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Abstract

Background: Tuberculosis (TB) transmission often occurs within a household or community, leading to heterogeneous
spatial patterns. However, apparent spatial clustering of TB could reflect ongoing transmission or co-location of risk factors
and can vary considerably depending on the type of data available, the analysis methods employed and the dynamics of
the underlying population. Thus, we aimed to review methodological approaches used in the spatial analysis
of TB burden.

Methods: We conducted a systematic literature search of spatial studies of TB published in English using Medline,
Embase, PsycInfo, Scopus and Web of Science databases with no date restriction from inception to 15 February 2017.
The protocol for this systematic review was prospectively registered with PROSPERO (CRD42016036655).

Results: We identified 168 eligible studies with spatial methods used to describe the spatial distribution (n = 154),
spatial clusters (n = 73), predictors of spatial patterns (n = 64), the role of congregate settings (n = 3) and the household
(n = 2) on TB transmission. Molecular techniques combined with geospatial methods were used by 25 studies to
compare the role of transmission to reactivation as a driver of TB spatial distribution, finding that geospatial hotspots
are not necessarily areas of recent transmission. Almost all studies used notification data for spatial analysis (161 of 168),
although none accounted for undetected cases. The most common data visualisation technique was notification rate
mapping, and the use of smoothing techniques was uncommon. Spatial clusters were identified using a range of
methods, with the most commonly employed being Kulldorff’s spatial scan statistic followed by local Moran’s I and
Getis and Ord’s local Gi(d) tests. In the 11 papers that compared two such methods using a single dataset,
the clustering patterns identified were often inconsistent. Classical regression models that did not account for
spatial dependence were commonly used to predict spatial TB risk. In all included studies, TB showed a heterogeneous
spatial pattern at each geographic resolution level examined.

Conclusions: A range of spatial analysis methodologies has been employed in divergent contexts, with all
studies demonstrating significant heterogeneity in spatial TB distribution. Future studies are needed to define
the optimal method for each context and should account for unreported cases when using notification data
where possible. Future studies combining genotypic and geospatial techniques with epidemiologically linked
cases have the potential to provide further insights and improve TB control.
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Background
Mycobacterium tuberculosis (Mtb) transmission often
occurs within a household or small community because
prolonged duration of contact is typically required for
infection to occur, creating the potential for localised
clusters to develop [1]. However, geospatial TB clusters
are not always due to ongoing person-to-person trans-
mission but may also result from reactivation of latent
infection in a group of people with shared risk factors
[1, 2]. Spatial analysis and identification of areas with
high TB rates (clusters), followed by characterisation of
the drivers of the dynamics in these clusters, have been
promoted for targeted TB control and intensified use of
existing TB control tools [3, 4].
TB differs from other infectious diseases in several

ways that are likely to influence apparent spatial cluster-
ing. For example, its long latency and prolonged infec-
tious period allow for significant population mobility
between serial cases [5]. Thus, Mtb infection acquired in
a given location may progress to TB disease in an en-
tirely different region, such that clustering of cases may
not necessarily indicate intense transmission but could
rather reflect aggregation of population groups at higher
risk of disease, such as migrants [6]. Similarly, Mtb in-
fection acquired from workplaces and other congregate
settings can be wrongly attributed to residential expos-
ure, as only an individual’s residence information is typ-
ically recorded on TB surveillance documents in many
settings [7, 8].
Identifying heterogeneity in the spatial distribution of

TB cases and characterising its drivers can help to in-
form targeted public health responses, making it an at-
tractive approach [9]. However, there are practical
challenges in appropriate interpretation of spatial clus-
ters of TB. Of particular importance is that the observed
spatial pattern of TB may be affected by factors other
than genuine TB transmission or reactivation, including
the type and resolution of data and the spatial analysis
methods used [10]. For instance, use of incidence data
versus notification data could give considerably different
spatial pattern [11], as the latter misses a large number
of TB cases and could be skewed towards areas with bet-
ter access to health care in high-burden settings [12, 13].
Thus, spatial analysis using notification data alone in
such settings could result in misleading conclusions.
Similarly, the type of model used and the spatial unit of

data analysis are important determinants of the patterns
identified and their associations [14–16]. That is, different
spatial resolutions could lead to markedly different results
for the same dataset regardless of the true extent of spatial
correlation [15, 17, 18] and the effect observed at a re-
gional level may not hold at the individual level (an effect
known as the ecological fallacy) [19]. Therefore, we aimed
to review methodological approaches used in the spatial

analysis of TB burden. We also considered how common
issues in data interpretation were managed, including
sparse data, false-positive identification of clustering and
undetected cases.

Methods
Data source and search strategy
Our search strategy aimed to identify peer-reviewed
studies of the distribution and determinants of TB that
employed spatial analysis methods. In this review, stud-
ies were considered spatial if they incorporated any
spatial approaches (e.g. geocoding, spatial analysis units,
cluster detection methods, spatial risk modelling) into
the design and analysis of the distribution, determinants
and outcomes of TB [20]. We searched Medline,
Embase, Web of Science, Scopus and PsycInfo databases
from their inception to 15 February 2017 using a com-
bination of keywords and medical subject headings
(MeSH) pertaining to our two central concepts: tubercu-
losis and space. We refined search terms related to the
latter concept after reviewing key studies, including a
previous systematic review not limited to TB [21]. The
full search strategy was adapted to the syntax of the in-
dividual database from the following conceptual struc-
ture: (tuberculosis OR multidrug-resistant tuberculosis)
AND (spatial analysis OR geographic mapping OR
spatial regression OR spatiotemporal analysis OR spatial
autocorrelation analysis OR geography OR geographic
distribution OR geographic information system OR geo-
graphically weighted regression OR space-time cluster-
ing OR ‘spati*’ OR ‘hotspots’ OR cluster analysis) and is
provided in the Appendix. Studies targeted to special
populations (e.g. homeless, migrants, HIV-infected per-
sons) and that considered the entire population of a re-
gion were permitted. Additional papers were also
identified through hand searching the bibliographies of
retrieved articles and from suggestions from experts in
the field.

Eligibility, and inclusion and exclusion criteria
We included peer-reviewed papers that incorporated the
spatial analysis approaches described above in the study
of TB. After exclusion of duplicates, titles and abstracts
were screened by two researchers (DS and MK) to iden-
tify potentially eligible studies. Of these papers, articles
were excluded hierarchically on the basis of article type,
whether the method used could be considered spatial or
not and the outcomes assessed. No exclusions were
made on the basis of the outcome reported, with studies
that considered incidence, prevalence or any TB-related
health outcome included. Studies were excluded if the
language of the publication was not English, the report
was a letter, conference abstract or a review or only re-
ported the temporal (trend) of TB. Spatial studies of

Shaweno et al. BMC Medicine  (2018) 16:193 Page 2 of 18



non-tuberculous mycobacteria, non-human diseases and
population immunological profiles were also excluded.
Full-text articles were excluded if they did not provide
sufficient information on the spatial analysis techniques
employed. There were no exclusions based on study set-
ting or anatomical site of disease.

Data extraction and synthesis
Three independent reviewers (DS, MK, KAA) performed
data extraction using pretested data extraction forms
and stored these in a Microsoft Excel 2016 spreadsheet
(Microsoft Corporation, Redmond, Washington, USA).
Disagreements were resolved by consensus. The follow-
ing information was extracted from each paper: country,
publication year, study aim, data type (notifications or
survey), type of TB disease (smear-positive pulmonary,
smear-negative pulmonary and extrapulmonary), geo-
graphic level, spatial methods (map types, cluster detec-
tion methods, statistical regression methods, spatial lag,
spatial error, spatial smoothing techniques), time scale
and outcomes reported (whether quantification of TB
cases or TB-related health outcomes, such as mortality,
default from care, disability-adjusted life years (DALYs)
and key conclusions). In studies which combined geo-
spatial methods with genotypic clustering methods, we
also extracted the genotypic cluster identification
methods. Spatial analysis techniques were categorised as
either visualisation (mapping), exploration (using statis-
tical tests to identify spatial clusters) or statistical model-
ling [19, 22]. Counts and proportions were primarily
used to summarise study findings. The protocol for this
systematic review was prospectively registered with
PROSPERO (CRD42016036655). Although we adhered
to our original published protocol, here we additionally
describe the importance of genotypic methods and the
application of spatial methods in informing public health
interventions in response to requests during peer review.

Results
Study characteristics
A total of 2350 records were identified from the elec-
tronic searches, of which 252 full-text articles were
assessed. Of these, 168 articles met all inclusion criteria
and were included in the final narrative synthesis (Fig. 1).
Using a cutoff of 100 TB cases per 100,000 population
in reported incidence in 2016, 111 (66%) of the studies
were from low-incidence settings.
All references returned by the search strategy were

from the period 1982 to 2017, with 71% published from
2010 onwards (Additional file 1: Figure S1). Earlier
studies (predominantly in the 1980s and 1990s) tended
to be descriptive visualisations, while studies in the last
two decades frequently incorporated cluster detection
and risk prediction. More recently, a range of statistical

techniques including Bayesian statistical approaches
and geographically weighted regression have become
increasingly popular.

Key objectives of included studies
Spatial analysis was applied to address a range of objec-
tives (Table 1), with the commonest ones including de-
scription of the distribution (n = 135), statistical analysis of
spatial clustering (n = 73) and analysis of risk factors and
risk prediction (n = 64). Spatial methods were also used to
determine the relative importance of transmission by
comparison to reactivation as a driver of TB incidence (n
= 25), the effect of TB interventions (n = 2), barriers to TB
service uptake (n = 2), spatial distribution of TB-related
health outcomes (mortality, default, hospitalisation) (n =
5), spatial pattern of TB incidence among people living
with HIV (PLHIV) (n = 4), HIV-related TB mortality (n =
4), multidrug-resistant TB (MDR-TB) drivers (n = 1), TB
outbreak detection (n = 3) and drivers of spatial clustering
(including the role of congregate settings, such as social
drinking venues and schools) (n = 30).

Types of TB disease analysed
Spatial analysis was most commonly conducted on data
for all types of TB (i.e. without distinction between pul-
monary or extrapulmonary; n = 121), followed by pul-
monary TB only (n = 28) and smear-positive pulmonary
TB only (n = 13). Spatial analysis of multidrug-resistant
TB (MDR-TB) and extensively drug-resistant TB
(XDR-TB) was reported in 15 studies and one study
respectively.

Data used and scale of analysis
Nearly all studies used retrospective TB program data
(notifications), with the exception of five studies that
used prevalence surveys and two prospectively collected
data. None of the studies using notification data
accounted for undetected/unreported cases. In all in-
cluded studies, spatial analysis of TB was based on the
individual’s residence, except for three studies that ex-
plored the effect of exposure from social gathering sites.
Spatial analysis was generally done using data aggre-

gated over administrative spatial units (n = 131), but the
scale of aggregation differed markedly. Common spatial
scales included census tract (n = 20), district (n = 15),
postal code (n = 15), county (n = 15), neighbourhood (n
= 10), health area (n = 7), municipality (n = 11), state (n
= 7), province (n = 6), local government area (LGA) (n =
4) and ward (n = 4). Data were analysed at the individual
level in 37 studies, while three studies were reported at a
continent and country scale.
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Fig. 1 Study inclusion flow chart

Table 1 Application areas of spatial methods in TB studies

Spatial method application areas Methods used References

Spatial TB distribution or spatial
clustering

Dot maps, rate maps, thematic maps,
Moran’s I, GetisOrd statistic, NNI Besag
and Newel statistic, k-functions, spatial
scan statistic

[1, 2, 7, 8, 12, 16, 23–41, 44–49, 51–54, 57–72, 75, 93–95, 99, 100,
102–176]

Risk factors Bayesian CAR models, regression models
(with or without including spatial terms),
GWR, PCA, mixture models, spatial lag
models

[8, 12, 33, 36, 38, 40, 42–44, 46–52,
58, 59, 62, 70, 71, 93, 94, 99–102, 104,
111, 112, 116, 117, 120, 123, 125, 127–129,
131, 136, 137, 141–143, 145, 148, 149, 156, 161, 164, 176–189]

Monitoring spatiotemporal TB trends Temporal trend maps [27, 36–39]

Intervention evaluation Distance map, kernel density map [73, 74]

Barriers to TB care Rate map, dot map, travel time map,
distance map

[12, 187]

TB program performance Map (time to detection) [184]

HIV-related TB incidence Rate map, dot map, spatial scan statistic [40, 166, 186, 190]

TB treatment outcomes Spatial empirical Bayes smoothing,
kernel density maps, spatial scan statistic,
spatial regression

[152, 155, 179, 183, 191]

Mortality related to TB/HIV
coinfection

Rate map, thematic maps, Moran’s I and
spatial regression

[42, 43, 174, 192]

Transmission Dot maps (congregate settings) [54, 55, 193]

Dot maps (cases) [7, 8]

Geospatial and genotypic clustering
methods

[1, 2, 25, 28, 47, 57, 59–72, 93–95, 169, 194]

Methodological Spatial scan statistic [25]

TB outbreak detection Spatial scan statistic [1, 25, 28]

Prevalence estimation Model-based geostatistics [80]

Drivers of MDR-TB k-function [35]

NNI nearest neighbourhood index, CAR models conditional autoregressive models, GWR geographically weighted regression, PCA principal component analysis, HIV
human immunodeficiency virus, MDR-TB multidrug-resistant TB
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Methods in the spatial analysis of TB
Table 2 shows the range of spatial methods used. Spatial
analysis was used to visualise patterns (n = 154), explore
spatial clusters (n = 73) and identify risk factors for clus-
tering (n = 64), with risk prediction undertaken by 11
studies. Of the included studies, six did not explicitly re-
port any of these methods but reported statistical results
that implied the use of these methods.

Data visualisation
Data visualisation was the most consistently applied
technique, with 154 of the studies using at least one data
visualisation method to present TB distribution and/or
risk factor patterns across space (Table 1). The TB inci-
dence rate was the commonest indicator mapped (n =
63), followed by event maps (n = 37), which were
smoothed using kernel density in seven studies. Data
visualisation was based on standardised morbidity ratios

(SMR) in 12 studies. Five studies reported maps of
trends in TB incidence over time, and thematic maps
were used in nine to consider the impact of risk factors
on TB incidence by displaying the spatial distribution of
other variables. Variables plotted included climate (n =
1), socioeconomic factors (n = 5), diabetes (n = 1) and
obesity (n = 1).

Approaches used to account for data sparseness
TB is a relatively rare disease at the population level,
and burden is typically expressed in terms of cases per
100,000 population. Various approaches were used to ac-
count for this sparseness in the number of cases, such as
aggregating cases over administrative geographic levels
and over time periods (ranging from 1 to 25 years).
An alternative approach was rate smoothing, although

this practice was rare, despite the fact that TB rates were
the commonest indicators mapped. In the included

Table 2 Spatial methods used in spatial analysis of tuberculosis (n = 168)

Method category Method Number References

Visualisation Rate map 63 [12, 16, 23, 26, 27, 29–34, 37, 41, 44–46, 48, 51, 52, 57, 58, 60, 61,
70, 100, 102, 103, 105, 106, 120, 123–146, 164, 165, 170, 173–176, 195, 196]

Dot map 37 [2, 7, 8, 35, 40, 47, 53, 54, 59, 66, 67, 72, 73, 75, 95, 107–122, 158, 166, 169, 178,
191, 197]

SMR map 12 [38, 49, 99, 100, 124, 126, 127, 129, 138, 142, 148, 149]

Kernel density map 7 [35, 37, 62, 93, 120, 147, 171]

Case counts maps 3 [108, 167, 172]

Others* 17 [16, 24, 50, 60, 62, 63, 68, 71, 99, 100, 103, 104, 116, 148, 166, 168, 185, 198]

Spatial cluster
analysis

Global Moran’s I 28 [16, 26, 34, 37, 39, 44, 48, 49, 51, 58, 65, 93, 100, 102, 123, 126, 128, 131, 133,
135, 138, 139, 145, 150, 161, 180, 188, 199]

Local Moran’s I 14 [16, 41, 44, 49, 51, 93, 100, 123, 126, 131, 135, 138, 145, 192]

Kulldorff’s spatial scan statistic 43 [1, 2, 23–32, 40, 57, 63, 64, 70, 71, 94, 109–111, 119, 120, 130, 135, 138, 139, 141,
151–160, 163, 164, 166, 191]

GetisOrd statistic 12 [2, 16, 26, 39, 49, 54, 65, 93, 104, 131, 139, 161]

k-NN 8 [35, 53, 69, 72, 93, 114, 122, 163]

k-function 6 [35, 62, 93, 116, 117, 147]

Besag and Newell statistic 2 [125, 145]

Statistical modelling Bayesian CAR models 7 [38, 44, 49, 99, 101, 127, 148]

Geographically weighted
regression

6 [16, 50, 93, 102–104]

Mixture modelling 2 [142, 149]

Conventional logistic 15 [8, 40, 70, 71, 94, 95, 111, 112, 120, 141, 161, 177, 178, 187, 189]

Conventional Poisson 5 [46, 125, 136, 145, 156]

Conventional linear 5 [12, 47, 129, 137, 176]

Negative binomial 1 [164]

Factor analysis 6 [50, 103, 117, 143, 146, 170]

Regression models with spatial
terms

9 [42, 48, 51, 58, 100, 116, 128, 131, 188]

Spatial prediction 11 [38, 42, 43, 62, 80, 99, 101, 127, 131, 148, 181]

SMR standardised morbidity ratio, k-NN k-nearest neighbourhood test, CAR conditional autoregressive
*Includes maps of disability-adjusted life years (DALYs), survival time, factor scores, probability maps, proportion of cases and regression coefficients
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studies, smoothed rates were used in six (4%) studies.
Similarly, of 12 studies that analysed SMRs, smoothed
SMRs were presented in seven. In the included studies,
several different data smoothing techniques were used,
including fully Bayesian (n = 8), empirical Bayes (n = 4)
and spatial empirical Bayes (n = 5). A significant number
of visualisation reports (n = 30) were not complemented
by hypothesis testing, either by exploration methods or
modelling approaches. In 12 studies (7%), maps were
not presented, but a narrative description of TB burden
or a tabular presentation of TB distribution by adminis-
trative unit was described.

Spatial cluster (hotspot) identification
Use of at least one spatial cluster identification method
was reported in 73 (43%) studies, with Kulldorff ’s spatial
scan statistic used most frequently (n = 43), followed by
Local Moran test (n = 14) and Getis and Ord’s local
Gi(d) statistic (n = 12). Nearest neighbour index (NNI),
k-function and Besag and Newell methods were reported
in eight, six and two studies respectively (Table 1). The
presence of overall area-wide heterogeneity was assessed
most often using global Moran I (n = 28). In three stud-
ies, no globally significant spatial autocorrelation was
seen, although there was spatial clustering locally. Al-
though studies used data aggregated over various spatial
scales, only one evaluated the impact of spatial scale on
the hotspot detection performance of the spatial scan
statistic. Use of individual address-level data improved

the sensitivity of the spatial scan statistic compared to
data aggregated at the administrative level.
Simultaneous use of two spatial cluster detection

methods was reported in 11 studies and showed dif-
ferences in hotspot identification that ranged from
complete disagreement to some degree of similarity
(Table 3).

False-positive clustering
Not all spatial clusters are true clusters. False-positive
clusters can arise from various sources, including data
and methods used, and unmeasured confounding. Given
that notification data were by far the most commonly
used data source in the spatial analyses reviewed here, it
could not be determined if these clusters represented
true clusters of tuberculosis incidence or if they were
caused by factors such as pockets of improved case de-
tection. The role of differential TB detection has been
documented in some studies from low-income settings,
where increased spatial TB burden was linked to im-
proved health care access [12].
In addition, rate was the commonest disease indicator

used for disease mapping, as well as cluster detection in
this study. As described earlier, rates are liable to sto-
chasticity and can lead to false-positive clustering. How-
ever, rate smoothing and stability (sensitivity) analysis of
clusters identified using rates was done in only a few
studies [23, 24]. This remains an important area of con-
sideration in the future spatial analysis of TB.

Table 3 Comparisons of spatial clusters from multiple cluster identification methods

Author, year Methods Outcome Conclusion

Alene, K, 2017 [49] Local Moran’s I
Getis and Ord

Clustered
Clustered

50% similarity (two non-significant clusters
identified by LISA)

Álvarez-Hernández, G., et al. 2010 [145] Local Moran’s I
Besag and Newell

No significant Clustered Widely conflicting

Dangisso M, et al. 2015 [26] Getis and Ord
Spatial scan statistic

Clustered
Clustered

Similar overall pattern, but marked differences
by years

Feske, M., et al. 2011 [93, 178] Getis and Ord
GWR residuals

Clustered
Heterogeneous

Similar overall pattern, but some local
differences

Ge E, et al. 2016 [139] Getis and Ord
Spatial scan statistic

Clustered
Clustered

Similar overall pattern, but differences in some
locations and across time

Haase I, et al. 2007 [2] Hotspot analysis
SaTScan

Clustered
Clustered

Similar overall pattern, but some local
differences

Hassarangsee S, et al. 2015 [138] LISA
Spatial scan statistic

Clustered
Clustered

Very similar, but not identical

Li L, et al. 2016 [135] LISA
Spatial scan statistic

No significant cluster, Clustered Widely conflicting

Maceiel ELN, et al. 2010 [131] LISA, Getis and Ord
Model prediction

Clustered
Heterogeneous

Widely conflicting

Wubuli A, et al. 2015 [16] LISA
Getis and Ord

Clustered
Clustered

Similar overall pattern, but some local
differences

Wang T, et al 2016 [102] Spatial scan statistic
Getis and Ord

Clustered
Clustered

Similar overall pattern, but some local
differences

GWR geographically weighted regression; LISA local indicators of spatial association
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Spatiotemporal analysis
Temporal scale
In the spatial analysis of TB, the time window is an im-
portant dimension that influences the spatial pattern of
TB [25]. As TB is relatively a rare disease at the popula-
tion level and has a long incubation period, detection of
apparent spatial clusters requires a longer time scale
than for acute infectious diseases that may form spatial
clusters within days of the start of outbreak. Because of
this, the included studies were based on cases that accu-
mulated over considerable time periods, ranging from 1
to 25 years, with use of data aggregated over 5 years
being the most frequent practice (20%).

Approaches
Generally, two approaches were used in the space-time
cluster analysis of TB. The first uses classical space-time
clustering using algorithms which scan space over a
changing time window, such as Kulldorff ’s spatial scan
statistic [23, 25–29]. The second approach is to account
for the temporal dimension by repeating the spatial ana-
lysis for each time unit [26, 30–35]. In some studies,
spatial patterns in temporal trends of TB incidence were
determined as increasing or decreasing [27, 36–39].

Spatial statistical modelling
Different statistical modelling approaches were used to
describe the relationship between TB and ecological fac-
tors in 65 (39%) studies, including nine spatially explicit
models using Bayesian approaches. Conditional autore-
gressive (CAR) models were used in nine models to ac-
count for spatial correlation. Classical regression models
were used in 33, while non-Bayesian spatial regression
models were reported in 12.
Of the regression models that evaluated the effect on

model fit of including spatial structure (spatial error or
spatial lag), the inclusion of spatial structure improved
the performance of the model in seven studies and failed
to do so in two (based on deviance information criteria).
Spatial lag was explicitly modelled in seven studies and
highlighted the significant influence of neighbouring lo-
cations on TB distribution.
Traditional models including a Bayesian approach as-

sumed a stationary relationship between TB and its
spatial covariates and hence imposed a single (global) re-
gression model on the entire study area. Only six studies
used a geographically weighted regression (a local re-
gression model) to accommodate variation in the associ-
ation between TB and its risk factors from place to place
and showed spatially varying (non-stationary) effects (n
= 6). Other models used included mixture modelling (n
= 2) and factor analysis using principal component ana-
lysis (PCA) (n = 4).

Results from spatial analysis
Geographic distribution of TB
The geographic distribution of TB was heterogeneous in
all included studies both from low- and high-incidence
settings, although no formal hypothesis testing was pre-
sented in 55 (33%). An exception was one study from
South Africa that reported no significant clustering of
cases among HIV patients on ART [40]. Spatial analysis
was also used to describe the drivers of drug-resistant
tuberculosis, with tighter spatial aggregation of MDR-TB
cases compared with non-MDR cases taken as evidence
of transmission of MDR-TB [41].
Spatial analyses into both HIV and TB investigated

outcomes including HIV-associated TB incidence (n = 4)
and spatial patterns of TB/HIV-related mortality (n = 4).
All such studies revealed significant spatial heterogen-
eity. TB/HIV-related mortality in children was linked to
areas with low socio-economic status and maternal
deaths [42, 43].
Spatial methods used to study the impact of

community-based TB treatment showed marked im-
provement in access compared to health facility-based
treatment approaches (n = 1), and similar studies dem-
onstrated travel time and distance to be important
barriers to TB control (n = 2).

Correlations with social and environmental factors
The observed spatial patterns of TB were consistently
linked to areas with poverty (n = 14), overcrowding and
non-standard housing (n = 9), ethnic minority popula-
tions (n = 3), population density (n = 2), low education
status (n = 2), health care access (n = 3) and immigrant
populations (n = 5). However, a minority of studies have
also found conflicting or non-significant associations
between TB and poverty [44–46], population density
[47–49] and unemployment [45, 47].
Four studies (including three from China) examined

the correlation of climatic factors with TB incidence,
with conflicting results. Two province-level studies in
China using data from different time periods found TB
burden to be associated with increasing annual average
temperature [33, 50], although correlation with humidity
was conflicting. Positive associations were observed with
average precipitation [33, 50] and with air pressure [33]
in these studies, while inverse associations were ob-
served with sun exposure [50] and with wind speed [33].
In contrast, a county-level study which used average
monthly climate data within a single province of China
found the reverse, with temperature, precipitation, wind
speed and sunshine exposure showing associations in
the opposite direction [51]. A study that compared TB
incidence between regions with different climatic condi-
tions showed higher incidence at dry regions and low in-
cidence in humid regions [52].
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Space-time analysis to detect TB outbreaks
Studies reporting the application of the spatial
methods in the early identification of TB outbreak
were uncommon. Space-time TB studies using retro-
spective surveillance data in the USA found that the
spatial scan statistic and other methods could effect-
ively detect outbreaks months before local public au-
thorities became aware of the problem [25, 28].
However, as space-time clusters of TB can be due to
either ongoing transmission or reactivation, character-
ising the drivers that resulted in the spatial clustering
is essential. Findings from studies which compared
the timeliness and accuracy of space-time clusters in
identifying TB outbreaks varied with spatial resolution
and the background population, with two studies
from the USA detecting ongoing outbreaks [25, 28],
in contrast to false alarms due to reactivation TB
among immigrants in a study from Canada [1].

Spatial analysis of the source of TB infection
Spatial methods were also used to determine the role of
households and congregate settings (e.g. social gathering
venues, schools) on TB transmission risk (Table 1). The
role of the household was determined by cross-referencing
child and adolescent TB infection or disease with adult
TB in two studies [7, 8]. In these studies, the importance
of household exposure declined with the age of the child,
such that TB disease or infection was related to residential
exposure to adult TB in younger children but not
adolescents.
Congregate settings, which pose increased transmis-

sion risk, were identified using multiple techniques that
included linking TB cases to social gathering places
[53] and mapping the distribution of rebreathed air vol-
ume (RAV) [54] (including grading these settings based
on TB transmission principles [55]). These approaches
identified schools and social gathering sites as high-risk
areas.

Identifying local drivers
Recent transmission is a critical mechanism driving local
TB epidemiology in high-burden settings, while reactiva-
tion of remotely acquired infection is thought to
predominate in most low-endemic settings [4, 56]. Geo-
spatial clusters may reflect increased disease risk due to
geographic proximity, which may correspond to recent
transmission‚ or reactivation of latent TB infection in an
aggregate of individuals infected elsewhere or both [57].
In the reviewed studies, spatial methods coupled with
other methods were used to identify which of these two
mechanisms drives local TB epidemiology in the follow-
ing three ways.

Combining spatial clusters with cohort clustering: TB
clustering can occur from ongoing transmission or
from reactivation of latent infection among high-risk
subgroups due to shared characteristics such as simi-
lar country of birth rather than a shared transmission
network, a phenomenon known as cohort clustering.
Cohort cluster analysis is used to identify selected
high-risk population subgroups for targeted interven-
tions based on the relative TB incidence they bear.
The Lorenz curve is a simple visualisation tool that
compares the clustering (inequality) in the subgroup
of interest across regions and over time. One study,
which combined such cohort (birth country) cluster
analysis using the Lorenz curve of inequality with
spatial cluster analysis [31] revealed colocation of
these cluster types, suggesting the presence of both
transmission and reactivation. Spatial clusters among
foreign-born persons covered too large an area com-
pared to clusters among the locally born to be con-
sistent with direct person-to-person transmission. In
addition, spatial modelling was also applied to differ-
entiate the role of transmission from reactivation by
assessing spatial dependence. The presence of spatial
dependence (autocorrelation) was taken to indicate
transmission, while its absence was considered to in-
dicate reactivation [58].

Combining spatial and genotype clustering: Geno-
typic clustering of TB may be used as a proxy for recent
transmission, such that geospatial clusters in which cases
are genotypically clustered may be taken as stronger evi-
dence for locations where recent transmission has oc-
curred. These approaches were combined to quantify
the role of recent transmission and determine geograph-
ical locations of such transmission in 25 studies. This
was done either by determining the spatial distribution
of genotypic clusters [25, 28, 59–69] or by assessing the
genotypic similarity of cases contained within geospatial
clusters [2, 57, 65, 70, 71].
The findings from these studies varied considerably

by the country and sub-population studied (locally
born versus immigrants) (Table 4). Genotypic clusters
were spatially clustered in many studies, providing
evidence of recent local transmission. In some studies,
cases in geospatial clusters were less likely to be
dominated by genotypically similar cases (i.e. were
dominated by unique strains) than cases outside the
geospatial clusters, implying spatial aggregation of re-
activation TB [57]. This finding highlights that geo-
spatial hotspots in low TB incidence settings are not
necessarily areas of recent transmission and spatial
clustering may be primarily mediated by social deter-
minants, such as migration, HIV and drug abuse [57].
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Combinations of multiple methods were typically used for
genotyping, with the commonest being IS6110 restriction
fragment length polymorphism (IS6110-RFLP) and spoligo-
typing (n = 9), followed by mycobacterial interspersed repeti-
tive unit variable number tandem repeat (MIRU-VNTR)
and spoligotyping (n = 5), although use of a single method
was reported in six studies (Table 4). No identified studies
reported use of whole genome sequencing.

Temporal distribution of genotypically clustered cases
The temporal pattern of genotypic clustering could
provide insights to distinguish between transmission
and reactivation. In some studies, the temporal distri-
bution of genotypically clustered cases indicated pe-
riods of 1 to more than 8 years between the
genotypically clustered cases [1, 72], implying reacti-
vation TB could also show genotypic similarity.

Table 4 Overlap between spatial and molecular clustering

Authors Country Genotyping methods Findings

Bishai WR, et al. 1998 [95] USA IS6110-RFLP and PGRS Genotypic clusters with epidemiologic links were
spatially clustered but 76% of DNA clustered cases
lack epidemiologic links.

Mathema B, et al. 2002 [169] USA IS6110-RFLP and spoligotyping Genotypic clusters showed spatial aggregation

Richardson M, et al. 2002 [72] South Africa IS6110-RFLP and spoligotyping Spatial aggregation of genotypic clusters was limited

Nguyen D, et al. 2003 [69] Canada IS6110-RFLP and spoligotyping Genotypically similar cases were not more spatially
clustered than genotypically unique cases

Moonan P, et al. 2004 [61] USA IS6110-RFLP and spoligotyping Genotypic clusters were spatially heterogeneous

Jacobson L, et al. 2005 [59] Mexico IS6110-RFLP and spoligotyping Spatial patterns were similar for both cases categorised
as reactivation or recent transmission

Haase I, et al. 2007 [2] Canada IS6110-RFLP and spoligotyping In spatial TB clusters of immigrants, there was significant
genotype similarity

Higgs B, et al. 2007 [25] USA IS6110-RFLP and PGRS Space-time clusters contained genotypic clusters

Feske ML, et al. 2011 [93, 178] USA IS6110-RFLP and spoligotyping Genotypically clustered cases were randomly distributed
across space

Evans JT, et al. 2011 [66] UK Spoligotyping and MIRU-VNTR Genotypic clusters showed spatial aggregation

Nava-Aguilera E, et al. 2011 [67] Mexico Spoligotyping Genotypic clusters were not spatially aggregated

Prussing C, et al. 2013 [57] USA Spoligotyping and 12- MIRU-VNTR Cases in geospatial clusters were equally or less likely to
share similar genotypes than cases outside geospatial
clusters

Tuite AR, et al. 2013 [94] Canada Spoligotyping and 24-MIRU-VNTR The proportion of cases in genotypic clusters was five
times that seen in spatial clusters (23% vs 5%)

Kammerer JS, et al. 2013 [28] USA Spoligotyping and 12-MIRU-VNTR Genotypically similar cases were spatially clustered

Verma A, et al. 2014 [1] Canada IS6110-RFLP and Spoligotyping Space-time clusters contained few or no genotypically
similar cases

Izumi K, et al. 2015 [65] Japan IS6110-RFLP Both genotypically similar and unique strains formed
spatial hotspots

Chamie G, et al. 2015 [194] Uganda Spoligotyping Genotypic clusters shared social gathering sites (clinic,
place of worship, market or bar)

Chan-Yeung M, et al. 2005 [47] Hong Kong IS6110-RFLP Spatial locations of genotypic clusters and unique cases
did not differ by their sociodemographic characteristics

Gurjav U, et al. 2016 [70] Australia 24-MIRU-VNTR Spatial hotspots were characterised by a high proportion
of unique strains; less than 4% of cases in spatial clusters
were genotypically similar

Ribeiro FK, et al. 2016 [62] Brazil IS6110-RFLP and Spoligotyping Genotypic clusters were spatially clustered

Saavedra-Campos M, et al. 2016 [71] England 24-MIRU-VNTR 10% of cases clustered spatially and genotypically

Seraphin MN, et al. 2016 [64] USA Spoligotyping and 24-MIRU-VNTR 22% of cases among USA-born and 5% among foreign-born
clustered spatially and genotypically

Yuen CM, et al. 2016 [68] USA Spoligotyping and 24-MIRU-VNTR Genotype clustered cases were spatially heterogeneous

Yeboah-Manu D, et al. 2016 [63] Ghana IS6110 and rpoB PCR Genotypic clusters showed spatial aggregation

Zelner J, et al. 2016 [60] Peru 24-MIRU-VNTR Genotypic clusters showed spatial aggregation

PGRS polymorphic GC-rich repetitive sequence
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Use of spatial methods to inform public health
interventions
In addition to their use in characterising the spatial dis-
tribution and determinants of TB, spatial methods have
been used to inform TB-related public health interven-
tions. In these studies, spatial analysis methods have
proved to be attractive in guiding public health interven-
tions, although their application to TB care beyond re-
search is not well documented. For instance, spatial
analysis techniques have been used to identify locations
with a high density of TB cases (termed hotspots, al-
though this definition was not based on spatial statistical
tests). Community screening was then conducted in
these areas, and its yield was compared to that from
routine service provision. This GIS-guided screening
was found to considerably improve the detection of
individuals with latent TB infection and other infectious
diseases [73]. Similarly, a study from South Africa
highlighted the potential for using GIS to promote
community-based DOTS by locating and geographically
linking TB patients to their nearest supervision sites, al-
though programmatic implementation of this approach
was not reported [74].
The potential for spatial methods to be used for the

early detection of TB outbreaks has also been described,
although the findings widely varied based on the back-
ground population [1, 28]. Spatial cluster analysis using
data at higher geographic resolutions improves the
method’s performance in cluster detection [25].

Discussion
While a range of methodologies has been employed in di-
vergent contexts, we found that essentially all geospatial
studies of TB have demonstrated significant heterogeneity
in spatial distribution. Spatial analysis was applied to im-
prove understanding of a range of TB-related issues, in-
cluding the distribution and determinants of TB, the
mechanisms driving the local TB epidemiology, the effect
of interventions and the barriers to TB service uptake. Re-
cently, geospatial methods have been combined with
genotypic clustering techniques to understand the drivers
of local TB epidemiology, although most such studies re-
main limited to low-endemic settings.
In almost all reviewed studies, retrospective program

data (notifications) were used. Notification data, espe-
cially from resource-scarce settings, suffer from the
often large proportion of undetected cases and are heav-
ily dependent on the availability of diagnostic facilities
[12]. None of the spatial studies of TB that used notifica-
tion data accounted for undetected cases, such that the
patterns in the spatial distribution and clustering could
be heavily influenced by case detection performance
[11]. Hence, distinguishing the true incidence pattern

from the detection pattern has rarely been undertaken,
despite its importance in interpretation.
The problems of undetected cases could be com-

pounded in the spatial analysis of drug-resistant forms
of TB, especially in resource-scarce settings where test-
ing for drug-resistant TB is often additionally condi-
tional on the individual’s risk factors for drug resistance
[75]. However, recently, there have been some attempts
to account for under-detection in the spatial analysis of
TB. A Bayesian geospatial modelling approach presented
a framework to estimate TB incidence and case detec-
tion rate for any spatial unit and identified previously
unreported spatial areas of high burden [11]. Another
approach is to estimate incidence using methods such as
capture-recapture [76, 77] and mathematical modelling
[78]. If case detection rate is truly known for a defined
region, incidence can be calculated as notifications di-
vided by case detection rate, although this is rarely if
ever the case. Spatial analysis using prevalence data
could also be considered in areas where such data are
available.
In relation to the data problems outlined above, spatial

analysis of TB could benefit from the use of model-
based geostatistics, which is commonly used in other in-
fectious diseases [79], although there are few studies that
consider Mtb [80]. In particular, measurement of TB
prevalence is impractical to perform at multiple loca-
tions due to logistic reasons. Therefore, model-based
geostatistics can be used to predict disease prevalence in
areas that have not been sampled from prevalence values
at nearby locations at low or no cost, producing smooth
continuous surface estimates.
Mapping of notification rates was the most com-

monly used data visualisation technique, in which TB
cases were categorised at a particular administrative
spatial level. This approach has the advantage of easy
interpretability, although it can introduce bias because
the size of the regions and the locations of their
boundaries typically reflect administrative require-
ments, which may not reflect the spatial distribution
of epidemiological factors [19, 22]. In addition, pat-
terns observed across regions may depend on the
spatial scale chosen, an effect known as the modifi-
able areal unit problem (MAUP) [17]. Because the
choice of spatial scale mainly depends on the limita-
tions of available data [81], only one study was able
to provide a systematic evaluation of the effect of
scale on spatial patterns, demonstrating improved per-
formance of Kulldorff ’s spatial scan statistic method
at a high geographic resolution [25]. Different spatial
resolutions could lead to markedly different results
for the same dataset regardless of the true extent of
correlation, due to averaging (aggregation effect) or
other spatial processes operating at different scales
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[15, 17, 18]. Assessing the presence of this effect
should be a priority for future studies using aggre-
gated data in spatial TB studies.
Bayesian smoothing techniques can mitigate the prob-

lems of stochastically unstable rates from areas with
small population [81], although such techniques were
not widely used in the included studies and so false
spatial clustering remains an important consideration.
The less frequent use of rate smoothing techniques in
the spatial analysis of TB could have various explana-
tions, including lack of software packages that are easily
accessible to the wider user (although GeoDa spatial
software currently provides an accessible platform to
people with limited statistical or mathematical back-
grounds [82]). It may also be that most spatial analyses
of TB are based on data aggregated over larger geo-
graphic areas from several years, such that the problem
of statistical stochasticity may not be a major problem,
although this was not explicitly discussed in the included
studies.
In all studies that applied spatial cluster identification

tools, TB cases were clustered irrespective of whether
the setting was low or high endemic. However, in studies
that incorporated more than one cluster identification
method, areas identified as hotspots were not identical,
with the extent of agreement between the alternative
methods highly variable. This could be partly attribut-
able to different methods testing separate hypotheses,
such that these results may correctly support one hy-
pothesis while refuting another. However, there is no
consensus on how to interpret these findings appropri-
ately and consistently [82, 83], and method selection did
not typically appear to be based on such considerations
[84, 85]. Thus, caution is required when considering in-
terventions assessing clusters with one method only, as
is frequently undertaken in TB spatial analysis [22].
Use of multiple cluster detection methods and requir-

ing their overlap to represent a truly high-risk area is in-
creasingly recommended [82, 84, 86]. However, this
approach could also increase the risk of false-positive
spatial clustering when different methods are used seri-
ally until significant clusters are observed [85]. Sensitiv-
ity analysis of spatial clustering [87, 88] and cluster
validation using geostatistical simulations [23, 89, 90]
can help identify robust clusters. While methods that ad-
just for confounding are generally preferred [91], further
investigative strategies including data collection and
cluster surveillance are required to validate an observed
spatial cluster before introducing interventions [84, 85].
Although the focus of this study is TB, several methodo-
logical considerations outlined here would remain true
for many infectious diseases.
In several studies, presence of spatial clustering or

spatial autocorrelation in TB distribution was considered

to reflect ongoing TB transmission, while its absence
was taken to indicate reactivation [58]. Recently, mo-
lecular techniques have been combined with geospatial
methods to understand the drivers of local TB epidemi-
ology, although findings from these studies vary by
country and the subset of the population studied. While
spatial clustering of genotypically related cases was re-
ported in several studies and likely reflected intense local
TB transmission [61, 65], spatial clusters were domi-
nated by genotypically unique strains in some studies,
implying that reactivation was the dominant process [47,
72]. Hence, the combination of genotypic and geospatial
techniques can improve understanding of the relative
contribution of reactivation and transmission and other
local contributors to burden.
Notwithstanding the general principles outlined above,

not all spatial clusters of genotypically related cases will
necessarily result from recent transmission, as simultan-
eous reactivation of remotely acquired infection and lim-
ited genetic variation in the pathogen population can also
lead to genotypic similarity of spatially clustered cases [2,
92]. In some studies, the time between the first and last
diagnosis of the cases in the genetic cluster ranged from 1
to more than 8 years [1, 72], suggesting that genotypic
clustering could occur from spatially clustered reactiva-
tion. Similarly, limited spatial aggregation of genotypically
clustered cases [72, 93, 94] and lack of epidemiological
links between genotypically clustered cases in some stud-
ies may reflect migration of the human population over
the extended time scale over which TB clusters occur [95],
although casual transmission creating spatially diffuse
clusters is an alternative explanation.
The extent of genotypic similarity between cases also

depends on the discriminatory power of the genotyping
method and the diversity of the pathogen population.
Compared to whole genome sequencing, standard mo-
lecular genotyping (spoligotyping, MIRU-VNTR and
IS6110) methods generally overestimate TB transmission
with a false-positive clustering rate of 25 to 75% based
on strain prevalence in the background population [92,
96]. The accuracy of these tests in distinguishing on-
going transmission from genetically closely related
strains is very low among immigrants from high TB inci-
dence settings with limited pathogen diversity [92, 97].
Thus, care should be taken when interpreting the geno-
typic similarity of cases among immigrant groups, as
independent importation of closely related strains is
possible. The frequent finding of more extensive
genotypic than spatial clusters [71, 94] may reflect
overestimation by the genotypic methods [98]. On the
other hand, TB transmission might not result in ap-
parent spatial clustering due to reasons that include
population movement, poor surveillance and unmeas-
ured confounding.
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Regression models used for spatial analysis of TB were
either conventional regression models or models that in-
corporated spatial effects. Although the former was
more commonly employed, the majority of models in-
corporating spatial effects confirmed that accounting for
spatial correlation improved model fit [11, 33, 44, 58,
99–101]. Conventional regression models assume spatial
independence of model residuals and so ignore the po-
tential presence of spatial autocorrelation, such that
non-spatial models may lead to false conclusions regard-
ing covariate effects.
The use of the conventional regression models de-

scribed above may be appropriate for spatial analysis and
spatial prediction, in the case that spatial dependence in
residuals has been ruled out. Under this approach, the
standard procedure is to start with classical ordinary
least squares (OLS) regression models and then look for
spatial dependence in the residuals, which implies the
need for a spatially explicit regression model [82]. Sev-
eral of the models reviewed here did not appear to adopt
this approach, and so, caution is required when inter-
preting the findings from such analyses.
Most regression models treat the association between

TB rates and ecological factors as global and are unable to
capture local variation in the estimates of the association.
However, geographically weighted regression (GWR) esti-
mates coefficients for all spatial units included [22] and
has often found the effect of risk factors on TB incidence
to be spatially variable [16, 102–104], implying that global
models may be inadequate to consider locally appropriate
interventions. Few studies were able to perform explicit
Bayesian spatial modelling incorporating information from
nearby locations, thereby producing stable and robust esti-
mates for areas with small populations and robust esti-
mates of the effects of covariates [91].
While our review focused on methodological issues, sev-

eral consistent observations were noted. Most import-
antly, all studies included in this review demonstrated that
TB displayed a heterogeneous spatial pattern across vari-
ous geographic resolutions. This reflects the underlying
tendency for spatial dependence that can be caused by
person-to-person transmission, socio-economic aggrega-
tion [49] and environmental effects [58, 93]. However, in
nearly all included studies, spatial analyses of TB were
based on the individual’s residence, although considerable
TB infection is acquired from workplaces and other social
gathering sites [8, 54]. Such studies could wrongly attri-
bute TB acquired from such sites to residential exposure,
leading to resource misallocation.
Several models have shown significant associations be-

tween TB rates and demographic, socioeconomic and
risk-factor variables, although it is difficult to rule out
publication bias favouring studies with positive findings.
However, associations observed between TB rates and

different factors such as population density, unemploy-
ment and poverty at the population level varied across
studies. These were recognised as important
individual-level risk factors, highlighting the potential
for ecological fallacy.
We did not perform individual study level analysis of

bias in this review. Analyses in the reviewed studies in-
volved counts and proportions across different spatial
distributions, rather than comparisons across different
treatment/exposure groups. Standard tools of bias ana-
lysis predominantly focus on different treatment groups
within cohorts (absent from our included studies) and
hence are not applicable to this review. We have how-
ever discussed many potential sources of bias in the
studies included in our review.
Most of the reviewed studies were from high-income

settings, which may either reflect publication bias or a
focus of research efforts on such settings. In high-inci-
dence settings, the more limited use of spatial analysis
methods could reflect a lack of access to resources (e.g.
georeferenced data and spatial software packages) or in-
sufficient expertise in these settings. However, it is these
high-transmission settings which stand to gain the most
from an improved understanding of TB spatial patterns
and also these settings in which geospatial clustering may
be most important epidemiologically.

Conclusions
A range of spatial analysis methodologies have been
employed in divergent contexts, with virtually all studies
demonstrating significant heterogeneity in spatial TB
distribution regardless of geographic resolution. Various
spatial cluster detection methods are available, although
there is no consensus on how to interpret the consider-
able inconsistencies in the outputs of these methods ap-
plied to the same dataset. Further studies are needed to
determine the optimal method for each context and re-
search question and should also account for unreported
cases when using notifications as input data where pos-
sible. Combining genotypic and geospatial techniques
with epidemiologically linkage of cases has the potential
to improve understanding of TB transmission.

Appendix
Search strings
Search terms used in Embase, Medline, PsycInfo, Scopus
and Web of Science
The exp refers to explode which means include all sub-
headings underneath spatial analysis. When exploded, it
contains geographic mapping, spatial regression and spa-
tiotemporal analysis.
Brackets () denote subject headings (MeSH in Med-

line and Emtree in Embase) terms highlighted by the
database.

Shaweno et al. BMC Medicine  (2018) 16:193 Page 12 of 18



Medline and PsycInfo

1. (exp spatial analysis) OR (Geographic information
systems) OR (Space-time clustering) OR
geographic* analys*.mp OR spati*regres*.mp OR
spat*temp*.mp OR spat* analys*.mp OR spat* temp*
analys*.mp OR spat* temp* pattern*.mp OR
geography* distribut*.mp OR spat* temp*
distribut*.mp OR heterogen* distribut.mp OR
spacetime cluster*mp OR space-time cluster*mp
OR hotspot.mp Or hot spots. mp OR GIS OR spati*

2. (tuberculosis) OR (tuberculosis, multidrug resistant)
OR TB.mp

3. 1 AND 2

Embase

1. (spatial analysis) OR (geographic mapping) OR
(spatial regression) OR (Spatiotemporal analysis OR
(spatial autocorrelation analysis) OR (geography)
OR (geographic distribution) OR (geographically
weighted regression) OR (geographic information
systems) OR (cluster analysis) OR geographic*
analys*.mp OR spati*regres*.mp OR spat*temp*.mp
OR spat* analys*.mp OR spat* temp* analys*.mp OR
spat* temp* pattern*.mp OR geography*
distribut*.mp OR spat* temp* distribut*.mp OR
heterogen* distribut.mp OR spacetime cluster*mp
OR space-time cluster*mp OR hotspot.mp Or hot
spots. mp OR GIS OR spati*

2. (tuberculosis) OR (multidrug resistant tuberculosis)
OR TB.mp

3. 1 AND 2

Scopus
(“Spatial analysis” OR
“Spatio-temporal analysis” OR
“Geographic Information System” OR
“Geographic Mapping” OR
“geographic distribution” OR
“spatial regression” OR
“spatial autocorrelation analysis” OR
“Spatiotemporal analysis” OR
hotspot OR
“hot spot” AND tuberculosis/TB

Web of science
[(Spatial analysis) OR
(Spatio-temporal analysis) OR
(Geographic Information System) OR
(Geographic Mapping) OR
(geographic distribution) OR
(spatial regression) OR

(spatial autocorrelation analysis) OR
(Spatiotemporal analysis) OR
(hotspot) OR
(hot spot)] AND (Tuberculosis)

Additional file

Additional file 1: Figure S1. Trends in the spatial analysis of TB
(note—the study included publications up to February 15, 2017).
(DOCX 17 kb)
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