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Abstract

Background: Tuberculosis (TB) control efforts are hampered by an imperfect understanding of TB epidemiology.
The true age distribution of disease is unknown because a large proportion of individuals with active TB remain
undetected. Understanding of transmission is limited by the asymptomatic nature of latent infection and the
pathogen’s capacity for late reactivation. A better understanding of TB epidemiology is critically needed to ensure
effective use of existing and future control tools.

Methods: We use an agent-based model to simulate TB epidemiology in the five highest TB burden countries—
India, Indonesia, China, the Philippines and Pakistan—providing unique insights into patterns of transmission and
disease. Our model replicates demographically realistic populations, explicitly capturing social contacts between
individuals based on local estimates of age-specific contact in household, school and workplace settings. Time-
varying programmatic parameters are incorporated to account for the local history of TB control.

Results: We estimate that the 15–19-year-old age group is involved in more than 20% of transmission events in
India, Indonesia, the Philippines and Pakistan, despite representing only 5% of the local TB incidence. According to
our model, childhood TB represents around one fifth of the incident TB cases in these four countries. In China,
three quarters of incident TB were estimated to occur in the ≥ 45-year-old population. The calibrated per-contact
transmission risk was found to be similar in each of the five countries despite their very different TB burdens.

Conclusions: Adolescents and young adults are a major driver of TB in high-incidence settings. Relying only on the
observed distribution of disease to understand the age profile of transmission is potentially misleading.
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Background
Tuberculosis (TB) is now the leading cause of death
worldwide from a single infectious agent [1]. While effect-
ive prevention and treatment tools have been available for
many decades, their impact on the global epidemic has
been limited by challenges that TB control programs still
face today. Among them, the difficulties in identifying

diseased individuals and providing them with adequate
care may be the most critical, with only 61% of cases re-
ceiving effective treatment [1]. Even more alarming is that
the global case detection rate could be as low as 35% in
children [2]. As well as ensuring that control policies are
as effective as possible, comprehensive knowledge of the
epidemic age-profile is essential for estimating burden of
disease and predicting the course of the epidemic.
TB epidemiology is also clouded by the propensity of

Mycobacterium tuberculosis (M.tb) to enter a latent in-
fection state within its host (latent TB infection, LTBI),
in which it may persist for many years before reactivat-
ing [3]. Source tracing is therefore difficult due to the
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unknown time lag between infection and activation,
making transmission events even more challenging to
infer than disease burden. While modelling estimates of
the global prevalence of LTBI were recently published
[4], better understanding pathogen transmission in the
population and the resulting infection burden would en-
able better targeting of high-risk groups.
The slow dynamics of TB limit the feasibility of field in-

vestigations that could build epidemic knowledge and
mean that historical trends for many decades into the past
may have significance for the modern epidemic. For these
reasons, mathematical modelling provides a valuable tool
to investigate hidden features of the disease [5]. In particu-
lar, agent-based models, which explicitly simulate each in-
dividual in a population, together with their demographic
characteristics, social contacts and infection history, cap-
ture important heterogeneities present in real-world popu-
lations [6, 7]. This faculty is critical when modelling TB, as
M.tb transmission is subject to important heterogeneity in
characteristics of the infectious host, susceptible host and
environment [8]. Meanwhile, the recent availability of con-
tact survey data has dramatically improved our under-
standing of social mixing [9–11]. In particular, estimates of
age-specific contact frequency and intensity in different
contexts/locations are now publicly available and provide
empiric evidence of preferential mixing patterns, such as
age assortativity. Agent-based models can capture specific
patterns of social mixing with a high degree of fidelity. For
example, they can account for contact saturation in house-
holds and other settings such as schools and workplaces
where repeated contact is frequent [12]. Incorporating
such contacts into a model can enable more accurate esti-
mates of setting-specific contribution to transmission [13].
In this study, we combine data on social mixing and

population demography with data on historical indicators
of TB control to parametrise an agent-based model. We
use the model to build a rich picture of the current profile
of M.tb transmission and disease burden in the world’s
five highest burden countries in 2016 according to the
World Health Organization (WHO): India, Indonesia,
China, the Philippines and Pakistan [1].

Methods
We developed the SNAP-TB platform (Social Network
Abstraction to Profile TB Burden) to simulate M.tb trans-
mission and the resulting burden of infection and disease.
SNAP-TB is a stochastic agent-based model developed in
Python that uses a household, school and workplace
framework to generate realistic demographic patterns and
social mixing. The population model is overlaid with a TB
model that simulates infection, transmission and several
existing control measures (Fig. 1). The main model princi-
ples are described in the following sections and detailed in
Additional file 1, with a description of how data were

incorporated in model development and calibration (Add-
itional file 1: Figure S1, and Table S1).
Model initial conditions—replicating the demographic

and epidemic configuration of year 2018—were reached
by running a burn-in phase to allow demographic pro-
cesses, age distributions and TB distribution to emerge
naturally. The model was then run for five further years to
produce outputs. Our approach to model calibration using
Latin Hypercube Sampling is described in details in
Section 4 of Additional file 1. This approach accounts for
uncertainty around 11 important model parameters.
Therefore, the results presented in this manuscript are not
associated with a single parameter set but emerge from
the various parameterisations that were found to produce
realistic TB burden according to country-specific data.

Population model
All individuals are assigned a household at birth. Life
events such as forming a couple, moving home and having
babies are simulated, such that plausible household com-
positions emerge from the model. A Siler model is used to
derive age-specific natural mortality rates [14], and back-
calculated birth rates are used during burn-in to repro-
duce the desired modern country age distribution.
All children are assumed to attend school (commencing

from 3 to 5 years old and completing by 15–21 years old),
before optionally entering the workforce, with individuals
explicitly assigned to specific schools and workplaces.

Social mixing
Individuals interact through social contacts that occur in
four different contexts: households, schools, workplaces
and other locations. A social contact is considered concep-
tually as either a physical contact or a two-way conversa-
tion involving three or more words (consistent with
reporting of input data) [9, 15]. All individuals of the same
household are assumed to contact each other every day
[11, 16]. In contrast, social contacts occurring within
congregate settings (schools and workplaces) and in other
locations are generated stochastically at each time step.
Their frequency and age assortativity pattern are derived
for each country from estimates of the location- and age-
specific contact matrices [15]. A detailed description of
our approach to contact generation in the different
settings is provided in Section 2.3 of Additional file 1.

TB model
Figure 1 illustrates the infection stages simulated. Age-
specific parameters derived from empiric data are used to
determine whether and when infected individuals progress
to active disease [17]. Active cases may be smear-positive,
smear-negative or extrapulmonary TB and will either
spontaneously cure or die from their disease in the absence
of treatment. The type of natural history outcome and the
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time at which it occurs are randomly generated based
on the TB natural history characteristics observed
during the pre-chemotherapy era (see Additional file 1,
Section 3.1) [18].
M.tb transmission may occur when a person with active

TB contacts a susceptible individual. The baseline probabil-
ity that a social contact leads to transmission is calibrated
to observed national TB prevalence aggregated for all ages
(Additional file 1, Section 4). Empirical estimates of the
age-specific TB prevalence (for all countries except India
due to absence of data) were compared to model outputs
for independent validation but were not used for calibra-
tion. We assume that school contacts are less likely to lead
to transmission than household contacts (relative risk: RR =
0.89), as are work contacts (RR = 0.82) and other contacts
(RR = 0.75). These relative risks are based on the reported
proportions of high-intensity contacts by location [9, 10],
combined with the assumption that low-intensity contacts
are half as likely to lead to transmission as high-intensity
contacts (Additional file 1, Section 3.2), with sensitivity ana-
lyses used to explore alternative assumptions. The trans-
mission probability also depends on the characteristics of
the two individuals making contact, as described in Table 1.

Fig. 1 Schematic illustration of the agent-based model. The upper panel represents the structure of the simulated population and the diverse types of
contacts simulated (household, school, workplace, other location). The lower panel illustrates individuals’ progression through the various stages of life and
infection/disease using diamonds to represent events and boxes for extended phases. Solid arrows indicate deterministic progressions that occur in all
surviving individuals, while dashed arrows represent possible but not universal progressions. *Only a fraction of the individuals enters the organised workforce

Table 1 Model assumptions regarding the factors affecting the
risk of transmission

Modification in risk of transmission Source

Affecting index infectiousness

Extrapulmonary
TB

Not infectious –

Smear-negative
TB

One quarter as infectious
as smear-positive cases

[19, 20]

Age Infectiousness increases with
age (see Additional file 1,
Section 3.2)*

[21, 22]

Detection The transmission probability
is halved once the index
case has been detected

Assumption

Affecting contact susceptibility

BCG vaccination Reduces the risk of the vaccinee
becoming infected. Vaccine immunity
wanes over time (see Additional file
1, Section 3.2)

[23–25]

Current M.tb
infection

Reduces the risk of novel infection
(RR = 0.21)

[26]

*Assumption explored in sensitivity analysis
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The time to detection of active TB is exponentially
distributed, and the associated rate is calculated based on
the country’s estimated case detection rate (Additional file 1,
Section 3.3). Although a detection time is generated for all
TB cases, detection only actually occurs if this time
precedes the pre-determined time of the natural history
outcome.
In our model, all detected cases are commenced on

treatment between 0 and 14 days following detection. Suc-
cessfully treated individuals (i.e. cured or completing treat-
ment) are assumed to clear infection and become
susceptible again. If unsuccessfully treated, patients re-
main active and the TB episode outcome (cure or death)
and its timing remain as defined by the TB natural history
that was originally generated. Time-variant parameters are
used to specify Bacillus Calmette–Guérin (BCG) vaccine
coverage, as well as rates of case detection and treatment
success. The associated scale-up functions for BCG vac-
cine coverage and rates of case detection and treatment
success are based on WHO data (Additional file 1: Figure

S9). The parameters used to inform the model are pre-
sented in Table 2.
In order to understand the role played by the past pro-

grammatic conditions in shaping the current epidemic
picture, we run an additional analysis where all program-
matic parameter values are assumed constant and equal
to their most recent estimates.

Results
Model calibration and validation against age-specific TB
prevalence for all forms of TB
The crude probability of transmission per contact obtained
from calibration was found to be very similar in each of
the five countries, with median values ranging from
0.00361 in China to 0.00398 in Indonesia (Table 2 and
Additional file 1: Figure S10). We validated the model by
comparing the resulting age-specific prevalence estimates
to those obtained from the prevalence surveys conducted
in Indonesia (in 2014), China (in 2010), the Philippines (in
2016) and Pakistan (in 2011) (Fig. 2). Age-specific

Table 2 Model parameters

Parameter India Indonesia China Philippines Pakistan Source

Demographic

Simulated population size 20,000 ” ” ” ”

Average household size 4.8 4.0 3.1 4.7 6.8 [27]

Number of schools (/100,000 population) 115 96 37 57 157 [28–32]

Average number of potential contacts at work* 10–30 ” ” ” ” Assumption

Proportion of the adult population engaged in
regular work outside of the household (%)

53.8 66.3 68.9 62.3 54.4 [33]

Proportion contacts which are of high intensity
by location, with locations listed as households
/ schools / workplaces / other locations (%)

46 / 30 / 20 / 10 ” ” ” ” [10]

Natural history of TB

Proportion of active TB cases sm+a / sm−b /
extra-pc (%)

50 / 25 / 25 62 / 19 / 19 52 / 24 / 24 60 / 20 / 20 44 / 28 / 28 [34, 35]

Rate of spontaneous clearance (sm+ / closed
TBd years−1)*

0.18–0.29 /
0.09–0.24

” ” ” ” [18]

Rate of TB-specific mortality (sm+ / closed TB
years−1)*

0.33–0.45 /
0.016–0.036

” ” ” ” [18]

Crude probability of TB transmission during
a contact (×10−4)*

38.5 (30.2–44.9) 39.8 (34.1–
45.2)

36.1 (32.4–
40.2)

39.1 (32.3–
47.4)

38.3 (30.8–
44.3)

Calibrated

Relative probability of transmission per contact
if low-intensity contacte

0.5 ” ” ” ” Assumption, tested
in sensitivity analysis

Programmatic parameters

BCG vaccine coverage Time-variant Time-variant Time-variant Time-variant Time-variant [36] Additional file 1:
Figure S9

Case detection rate Time-variant Time-variant Time-variant Time-variant Time-variant [37] Additional file 1:
Figure S9

Time from detection to treatment (days)* 0–14 ” ” ” ” [38–41]

Treatment success rate Time-variant Time-variant Time-variant Time-variant Time-variant [35] Additional file 1:
Figure S9

*Parameters included in Latin hypercube sampling; a smear-positive TB; b smear-negative TB; c extrapulmonary TB; d either smear-negative or extrapulmonary TB; e

reference: high-intensity contact
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estimates of prevalence are also presented for India
(Additional file 1: Figure S11), although comparison to
data was impossible in the absence of a prevalence survey.

Profile of M.tb transmission
In order to better characterise transmission, we recorded
contacts’ characteristics by tracking their location (school,
work, home, other) and the age of the individuals in-
volved. The same information was recorded for each
transmission event by location, along with whether the as-
sociated infection resulted in active TB (Fig. 3). According
to our model, contacts occurring in locations other than
home, school or workplace are a major driver of M.tb
transmission in each of the five countries, with contribu-
tions ranging from 34% (28–40, 95% simulation interval)
of the total number of transmission events in Pakistan to
49% (44–55) in China. Household contacts were estimated
to be the predominant driver of M.tb transmission in
Pakistan (40%, 35–46). The estimated proportion of active
TB burden attributable to household contacts varies be-
tween 17% (4–32) in China and 44% (31–57) in Pakistan.

Figure 4 presents the age-specific contact and trans-
mission patterns obtained from simulation. Contact
patterns disaggregated by location are presented in Add-
itional file 1: Figure S5. We note that our approach of
allowing for household compositions to emerge naturally
during simulation led to plausible age-specific contact
patterns that are similar to those described in several so-
cial mixing studies [9–11]. The high-intensity contact
zones naturally translate into high densities of M.tb
transmission, except where index individuals are aged
under 15 years (due to lack of infectiousness) and where
contact recipients are young and therefore retain
immunity from BCG vaccination. In contrast, the effect
of immunity from infection was no longer observed
when considering only contacts leading to active disease.
This finding is due to the fact that young individuals are
at higher risk of progression to active disease than adults
[42, 43]. Our results highlight that the 15–19 years age
category represents a critical driver of transmission in all
countries except China. In India, Indonesia, the
Philippines and Pakistan, we estimate that more than

Fig. 2 Validation of model outputs against prevalence survey estimates for the age-specific TB prevalence in Indonesia (2014), China (2010), the
Philippines (2016) and Pakistan (2011). No data were available for the less than 15-year-old individuals from these surveys. Error bars represent the
95% confidence intervals of the survey estimates (in purple) and the 95% simulation intervals resulting from the stochastic variability of the
model and the parameter uncertainty (in green)
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20% of transmission events involve in this age category
as either index or recipient (Table 3).

Age distribution and risk associated with the current
latency reservoir
We estimated the country-level prevalence of LTBI in
2018 at 25% (14–36), 47% (35–55), 30% (18–41), 43% (34–
52) and 25% (14–39) in India, Indonesia, China, the
Philippines and Pakistan, respectively. These estimates are
very similar to those obtained from a previous modelling
work, and a comparison between the two studies is pre-
sented in Additional file 1: Figure S12 [4]. Figure 5 presents
the age-specific size of the LTBI reservoir as estimated for
2018 (green spheres), as well as the risk that it represents in
terms of future TB disease (purple spheres). The relative
LTBI prevalence steadily increases with age in all countries,
whereas the absolute LTBI burden decreases at advanced
ages due to population mortality.
According to our model, the age category that repre-

sents the highest risk in terms of future disease emanat-
ing from current infections is the “30–39-year-old” age
category in India (29% of future TB burden), Indonesia
(27%), the Philippines (26%) and Pakistan (31%), while
the “40–49-year-old” age category was most prominent
in China (33%). The youngest age category “0–9-year-
old” includes very few infected individuals in all coun-
tries, although the per-infection risk of disease is much
higher in this age category than in older populations.

Age profile of active TB
Figure 6 shows the estimated age distribution of TB cases
in the five countries. In China, we estimate that TB affects

the ≥ 45-year-old category much more severely than the
younger age categories, accounting for 76% (73–79) of the
national TB burden. In particular, the age category 55–59
is the most represented, alone contributing 13% (11–15)
to the Chinese TB burden.
Young individuals (particularly those aged under 5 or

10–14) are severely affected with active TB in India,
Indonesia, the Philippines and Pakistan. Although the
Philippines and Pakistan present similar population pyra-
mids, their TB age distributions differ noticeably. We find a
prominent peak for the 40–49-year age category in Pakistan
(contributing 21% of TB burden), which is not observed in
the Philippines (14% for the same age category). In contrast,
young adults (aged 20–24 years) constitute a considerably
larger proportion of the burden in the Philippines (7%) than
in Pakistan (4%). Finally, the youngest age category (0–4-
year-old) was estimated to be a major contributor to the
TB epidemic in the Philippines, with an estimated contribu-
tion reaching 9% (9–10). The proportion of paediatric TB
(< 15 years old) among all TB cases is estimated at 17%,
15%, 2%, 22% and 18% in India, Indonesia, China, the
Philippines and Pakistan, respectively.
Additional file 1: Figure S17 presents the TB age dis-

tribution obtained for the Philippines in the sensitivity
analysis assuming constant historical programmatic con-
ditions (i.e. removing time-variant programmatic param-
eters). We note that a substantial share of the estimated
TB burden is shifted towards the youngest age categories
under this scenario, making the TB age profile more
similar to the population age distribution which is highly
inconsistent with the 2016 prevalence survey results. In
another sensitivity analysis where we assume that low-

Fig. 3 Contributions of the various locations to the burden of contact and transmission. Error bars represent the 95% simulation intervals
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intensity contacts cannot result in transmission, house-
holds become the predominant context of M.tb trans-
mission in all countries except China (Additional file 1:
Figure S18). We observe that the calibrated crude prob-
ability of transmission per contact remains similar across
each of the five countries, regardless of the assumption
made around the relative risk of transmission through
low-intensity contacts as compared to high-intensity
contacts (Additional file 1: Figure S26).

Discussion
We present a detailed representation of M.tb transmission
and the resulting burden of infection and TB disease in
the five highest TB burden countries. Using an agent-
based model that combines household structure, social
mixing matrices, age-specific infectiousness and reactiva-
tion rates, and the history of national TB control, we pro-
vide insights into major TB epidemic characteristics that

would be otherwise unattainable. These include the age
profile of M.tb transmission, the age-specific LTBI preva-
lence and associated risk of future disease, the age distri-
bution of incident TB cases, and the contributions of
different contact types to the burden of transmission and
disease. Furthermore, we demonstrate that the demo-
graphic and programmatic model inputs alone are suffi-
cient to explain the considerable heterogeneity in burden
observed between countries, with calibrated per-contact
transmission rates being very similar.
We show that the 15–19-year-old age category is a

major driver of M.tb transmission in all countries except
China. This observation, which is due to the high fre-
quency of contacts and waning of immunity conferred
by BCG at this age [9, 24], contrasts with the relatively
low estimated burden of active disease observed in this
age group. This finding highlights the marked difference
between the age profile of M.tb transmission and that of

Fig. 4 Age-specific pattern of social mixing and transmission
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TB burden and implies that relying only on the ob-
served burden of active disease to understand the age
profile of a TB epidemic would provide an incom-
plete and misleading picture. The relatively low TB
burden estimated in the 15–19-year-old age group
may explain why adolescents and young adults consti-
tute a neglected group in global TB control and are
rarely considered as a target population for preventive
measures [44]. However, our model suggests that pre-
venting infection (e.g. by raising TB awareness) and
reactivation (through prophylaxis treatment) within
this group could potentially yield significant burden
reductions in the older age categories. Identifying in-
dividuals that should be targeted with TB prevention
is critical to guide control policies, as world political
leaders have recently declared their commitment to
provide 30 million people with preventive treatment
by 2022 [45].
Another age-specific transmission peak was identified

between parents and their children in all settings, which
is especially concerning for children under five, as they
are more likely to progress to active disease once in-
fected [42]. This observation underscores the critical im-
portance of implementing rapid screening and control
measures for the youngest contacts of identified adult

pulmonary TB cases. We estimate that childhood TB (<
15 years old) contributes to around one fifth of the total
TB incidence in India, the Philippines and Pakistan, as a
consequence of the countries’ young populations and
their high contact intensities. This is in line with previ-
ous estimates obtained in other high-incidence settings
[21, 22]. Incorporating age-specific epidemiological char-
acteristics such as infectiousness, risk of activation and
waning BCG immunity allowed us to further refine the
distribution of TB cases among < 15-year-olds using 5-
year age brackets. This insight is particularly valuable be-
cause it is difficult to directly assess in real-world set-
tings due to the challenges encountered with the
diagnosis and surveillance of paediatric TB [22].
The TB age profile in China is dramatically different to

that reported for the other four countries modelled in this
study. China experiences TB principally in the oldest part
of the population, with three quarters of the TB burden
attributed to the ≥ 45-year-old category, although popula-
tion ageing is not the only explanation for this
phenomenon. The dramatic improvement in case detec-
tion since 2000 combined with high treatment success
rates (over 90%) maintained over the last three decades
has resulted in a dramatic fall in M.tb transmission over
recent years, such that younger cohorts have now been
much less exposed to the pathogen than preceding gener-
ations. This suggests that the current burden of active TB
in China results primarily from reactivation of old infec-
tions that were acquired when transmission was still in-
tense, consistent with previous work [46]. The importance
of the programmatic history in shaping the current age
profile of TB was further highlighted by the discrepancies
observed in our sensitivity analysis performed without
time-variant parameters and ignoring past TB control.
We provide estimates of the age-specific size of the

LTBI reservoir, along with the risk that it represents in
terms of future disease. Knowing who is latently infected
provides valuable knowledge for policy-makers when de-
signing contextualised preventive strategies. Our
country-specific predictions could be used to estimate
the yield of mass LTBI screening/treatment programs
targeted at specific age categories, both in terms of the
number of current infections treated and future disease
episodes prevented. Although broad recommendations
for the management of LTBI have been adopted [44], lit-
tle is known about how best to adapt these to local pro-
grammatic and epidemiological contexts.
Social interactions occurring outside of homes, schools

and workplaces were identified as the main driver of
transmission in India, Indonesia, China and the
Philippines. This finding implies that control measures
focusing on close and easy-to-identify contacts of diag-
nosed TB cases may have a limited impact at the popu-
lation level in these settings. This is consistent with

Table 3 Contributions of the 15–19-year-old individuals to the
estimated total number of transmission events between 2018
and 2022

Estimated proportion
of transmission
events for which

The index
is 15–19
y.o.

The recipient
is 15–19
y.o.

Both individuals
are 15–19
y.o.

At least
one
15–19
y.o. is
involved

India

All transmissions 11% 14% 5% 20%

Transmissions
leading to TB

13% 13% 5% 21%

Indonesia

All transmissions 14% 15% 7% 22%

Transmissions
leading to TB

16% 14% 7% 23%

China

All transmissions 2% 5% 1% 7%

Transmissions
leading to TB

2% 6% 1% 7%

The Philippines

All transmissions 14% 16% 7% 23%

Transmissions
leading to TB

15% 14% 6% 23%

Pakistan

All transmissions 16% 16% 7% 25%

Transmissions
leading to TB

17% 14% 7% 25%
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other modelling works which suggest a limited role of
household transmission due to contact saturation [12,
13]. In contrast, simulated M.tb transmission in Pakistan
occurs primarily in homes due to Pakistan’s large aver-
age household size (6.8 persons). Therefore, interven-
tions such as providing household contacts with
screening and prophylaxis treatment are likely to be
more efficient in Pakistan. We found that the contribu-
tion to the TB burden from household contacts and
those occurring in “other locations” was sensitive to our
assumptions about the relative risk of transmission
through low-intensity contacts as compared to high-
intensity contacts. However, it is important to note that
the two scenarios considered in our sensitivity analyses
are extreme and likely unrealistic, as they represented ei-
ther a null risk of transmission for low-intensity contacts
or a risk that is equal to that of high-intensity contacts.
The transmission probability, calibrated separately to

the different TB burdens, was remarkably similar in the
five countries we studied, providing confidence about
model robustness. Moreover, it indicates that the socio-
demographic characteristics included, along with the

simulated time-variant programmatic changes, are able
to account for the bulk of the heterogeneity in TB bur-
den. This finding also suggests that the per-contact risk
of transmission could be similar in all settings after ad-
justment for age, household composition and other fac-
tors relevant to infectiousness and susceptibility. The
validity of our model was further reinforced by the
closely matching estimates obtained when comparing
our simulated age-specific prevalence to the equivalent
estimates from the prevalence surveys conducted in the
Philippines, Indonesia, China and Pakistan. Furthermore,
our estimates of LTBI prevalence were remarkably close
to those produced in a previous modelling study [4], al-
though our 95% simulation intervals are much wider
than those obtained in the previous work.
A limitation of this study is that the social mixing

matrices that we incorporated into the model were not
directly obtained from contact surveys. Instead, we used
country-specific estimates generated by combining sur-
vey data from other countries with an extrapolation
model [15]. Our estimates will therefore be refined fur-
ther as local mixing data such as those provided by the

Fig. 5 Age distribution of latent tuberculosis infection. Coloured discs should be interpreted as spheres (to increase the relative size of the
smaller spheres), with the volume of the spheres being proportional to the following quantities: 2018 total population (grey), size of the LTBI pool
in 2018 (green), and number of individuals currently infected in 2018 who will ever develop active TB (purple). The numbers surrounding each
disc indicate the age categories represented. Note that LTBI prevalence is predicted to reach extremely high levels among the oldest age
category, which is explained by the high historical intensity of transmission in these countries and by the fact that we do not incorporate
LTBI clearance
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POLYMOD study became available for a greater range
of contexts [9]. Another potential limitation is that we
opted for model parsimony in relation to factors includ-
ing gender, comorbidities and sub-national geography,
which are the subjects of current work. Due to high
computational expense, we were unable to employ clas-
sic approaches such as Monte-Carlo Markov Chain
methods to perform uncertainty analysis. However, the
parameter values used in the model are based on empir-
ical evidence and official reports, which has dramatically
reduced the need to make assumptions. Furthermore,
multi-dimensional uncertainty was included around 11
input parameters in order to explore various model con-
figurations and selected parameters considered the most
likely to affect model outputs were varied in sensitivity
analyses, which did not jeopardise our main findings.

Conclusions
We show that it is possible to create new and valuable
insights into the profile of local TB epidemics by com-
bining agent-based simulation with social mixing data
and TB control history. We demonstrate that social con-
tacts involving 15–19-year-old individuals are a critical
driver of TB which is not evident from the age distribu-
tion of TB cases. Our model also highlights the high
burden of childhood TB in high-incidence settings and
underlines the critical role played by parents-to-children
transmission.
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