO) [9]; one within the European Prospective Inves-
tigation into Cancer and Nutrition study (EPIC) in Hei-
delberg [10]; and two within the EPIC-multicentre
cohort (Germany, Greece, Italy, the Netherlands, Spain
and the UK) [13, 15]. The ABTC and PLCO studies used
untargeted metabolomics to non-quantitatively measure
many metabolites, many not targeted in the present
study. The EPIC studies used the same MS-based meth-
odology, allowing more straightforward comparisons
with the present study.

The present study is the first to show positive associa-
tions between LPC C17:0 and risk of overall and aggres-
sive prostate cancer (Table 3) [9-15]. The inverse
association between acylcarnitine C18:2 and risk of ag-
gressive prostate cancer in the present study (Table 3) is
consistent with the association between higher concen-
trations of acylcarnitine C18:2 and lower risk of
advanced-stage prostate cancer in the EPIC-multicentre
studies [13, 15].

The positive association between LPC C18:0 and risk
of overall prostate cancer (Table 3) in the present study
was not observed in any of the EPIC-multicentre studies
(ORs close to one) [13, 15]. In the EPIC-Heidelberg
study, an inverse association between LPC C18:0 and
overall prostate cancer risk (p <0.05) was observed, but
the association was no longer significant after correction
for multiple testing or adjusting for confounding factors
in that case-cohort study [10]. The positive associations
between glycerophospholipids (LPCs and PCs) and risk
of aggressive prostate cancer in our study are in the op-
posite direction to the inverse associations between gly-
cerophospholipids and risk of advanced-stage prostate
cancer reported in the EPIC-multicentre studies [13, 15].



Rohnisch et al. BMC Medicine (2020) 18:187

Page 10 of 14

A B

Corr.
-0.30

2(x <20)1 = 40-60 years 4 @ 4.00
C14:01 g _
C16:0 ° 256 g | 40-50years '- 3.00
C16:14 o 60 years 4
C17:0 2.00
Ci18:04 @ @ e

< - +-0.10 > | 40-60 years4 =

cis:14{ @ = 1.00
Ccis24 @ g § 40-50 years -
C20:44 _ = ____ Q. _J = 60 years :

I(x>20){ ° p-value ° - p-value
C24:0 4 R = 40-60 years v ] <sx102
C26:0 o |Sx1 g

: . 5] 40-50 years o |<5x10°
C26:1 1 e | <5x10° !sb
C28:01 <5%10% o0 60 years @ | <5x10*
C28:14__e el <
! ' 0.1 1.0 10
Glucose  Oh 2h é O 8 1 ]
NS N &S

Fig. 3 Glucose metabolism and prostate cancer risk. a Spearman’s correlation coefficient (Corr.) matrix for lysophosphatidylcholines (LPCs) with
glucose values from the oral glucose tolerance test (0 h and 2 h; n=1493); p values indicated by the size of the black circles and strength of each
correlation by the colour intensity (blue scale). b Odds ratio (OR) values for the association between glucose metabolism status at baseline
(impaired glucose tolerance (IGT), impaired fasting glucose (IFG) and type 2 diabetes (T2D)) and prostate cancer risk in the different subgroups
(left panel). OR (95% Cl) for the association between baseline IGT and prostate cancer risk in different subgroups (right panel). OR > 1, red; OR< 1,
blue; level of significance indicated by the size of the black circles. Subgroups: overall prostate cancer (40-60 years, 770 matched case-control
sets; 40-50 years, 331 sets; 60 years, 439 sets), non-aggressive prostate cancer (40-60 years, 604 sets; 40-50 years, 287 sets; 60 years, 317 sets) and
aggressive prostate cancer (40-60 years, 166 sets; 40-50 years, 44 sets; 60 years, 122 sets)

v v

OR (95% CI)

In this study, we only used overnight fasting samples,
because varying time since the last meal can generate
variations in the concentration of several metabolites
that are not related to the estimation of disease risk.
This was not considered in the experimental design of
the EPIC studies [10, 13, 15]. Instead, the EPIC-
multicentre studies matched each case-control set based
on categories of time since last meal (<3, 3-6, >6h)
[13, 15]. However, the range of variation in the concen-
tration of some metabolites within each of those time
categories is still large. For examples, we have previously
shown that LPC concentrations change by 25-34% com-
pared with baseline within 3 h after a meal [16]. There-
fore, our study population was (at least in theory)
subjected to lower pre-analytical variation and this may
have assisted in revealing the association between, for
example, LPC C18:0 and higher risk of overall prostate
cancer.

Moreover, in the present study, as in some previous
studies [19, 24], the aggressive disease subtype included
both high grade and non-localised tumours (T3-4). In
contrast, the EPIC-multicentre studies considered only
non-localised tumours (T3-4) in the advanced-stage dis-
ease subtype [13, 15]. These differences in disease sub-
type categorisation may partly account for the different

associations observed between our study and the EPIC-
multicentre studies. At this stage, it is not possible to de-
termine the exact reason for the opposing association
between LPCs and risk of aggressive/advanced-stage
prostate cancer observed in the present study and the
EPIC-multicentre studies. Further research, for example
comparing our nested cohort with a subgroup in the
EPIC-multicentre cohort and including only case-
controls with samples collected after overnight fasting,
may help explain the discrepancies. This suggestion is
motivated by our previous observation that the extent of
change in the concentrations of metabolites (i.e. phos-
pholipids) after a meal is also associated with the physio-
logical status of individuals (in addition to time since
last meal) [16]. For example, the post-meal changes in
several metabolites are blunted in individuals with im-
paired glucose/insulin metabolism [16]. This may indi-
cate that the association of a metabolite with a disease
may switch direction or be affected when moving from
fasting samples to post-meal samples if the extent of
post-meal change in the metabolite differs between cases
and controls, as a result of disease-associated physio-
logical status.

Sarcosine has been prospectively associated with risk
of prostate cancer in a study performed in the PLCO



Réhnisch et al. BMC Medicine

(2020) 18:187

Page 11 of 14

Overall Non-aggressive Aggressive
LPCCI7:0 4 = —e—i *ok —e—i —O0—i
LPC CI8:0 o #x ' ——i *k ' ——i —e—i
g Glycine - I:—.—! 0:—.—! |—o:—|
) Pyruvate < o —o— —e—i
) . . 1 1 1
= PC ae C38:3 o *x* | —e—i —e— * | ——
bt PC ae C38:4 o *x —e—i —e—i * ——
S| rrcc203d s '—e—i —e—i * —e—i
LPC C20:4 o et —e—i —e—i
PC ae C40:2 o #x* —e— —e—i lI—O—I
C18:2 - O —O— —0—
LPC C17:0 ll—o—l I—I.—l '_?_'
LPC C18:0 = ** e — — i—lo—i
@ Glycine = * I!—Q-—l * Il—.—l |—|o—|
s Pyruvate - '—.I—i D—OI—‘ '—IO—l
> | PCae C38:3 o S— !—q—l ll—o—>
. PC ae C38:4 - —— ——0— ———
2 | Lpcc034 —e—i —e—i —a—
LPC C20:4 + ——i |-I—o—| '—p—i
PC ae C40:2 1 S — ——— i—lo—l
C18:2 —e—i —O0— —0—
LPCCI7:0 4 * — ok , —— * In—o—c
LPC CI18:0 o *x . —e— ok . —— 5% I'_._.
Glycine - !—O—Ii —O0— l—OT|
z Pyruvate - o —e—i II—.—I
§ PC ae C38:3 - =+ | —— - | —— ——
= PC ae C38:4 - *x* | —— —— * ——
A LPC C20:3 o ** ——i ——i —e—i
LPC C20:4 o * Il—O—l e * :—o—c
PC ae C40:2 o *x* [ —e— '._o_'
C18:2 —e—i —— —e—i
0.1 1.0 10
[ T 1L I I T T T T 1
0.1 1.0 10 0.01 0.1 1.0 10 100
)
OR,, (95% CI)
Fig. 4 Odds ratio (OR) values for the association between individual metabolites (LPC, lysophosphatidylcholine; PC, phosphatidylcholine) and
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[31]. No association between sarcosine and risk of pros-
tate cancer was found in the present study (data not
shown). One reason may be the shorter follow-up times
used in the PLCO study (>1year) compared with the
present study (=5 years). Intriguingly, no association
with sarcosine was found in another study performed in
the PLCO that used longer follow-up times (> 4.4 years)
[9]. This might suggest sarcosine is rather a marker of
(early) diagnosis [31, 32] or progression [33, 34] in pros-

tate cancer.

Investigating links between prostate cancer and dietary
fatty acids

After normalising the concentration of each LPC with <
20 carbons to the total concentration of such LPCs, only
LPC C17:0 remained associated with risk of prostate
cancer (Fig. 2b; OR > 1; p < 0.05). This may imply an in-
crease at two levels: (1) an overall increase in LPCs and
(2) an additional increase in the LPC with 17 carbons in
the FA moiety (LPC C17:0). Moreover, the LPC C17:0
concentration in plasma displayed a significant positive
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correlation with dietary intake of the corresponding FA
(FA C17:0; Additional file 8), while for other LPCs, such
a correlation was generally weak or absent.

Odd-chain FAs (e.g. C17:0) are found in products of
ruminant origin (e.g. dairy products). Previous studies
have shown a positive correlation between levels of
plasma LPC C17:0 and dairy consumption [35, 36].
Therefore, our findings may suggest a link between con-
sumption of dairy products and risk of prostate cancer.
Some previous studies have also suggested a higher
prostate cancer risk with higher intake of dairy products
[37, 38], although evidence of such an association is still
limited [5], and therefore, it warrants further
investigation.

A previous study in the Pan-European EPIC-cohort re-
ported dairy consumption to be higher among males in
northern Sweden than in many other European coun-
tries [39]. If high dairy consumption has implications for
prostate cancer, then metabolic markers of dairy con-
sumption (e.g. LPC C17:0) [35, 36] are more likely to
display a stronger association to prostate cancer risk in a
population such as northern Sweden.

It should be borne in mind that according to recent
findings, biosynthesis can also contribute to circulatory
levels of FA C17:0 [40]. Hence, more research is needed
to enable sound conclusions to be drawn. Understanding
the link between consumption of dairy products and risk
of prostate cancer would be of great value in formulating
prevention strategies, since consumption of dairy prod-
ucts is a modifiable risk factor.

Investigating the link between prostate cancer and
glucose metabolism

Higher concentrations of LPC C17:0, LPC C18:0 and
glycine, which were associated with higher risk of overall
prostate cancer in the present study (Table 3), were
found to be associated with lower risk of IGT and T2D
in a previous study [41]. Similarly, FA C17:0 has been
linked to glucose intolerance [40]. In addition, pyruvate,
which we observed to be associated with lower risk of
overall prostate cancer, is an important intermediate in
glucose metabolism [42]. These findings suggest a pos-
sible link between glucose metabolism and risk of pros-
tate cancer. In addition, aberrant glucose metabolism
[24, 43] and T2D [44, 45] have previously been associ-
ated with lower risk of prostate cancer. Therefore, we in-
vestigated the correlation between metabolites
frequently associated with a risk of prostate cancer
(LPCs) and glucose concentrations (0 h and 2 h) from an
OGTT performed on all subjects at baseline. Intri-
guingly, we detected negative correlations between LPCs
(with <20 carbons in the FA moiety) and glucose
concentrations.
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Considering the negative correlation between LPCs
and glucose concentrations, we then investigated
whether the status of glucose metabolism at baseline (i.e.
IGT, IFG and T2D) was associated with risk of prostate
cancer. It was observed that IGT was associated with a
lower risk of prostate cancer (Fig. 3b). Next, we postu-
lated that the association between metabolites and pros-
tate cancer risk may appear stronger in a population
with NGT, where the risk-reducing (masking) effect of
IGT does not exist. Therefore, we repeated the statistical
analyses among case-controls with NGT for metabolites
associated with prostate cancer risk (Table 3). We found
that the associations appeared stronger for many of the
glycerophospholipids and glycine, supporting our postu-
lated effect (Fig. 4). Overall, these findings show that the
reverse cross-association between T2D and prostate can-
cer risk [44, 45] can be observed at metabolite level.

A number of studies have shown altered metabolic
regulation in relation to the development [9-15] and
progression [46] of prostate cancer. It would be of great
interest to acquire insights into the genes involved in
controlling these metabolic alterations. The cross-
association between T2D and prostate cancer observed
in the present and previous studies [44, 45] may warrant
further research on genes and signalling pathways at the
intercept of prostate cancer and T2D. One such signal-
ling pathway is phosphatase and tensin homologue
(PTEN)-PI3K/AKT with known implications in both
prostate cancer and diabetes [47, 48].

Conclusions

We observed associations of LPCs, PCs, glycine, acylcar-
nitine C18:2 and pyruvate with prostate cancer risk, with
the associations varying with baseline age and disease
aggressiveness. The strongest and most consistent asso-
ciation was observed between LPC C17:0, potentially a
marker of dairy consumption, and higher risk of overall
and aggressive prostate cancer. Moreover, several LPCs
that were associated with risk of prostate cancer were
negatively correlated with blood glucose concentrations
from an OGTT. The association of glycerophospholipids
and glycine with prostate cancer risk was stronger in
case-controls with NGT. These findings suggest a pos-
sible link between glucose metabolism and the risk of
developing prostate cancer.
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