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Abstract

Background: Severe acute malnutrition (SAM) affects almost all organs and has been associated with reduced
intestinal absorption of medicines. However, very limited information is available on the pharmacokinetic properties
of antimalarial drugs in this vulnerable population. We assessed artemether-lumefantrine (AL) clinical efficacy in
children with SAM compared to those without.

Methods: Children under 5 years of age with uncomplicated P. falciparum malaria were enrolled between November
2013 and January 2015 in Mali and Niger, one third with uncomplicated SAM and two thirds without. AL was
administered under direct observation with a fat intake consisting of ready-to-use therapeutic food (RUTF – Plumpy’Nut®)
in SAM children, twice daily during 3 days. Children were followed for 42 days, with PCR-corrected adequate clinical and
parasitological response (ACPR) at day 28 as the primary outcome. Lumefantrine concentrations were assessed in a subset
of participants at different time points, including systematic measurements on day 7.

Results: A total of 399 children (360 in Mali and 39 in Niger) were enrolled. Children with SAM were younger than their
non-SAM counterparts (mean 17 vs. 28 months, P < 0.0001). PCR-corrected ACPR was 100 % (95 % CI, 96.8–100 %) in
SAM at both day 28 and 42, versus 98.8 % (96.4–99.7 %) at day 28 and 98.3 % (95.6–99.4 %) at day 42 in non-SAM
(P = 0.236 and 0.168, respectively). Compared to younger children, children older than 21 months experienced
more reinfections and SAM was associated with a greater risk of reinfection until day 28 (adjusted hazard ratio = 2.10
(1.04–4.22), P = 0.038). Day 7 lumefantrine concentrations were significantly lower in SAM than non-SAM (median 251
vs. 365 ng/mL, P = 0.049).

Conclusions: This study shows comparable therapeutic efficacy of AL in children without SAM and in those with
SAM when given in combination with RUTF, but a higher risk of reinfection in older children suffering from SAM.
This could be associated with poorer exposure to the antimalarials as documented by a lower lumefantrine
concentration on day 7.
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Background
Malnutrition and Plasmodium falciparum malaria fre-
quently coexist in Sahelian countries and account for a
large part of under-five morbidity and mortality during
their concomitant peak seasons [1, 2].
Malnutrition is associated with a higher risk of in-

fection and infectious episodes contribute to the de-
terioration of nutritional status [3]. The question of
the impact of child malnutrition on malaria suscepti-
bility is still debated, with conflicting results in the lit-
erature. However, it is established that children with
either acute or chronic malnutrition are at higher risk
to develop severe malaria [4], and to die from it [3, 5].
Reciprocally, malaria could favor the occurrence of se-
vere acute malnutrition (SAM), and implementation
of malaria preventive strategies have improved the nu-
tritional status of targeted populations [6].
SAM is defined by the anthropometric indicators of

weight-for-height z-score (< –3), mid-upper arm cir-
cumference (MUAC; < 115 mm), or presence of nutri-
tional edema [7]. SAM may be complicated by the
presence of comorbidities which necessitate inpatient
treatment. The current recommended World Health
Organization standard protocol for assessing antimal-
arial efficacy excludes children with SAM from the
eligible population [8]. Consequently, few studies
have assessed the efficacy of antimalarials in SAM
children, and were only conducted with the previous
generation of antimalarials, i.e., quinine, chloroquine
and sulfadoxine-pyrimethamine [9, 10]. Overall, efficacy of
these treatments appeared to be reduced, attributed to
lower immunity and for quinine and chloroquine to al-
tered pharmacokinetic properties resulting in lower drug
concentrations [11, 12].
Although SAM has been associated with increased

volume of distribution and intestinal malabsorption of
drugs [13, 14], research on the pharmacokinetics and
pharmacodynamics of artemisinin-combination therap-
ies (ACTs) in SAM children is currently lacking [15].
Among published efficacy studies, none have measured
drug concentrations and more generally, to our know-
ledge, the pharmacokinetic (PK) properties of ACTs
have not been assessed in children with SAM [16, 17].
A recent meta-analysis conducted by the Worldwide

Antimalarial Resistance Network (WWARN) indicated that
the risk of treatment failure with artemether-lumefantrine

(AL) was greatest in children suffering from global malnu-
trition; however, it did not include SAM children nor did it
measure drug concentration [18].
Here, we aim to assess whether the efficacy of AL, the

most commonly used ACT, is altered in children with
uncomplicated SAM compared to non-SAM children,
and to what extent this can be attributed to inadequate
drug exposures as reflected by low lumefantrine concen-
trations. SAM children received ready-to-use therapeutic
food (RUTF) concomitantly with their malaria treatment
in this intervention study.

Methods
Study design and participants
We performed an open comparative intervention study
to assess the efficacy of AL and the capillary blood
concentrations of lumefantrine in uncomplicated SAM
and non-SAM children. The study protocol and proce-
dures have been described elsewhere [19]. The study
was conducted in Oulessebougou district hospital, re-
gion of Koulikoro, Mali, and the primary healthcare
center of Andoume, Maradi city, Niger. In these areas,
malaria transmission is hyperendemic with seasonal
peaks during the rainy season (between July and No-
vember [19]) and AL is recommended as first-line
malaria treatment. Each year, during the hunger gap
period (generally from June to October), acute malnu-
trition increases among young children [20, 21]. Ac-
cording to the 2012 Demographic and Health Surveys,
the prevalence of global acute malnutrition in the
Koulikoro region of Mali (Aug–Sep 2012) and Maradi
region of Niger (Jun–Aug 2012) were 8.6 % (95 % con-
fidence interval (CI), 6.7–9.5) and 16.2 % (14.2–18.5),
respectively, while those of SAM were 1.8 % (1.0–2.2)
and 2.5 % (1.8–3.6), respectively.
Children aged between 6 and 59 months with uncompli-

cated P. falciparum malaria were eligible if they fulfilled
criteria listed in Box 1. After their parent or guardian
provided written informed consent, children with weight-
for-height z-score < –3 or MUAC < 115 mm were enrolled
in the “SAM” group, then two children without SAM
were subsequently enrolled in the “non-SAM” group.
Children with kwashiorkor or complications requiring
hospitalization were excluded as were children with se-
vere stunting (height-for-age z-score < –3).
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Procedures
Children were treated with a fixed dose combination of
non-dispersible artemether 20 mg-lumefantrine 120 mg
(Coartem® Novartis) following the manufacturer weight-
based dose recommendation (one tablet per intake for
bodyweights < 15 kg; two tablets for those weighing ≥
15 kg), twice daily for 3 days. The drug was administered

under direct observation with a fat intake consisting of
milk (one glass, approximately 15 mL), or RUTF (Plum-
py’Nut®, one bag of 92 g) in case of SAM. If vomiting oc-
curred within 30 minutes after intake, a second dose was
administered. Children vomiting the second dose were
given rescue medication (Additional file 1: Table S1) and
excluded.
Children were given an insecticide-treated bed net at

enrolment. Other treatments included iron and folic acid
supplementation, deworming, and for SAM children, RUTF,
amoxicillin and others as recommended in national nutri-
tional protocols (Additional file 1: Table S1).
Children were followed for 42 days. Any clinical or la-

boratory adverse event was reported by the investigator
as described elsewhere [19]. Serious adverse events were
reviewed by a Data Safety and Monitoring Board.

Laboratory methods
Only capillary blood was collected from finger pricks.
SD Bioline® HRP2 RDT (Gyeonggi-do, Republic of Korea)
was used for screening of malaria parasitemia. Thick and
thin blood films were performed at baseline, at 6, 12, 24,
36, 48, and 72, hours, and at day 7, and then weekly until
day 42, or in case of malaria signs. All blood films were
read by two microscopists blinded to the other reading,
and a third reading was performed in case of discrepancy.
Films were read using a 100× objective and considered
negative after 200 microscopic fields were assessed. P. fal-
ciparum asexual forms were counted on the thick film
against at least 200 leukocytes [22]. Parasite density was
calculated assuming a leukocyte density of 8000/μL. The
presence of gametocytes was assessed.
Hemoglobin concentration was determined using

HemoCue HB 301®-Hemoglobin brand device (Ängelholm,
Sweden) on days 0 and 28. Anemia was defined as a
hemoglobin concentration < 10 g/dL and severe anemia as
a concentration < 7 g/dL.
PCR genotyping of malaria parasites collected from

filter papers at enrolment and at the day of treatment
failure were performed in MRTC laboratory in Bamako
by amplification of the merozoite surface protein 2
(MSP-2) gene [23] and the microsatellites CA1 and TA87
[24]. Outcomes were defined as recrudescent if at least
one shared allele was found with all three markers tested
and as reinfection if day 0 and day of failure alleles were
different in any of the three markers tested [25].

Pharmacokinetics
A population-based sparse sampling approach was used
to limit the number of PK samples required per child
and concerned 150 SAM and 150 non-SAM children
[26]. For each child, five capillary blood samples (50 μL
spotted on filter paper) were collected; first, at 6, 12, 24,
36, or 48 hours (randomly allocated), second at 60 hours,

Box 1. Eligibility criteria

Inclusion criteria:

� Age between 6 and 59 months

� Weight ≥ 5 kg

� Axillary temperature ≥ 37.5 °C or history of fever during the

previous 24 hours as reported by the parent/guardian

� P. falciparum monoinfection confirmed on blood film

� Parasitic density between 1000 and 200,000 asexual forms/

μL of blood

� High probability of compliance with follow-up visits (no

near-term travel plans)

� Written consent of a parent or guardian who is at least

18 years of age

� According to the group: in SAM children, weight-for-height

z-score < –3 SD or MUAC < 115 mm and/or bilateral edema,

and in non-SAM children, weight-for-height z-score ≥ –3

SD, and MUAC ≥ 115 mm

Exclusion criteria:

� General danger signs or signs of severe malaria as defined by

the World Health Organization

� Mixed or mono-infection with another Plasmodium species

detected by microscopy

� Severe anemia (hemoglobin <5 g/dL)

� Known underlying chronic or severe disease (e.g., HIV/

AIDS, TB, cardiac, renal or hepatic disease, sickle cell)

� Presence of febrile conditions due to diseases other than

malaria which could alter the outcome of the study

� Known history of hypersensitivity or contra-indication to

any of the study medications: artemether, lumefantrine (first-

line medications), or artesunate, amodiaquine (rescue medi-

cations). History of a full treatment course with artemether-

lumefantrine in the past 14 days

� Height-for-age < –3 z-score (severe chronic malnutrition)

� Severe complications of malnutrition requiring

hospitalization in intensive care or stabilization, including

kwashiorkor
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third at 72 hours, fourth at day 7, and fifth at day 14 or
day 21 (randomly allocated) post treatment initiation.
Lumefantrine concentrations were measured at the Div-
ision of Clinical Pharmacology, University of Cape Town,
using liquid chromatography tandem mass spectrometry
as described previously [19].

Outcomes
The primary outcome was the proportion of patients
having an adequate clinical and parasitological response
(ACPR) on day 28, after PCR correction.
Secondary outcomes were the proportions of PCR-

corrected ACPR on day 42, non PCR-corrected ACPR,
early therapeutic failure, late clinical failure, late parasito-
logical failure on days 28 and 42 [8], proportion of reinfec-
tion and recrudescence, gametocyte carriage, hematological
recovery as witnessed by hemoglobin change between base-
line and day 28, and parasite clearance slope half-life.
The main PK outcome was lumefantrine concentration

on day 7 since it is strongly correlated with the overall
drug exposure in the terminal phase and therefore con-
sidered a good predictor of therapeutic response [27].
Secondary PK outcomes were measured lumefantrine
concentrations at 60 and 72 hours post treatment initi-
ation. Population-based PK modelling will be reported
elsewhere.

Statistical analysis
Unbalanced groups with the non-SAM/SAM ratio set to
two was chosen both for ethical and practical reasons,
because, for a fixed number of SAM children, twice the
number of non-SAM allowed obtaining a higher power
than a balanced design. A total of 540 children (180 SAM
and 360 non-SAM) allowed detection of a minimum dif-
ference of 8 % (87 % ACPR in SAM vs. 95 % in non-SAM
children), with a power of 80 %, two-sided significance
level of 5 %, and taking into account up to 15 % dropouts.
We planned to enroll two thirds of the sample in Mali
during the 2013 and 2014 malaria seasons, and one third
in Niger during the 2014 malaria season.
Study data were double entered using REDCap elec-

tronic data capture tools hosted at Epicentre [28], and
analysis was performed with STATA 13, StataCorp®,
College Station, TX, USA.
Analyses of treatment response were performed on

two different populations: (1) modified intention-to-treat
(mITT) population that included all enrolled patients
with parasitological confirmation of mono-infection with
P. falciparum with density > 1000/μL at screening, who
took at least one dose of study drug; and (2) per protocol
population including all patients who were part of the
mITT and who completed the 3-day treatment course,
did not experience major deviation, nor premature dis-
continuation before day 28 for other reason than failure.

Safety analysis was performed in all patients who had re-
ceived at least one dose of the study drug.
Comparisons of the main treatment outcomes (PCR-

uncorrected and corrected ACPR, reinfection) were
performed using two analysis methods: Kaplan–Meier
analysis comparing the cumulative success rates and
allowing to account for censored data, and simple com-
parison of proportions. The 95 % CIs were estimated
using either Wald CI (for Kaplan–Meier estimators) or
binomial exact CI (for proportions). Log-rank test for
equality of survivor functions was used for comparison
of survival curves. Comparisons of proportions were
done using a χ2 or Fisher exact test.
For other outcomes (hematological recovery, gameto-

cyte carriage, parasite clearance slope half-life), compari-
sons were performed between the SAM and non-SAM
groups using a Student or Wilcoxon test for continuous
variables and a χ2 or Fisher exact test for categorical var-
iables. To calculate the parasite clearance slope half-life,
the log-transformed parasite counts over time were
modelled using the Parasite Clearance Estimator Tool
developed by the WWARN [29].
Cox multivariable modelling investigated the effect of

SAM and other cofactors (study site, baseline parasite
density, child’s age, and all covariates with a statistically
significant difference at baseline between the SAM and
non-SAM groups) on malaria-free survival.
Finally, we compared lumefantrine concentration at 60

and 72 hours and at day 7 between groups using Wil-
coxon rank-sum test, and we investigated if a lower day
7 lumefantrine concentration was associated with the
risk of malaria infection using Cox modelling as de-
scribed above.
Each adverse event was coded to a “Preferred Term”

using the Medical Dictionary for Regulatory Activities,
version 11 [30]. Then, the number and percentage of pa-
tients with at least one adverse event of the following
categories were provided: those leading to treatment dis-
continuation, serious adverse events, and most common
adverse events (≥5 %, regardless of the treatment group).
All analyses described above were also conducted after

adjusting for study site, and site by site where the sample
size allowed.

Results
Patient disposition and baseline characteristics
Overall, 871 children were assessed for eligibility, and
399 were included in the study. Respectively, 360 were
enrolled in Mali (Nov 2013 to Jan 2014 then June to Dec
2014) and 39 children in Niger (Oct 2014 to Jan 2015),
making a total of 399. Recruitment in Niger did not
reach the targeted 120 children due to external con-
straints in the study site that have delayed the start of
the inclusions. Following a Data Safety and Monitoring
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Board meeting held in February 2015, i.e., at the end of
the planned recruitment period, the study was terminated
before completion of the 540 inclusions, because efficacy
results already obtained for the 218 first recruited children
did not show any difference between groups or lack of ef-
ficacy (these interim results were in line with the final re-
sults which will be developed hereunder).
Among the 133 and 266 children included in the SAM

and non-SAM groups131 (98.5 %) and 266 (100 %), respect-
ively, were part of the mITT population. After exclusion of
patients with premature discontinuation or protocol devia-
tions, 118 SAM (88.7 %) and 244 non-SAM (91.7 %) pa-
tients were included in the per protocol population (Fig. 1).
Apart from the anthropometric characteristics, which were

de facto different between groups, SAM children were

significantly younger than non-SAM (mean 17 vs. 28 months,
P < 0.0001; Table 1), with only 10 % of SAM being older than
26 months in comparison to 50 % in the non-SAM group.
Clinical presentation also differed with more frequent fatigue,
anorexia, and diarrhea at onset in SAM children.
Baseline characteristics by study site are shown in

Additional file 2: Table S2. Season at inclusion, type of
habitat (rural vs. urban) baseline parasitemia, baseline
hemoglobin, and mosquito net use were significantly
different between sites.

Treatment administration
Due to lower weight in children with SAM, the mean
dose-weight received in the SAM group was significantly

Fig. 1 Study profile. SAM, severe acute malnutrition, mITT, modified intent-to-treat, PP, per protocol, PK, pharmacokinetics
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higher than in the non-SAM group, and frequently
exceeded 100 mg/kg in SAM children (Table 2).
Early vomiting within half an hour after dosing was

more frequent in SAM children (37.4 % vs. 20.7 %), and
its frequency doubled when the dose-weight exceeded
the toxicity threshold of 100 mg/kg [18]: (44/100 (44 %)
of patients receiving more than 100 mg/kg reported

vomiting vs. 60/297 (20.2 %) for those receiving a lower
dose-weight, P < 0.0001).

Treatment response
During the 42-day follow-up, 99 patients became parasite-
mic with P. falciparum at blood smear. After PCR correc-
tion, only four infections were classified as recrudescence.

Table 1 Baseline characteristics by nutritional status, modified intent-to-treat population (N = 397)

SAM (N = 131) Non-SAM (N = 266) P

Sociodemographic characteristics

Season at inclusion, n (%) 0.943

High transmission (June–October) 66 (50.4) 133 (50.0)

Low transmission (November–January) 65 (49.6) 133 (50.0)

Age in months, mean (SD) 16.9 (7.7) 28.2 (13.0) <0.0001

Male gender n (%) 65 (49.6) 122(45.9) 0.481

Rural residence, n (%) 126 (96.2) 260 (97.7) 0.373

Education of mother, n (%) 0.051

None 114 (87.0) 210 (78.9)

Primary or secondary 17 (13.0) 56 (21.1)

Has a mosquito net 107 (81.7) 215 (80.8) 0.838

In good state 47 (35.9) 92 (34.6) 0.648

Used it all nights the previous week 95 (72.5) 200 (75.2) 0.567

Anthropometric characteristics

Weight in kg, mean (SD) 6.9 (1.1) 10.6 (2.5) <0.0001

Height in cm, mean (SD) 74.4 (6.8) 84.5 (10.3) <0.0001

Weight-for-height z-score, mean (SD) −3.42 (0.55) −1.01 (0.92) <0.0001

MUAC in mm, mean (SD) 116.8 (6.6) 139.2 (12.1) <0.0001

Weight-for-age z-score, mean (SD) −3.39 (0.58) −1.41 (0.93) <0.0001

Stunting (height-for-age z-score < –2), n (%) 62 (47.3) 71 (26.7) <0.0001

Clinical characteristics

Measured temperature > 37.5 °C, n (%) 115 (89.2) 226 (85.6) 0.331

Fatigue, n (%) 112 (85.5) 198 (74.4) 0.012

Anorexia, n (%) 110 (84.0) 178 (66.9) <0.0001

Vomiting, n (%) 27 (20.6) 58 (21.8) 0.785

Diarrhea, n (%) 37 (28.2) 21 (7.9) <0.0001

Cough or bronchitis, n (%) 55 (42.0) 87 (32.7) 0.070

ENT (otitis media, rhinorrhea), n (%) 52 (39.7) 113 (42.5) 0.596

Splenomegaly, n (%) 25 (19.1) 46 (17.3) 0.662

Biological characteristics

Parasite density (parasites/μL), median 10880 11520 0.7648

IQR 3683–32160 4200–39240

Presence of gametocytes 40 (30.5) 63 (23.7) 0.143

Hemoglobin concentration (g/dL), mean (SD) 8.6 (1.5) 8.8 (1.5) 0.196

Hemoglobin <10 g/dL, n (%)* 104 (79.4) 196 (73.7) 0.214

Hemoglobin <7 g/dL, n (%) 20 (15.3) 32 (12.0) 0.369

SAM severe acute malnutrition, SD standard deviation, MUAC mid-upper arm circumference, ENT, ear nose and throat, IQR interquartile range
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In simple comparison of proportions, PCR-corrected
ACPR at day 28 was 100 % (95 % CI, 96.8–100 %) in
SAM versus 98.8 % (95 % CI, 96.4–99.7 %) in non-
SAM (P = 0.236) patients. These results were consist-
ent with those obtained by Kaplan–Meier analysis
(Table 3).
PCR-corrected ACPR by day 42 as well as uncorrected

ACPR by days 28 and 42 were not different between
groups either (Table 3). The day-28 reinfection rate was

18.7 % (95 % CI, 12.8–26.8 %) in SAM versus 15.2 %
(11.3–20.1 %) in non-SAM in mITT (P = 0.393). At day
42, it was 23.6 % (17.0–32.1 %) in SAM and 25.4 %
(20.5–31.2 %) in non-SAM (P = 0.811).
The proportions of early therapeutic failure, late para-

sitological failure, and late clinical failure were similar in
both groups (Additional file 3: Table S3).
The median parasite clearance slope half-life was

3.16 hours (interquartile range (IQR): 2.54–3.88) in

Table 2 Treatment administration, modified intent-to-treat population (N = 397)

SAM
N = 131

Non-SAM
N = 266

P

Dose planned, n (%) <0.0001

<15 kg: 20/120 mg, 1 tablet per intake, 6 tablets, n (%) 131 (100) 252 (94.7)

≥15 kg: 20/120 mg, 2 tablets per intake, 12 tablets, n (%) 0 14 (5.3)

Lumefantrine dose-weight (mg/kg) – mean (SD) 105.7 (18.6) 73.2 (18.1) <0.0001

< 60 mg/kg (theoric efficacy threshold), n (%) 2 (1.6) 70 (26.5) <0.0001

> 100 mg/kg (theoric toxicity threshold), n (%) 81 (62.8) 18 (6.8) <0.0001

Early vomiting within 30 minutes after intake 49 (37.4) 55 (20.7) <0.0001

Did not receive the total treatment dosea 3 (2.3) 5 (1.9) 0.784
aSeven children (three SAM and four non-SAM) discontinued the study before completing the 3-day treatment course: repeated vomiting, 2 in SAM and 1 in
non-SAM; infection with other malaria species, 1 in SAM and 1 in non-SAM; patient withdrawal, 2 in non-SAM. For one non-SAM child, an error in administration
caused him to receive 11 tablets overall instead of 12
SAM severe acute malnutrition

Table 3 Kaplan–Meier estimates of primary and main secondary outcomes by nutritional status

SAM Non-SAM

n/Na Kaplan–Meier estimate (95 % CI) n/Na Kaplan–Meier estimate (95 % CI) P

Day 28 PCR-corrected ACPRb

mITT 131/131 100 % (NA) 263/266 98.9 % (96.5–99.6) 0.232

PP 118/118 100 % (NA) 241/244 98.9 % (96.2–99.6) 0.227

Day 42 PCR-corrected ACPR

mITT 131/131 100 % (NA) 262/266 98.3 % (95.6–99.4) 0.168

PP 118/118 100 % (NA) 240/244 98.2 % (95.3–99.3) 0.162

Day 28 uncorrected ACPR

mITT 108/131 81.3 % (73.3–87.2) 223/266 83.5 % (78.4–87.5) 0.611

PP 96/118 81.3 % (73.0–87.3) 203/244 83.2 % (77.9–87.3) 0.668

Day 42 uncorrected ACPR

mITT 102/131 76.4 % (67.9–83.0) 196/266 73.0 % (67.2–78.0) 0.552

PP 91/118 77.1 % (68.4–83.7) 176/244 72.1 % (66.0–77.3) 0.377

Day 28 reinfection

mITT 23/131 18.7 % (12.8–26.8) 39/266 15.2 % (11.3–20.1) 0.374

PP 22/118 18.6 % (12.7–26.9) 37/244 15.3 % (11.4–20.5) 0.412

Day 42 reinfection

mITT 29/131 23.6 % (17.0–32.1) 65/266 25.4 % (20.5–31.2) 0.811

PP 27/118 22.9 % (16.3–31.6) 63/244 26.2 % (21.1–32.3) 0.600

P values were calculated with log-rank test
aN, total number; n, number with event (adequate response or reinfection)
bPrimary endpoint
SAM severe acute malnutrition, ACPR adequate clinical and parasitological response, mITT modified intent-to-treat population (N = 397), PP per protocol population
(N = 362), CI Wald confidence interval, NA not assessable
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SAM and 3.06 hours (IQR: 2.56–3.90) in non-SAM pa-
tients (P = 0.5655).
At baseline, 40/131 (30.5 %) of SAM versus 63/266

(23.7 %) of non-SAM patients had gametocytes in their
blood (P = 0.14); these figures were 9.9 % versus 8.7 %
(P = 0.68), respectively, at day 7, and 3.8 % versus 4.5 %
(P = 0.75) at day 14, indicating no difference in gameto-
cyte carriage between groups.
Hemoglobin at day 28 was available in 95 SAM and

212 non-SAM children. The mean change in hemoglobin
level was 1.7 g/dL (from 8.7 at baseline to 10.4 at day 28)
in SAM versus 2.1 g/dL (from 8.8 to 10.9) in non-SAM
patients (P = 0.0372) indicating better hematological re-
covery in non-SAM children. This association remained
significant after adjustment for study site, age and baseline
parasitemia.

Multivariable analysis of factors associated with reinfection
In univariable analysis, SAM was not associated with re-
infection (Table 3). Due to the strong positive associ-
ation of age with the risk of reinfection, and a marked
heterogeneity in age distribution between SAM and
non-SAM children, we categorized children by age strata,
using 21 months (the median value in our total sample) as
cut-off. Reinfection was twice more frequent in children >
21 months (21.5 % vs. 11.2 %, P = 0.007) and when consid-
ering these older children, SAM was associated with a
two-fold higher hazard or reinfection in crude as well as
adjusted analyses (adjusted hazard ratio (HR) = 2.10;
95 % CI, 1.05–4.22; P = 0.038; Table 4). However, we did
not see such an association in the younger age stratum.
The different risk of reinfection between arms was not ob-
served after day 28 in any of the age strata as illustrated by
the Kaplan–Meier survival curves being spaced apart on
days 21 and 28 then closer on days 35 and 42 (Fig. 2b).
P values for the log-rank test in the older age stratum
were 0.0131 and 0.1684, respectively, at days 28 and 42.
A complementary analysis was conducted in a sub-

sample of 83 SAM and 83 non-SAM children who could
be matched by age in months and study site, with age
ranging from 6 to 50 months. In this subsample, SAM
was associated with an increased risk of reinfection, with
two-fold magnitude of risk (results shown in Additional
file 4: Table S4).

Lumefantrine concentration and its association with SAM
and reinfection
Overall, 131 SAM and 132 non-SAM children were part
of the PK cohort. Lumefantrine concentration was lower
in younger (≤21 months) and SAM children on each an-
alyzed time point. At day 7, the median was 241 ng/mL
(IQR: 157–453) in younger (n = 140) versus 324 ng/mL
(IQR: 227–503) in older children (n = 115; P = 0.0023). It
was 246 ng/mL (IQR: 160–438) in SAM (n = 126) versus

330 ng/mL (IQR: 216–503) in non-SAM (n = 129; P =
0.0053; Fig. 3a). Interestingly, this was observed even
though the total weight-dose received was higher in
younger and SAM children. SAM was associated with a
lower lumefantrine concentration on day 7 in the older
children age stratum (mean 336 ng/mL in SAM vs.
405 ng/mL in non-SAM, P = 0.0498), but not in the youn-
ger one, in which both SAM and non-SAM had low con-
centrations (Fig. 3b). Of note, older SAM children were
also those who experienced more reinfections. A day-7
concentration over 200 ng/mL (previously pointed by
WWARN as an efficacy threshold) [31], was achieved in
57.1 % of younger SAM, 66.7 % of younger non-SAM,
75.0 % of older SAM, and 82.8 % of older non-SAM
(P = 0.002 overall) patients. We did not find a statisti-
cally significant association between lumefantrine con-
centration on day 7 and protection from reinfection
by day 28 (in Cox modelling, HR = 1.05, 95 % CI,
0.68–1.64, P = 0.818 for the measure of association be-
tween reinfection and log-transformed lumefantrine
concentration in continuous variables, after adjusting
for age).
No differences in any of the above results and conclu-

sions regarding treatment efficacy and lumefantrine con-
centration were observed while adjusting for study site,
or considering Mali data alone.

Adverse events
The proportion of children who reported at least one ad-
verse event was similar between SAM (112, 84.2 %) and
non-SAM (221, 83.1 %; P = 0.775). Gastrointestinal dis-
orders were more frequently reported in children with
SAM (Table 5). Among the six serious adverse events
(four in SAM, two in non-SAM, P = 0.09), five had a fa-
vorable outcome, whereas one (a case of meningitis in a
SAM child, unconfirmed bacteriologically) led to death.

Discussion
This study was the first to assess AL efficacy in SAM
compared to non-SAM children and showed that the
lower bound of PCR-corrected ACPR was superior to
90 % (96.8 % and 96.4 %, respectively) in both groups,
indicating adequate therapeutic efficacy. This similar treat-
ment response suggests that AL efficacy would not be im-
paired in SAM children, when these children receive
RUTF concomitantly. Moreover, no early treatment failure
and no difference in parasite clearance were observed,
showing that the efficacy of the artemisinin component is
also maintained in SAM children.
The only previously published longitudinal study asses-

sing AL efficacy in malnourished children was conducted
in stunted and underweight children and also concluded
that AL had satisfactory efficacy [16]. However, the
WWARN found that the risk of treatment failure with AL
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was greatest in children underweight-for-age (i.e., suffering
from global malnutrition) aged 1–3 years in Africa [18]. In
our study, AL was administered concomitantly with RUTF
in SAM children, which might have contributed to an
improved drug absorption in this group. These results
of a reassuring efficacy profile might not be extrapolated
to SAM children who are not captured by nutritional re-
habilitation programs, thus not receiving RUTF nor will
they apply for SAM children with complications needing
inpatient care, although these children are eligible for IV
artesunate treatment instead of oral ACTs.
Due to the well-known, major effect of age on malaria

susceptibility and a marked difference in age between
SAM and non-SAM children, we further conducted age-

stratified analyses. In older children (>21 months), where
reinfections were more frequent than in younger chil-
dren, SAM was associated with a two-fold higher risk of
reinfection by day 28. A complementary analysis in a
subsample of SAM and non-SAM children matched by
age retrieved similar HRs around 2, suggesting that
SAM would be associated with an increased risk of re-
infection until day 28 regardless of the confounding ef-
fect of age. The limited duration of this higher-risk
period (which did not remain at day 42) is compatible
with a lack of post-treatment prophylactic effect of AL
after 28 days [32]. The significantly slower hematological
recovery in SAM children is probably mostly due to the
effect of nutritional deficiencies on hematopoiesis; this

Table 4 Cox univariable and multivariable modelling of factors associated with risk of reinfection by day 28 in the modified intent-
to-treat population (N = 397, 62 reinfections)

Univariable Multivariable

Variable n/Na (%) HR (95 % CI) P HR (95 % CI) P

Severe malnutrition by age group 0.0043 0.0111

≤ 21 months

Non-SAM 9/98 (9.2) 0.50 (0.24–1.06) 0.51 (0.24–1.07)

SAM 12/99 (12.1) 0.68 (0.35–1.33) 0.74 (0.38–1.45)

> 21 months

Non-SAM 30/168 (17.9) 1 (Ref) 1 (Ref)

SAM 11/32 (34.4) 2.25 (1.12–4.48) 2.10 (1.05–4.22)

Study site 0.054 0.244

Mali 61/359 (17.0) 1 (Ref) 1 (Ref)

Niger 1/38 (2.6) 0.14 (0.02–1.04) 0.31 (0.04–2.25)

Parasite density at inclusion (parasites/μL), per 1 log10 increase 28520 vs. 10200b 1.22 (1.03–1.45) 0.019 1.10 (0.95–1.27) 0.189

Season at inclusion <0.0001 <0.0001

Nov–Jan (low) 5/198 (2.5) 1 (Ref) 1 (Ref)

Jun–Oct (high) 57/199 (28.6) 12.43 (4.98–31.01) 10.27 (4.07–25.95)

Has a mosquito net 0.047 ___ NSc

No 18/75 (24.0) 1 (Ref)

Yes 44/322 (13.7) 0.57 (0.33–0.99)

Stunting (HFA < –2 z-score) 0.042 ___ NSc

No 49/264 (18.6) 1 (Ref)

Yes 13/133 (9.8) 0.53 (0.29–0.98)

Lumefantrine dose-weight ___ NSc

> 60 mg/kg 45/324 (13.9) 1 (Ref)

≤ 60 mg/kg 17/73 (23.3) 1.83 (1.05–3.20) 0.033

Variables tested in univariable analysis were presence of severe acute malnutrition, age, study site, parasite density at inclusion, season at inclusion, sex, education
level, type of residence, possession and use of a mosquito net, presence of stunting, moderate anemia, severe anemia, gametocytes at inclusion, early vomiting
after treatment administration, and lumefantrine dose-weight received (artemether dose-weight was collinear with lumefantrine dose-weight as fixed combinations
were used). Only variables with P < 0.10 are displayed here. Age, study site, and parasite density at inclusion were forced in multivariable models regardless of significance.
Other variables were kept if P< 0.05
aN, total number; n, number with reinfection by day 28
bMedian value in reinfected versus non-reinfected children are displayed
cMosquito net possession, stunting, and lumefantrine dose-weight did not remain significantly associated with reinfection in multivariable analysis
SAM severe acute malnutrition, HR hazard ratio, CI Wald confidence interval, Ref reference, HFA height-for-age ratio, NS not significant
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difference was observed considering that all SAM and a
majority of non-SAM children received iron and folic
acid supplementation.
We observed a lower day 7 lumefantrine concentration

in older SAM (who experienced more reinfections) than

in older non-SAM children, but it was similar to what was
measured in younger SAM and non-SAM (who altogether
experienced less reinfections). A recent meta-analysis
conducted by WWARN also pointed out that day 7
lumefantrine concentration was lower in younger and
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underweight children, though it did not investigate the
effect of SAM specifically [31].
However, we were not able to show a statistically sig-

nificant association between day 7 lumefantrine concen-
tration and the risk of reinfection by day 28, neither in
the overall population nor in older children, although
the latter sub-group analysis probably lacked power.
Age acts as a strong confounder in investigating this as-
sociation. It has been negatively associated with lume-
fantrine concentration in this study and others [31, 33],
and children < 3 years have usually lower exposure to

lumefantrine [15]. Additionally, unmeasured factors linked
to age modulate the exposition and susceptibility to
malaria: different exposure to mosquito bites in relation
to behavioral changes in older children possibly mediated
by different utilization of insecticide-treated nets [34], and
different immune premunition switching from transmitted
maternal immunity via breastfeeding to acquired host
immunity.
We confirmed here that the relation between the dose-

weight received and the lumefantrine concentration
measured in blood is not straightforward, the higher

Table 5 Adverse events by preferred term and system organ class – safety population (N = 399)

System organ class Preferred term SAM
(N = 133), n (%)

Non-SAM
(N = 266), n (%)

Adverse events reported with frequency > 5 %

Blood and lymphatic system disorders 6 (4.5) 19 (7.1)

Anemia 6 (4.5) 19 (7.1)

Eye disorders 4 (3) 15 (5.6)

Conjunctivitis 4 (3) 15 (5.6)

Gastrointestinal disordersa 53 (39.8)a 77 (28.9)a

Abdominal distensiona 10 (7.5)a 5 (1.9)a

Diarrheaa 24 (18.0)a 46 (17.3)a

Gastroenteritisa 15 (11.3)a 10 (3.8)a

Vomiting 6 (4.5) 7 (2.6)

Respiratory, thoracic and mediastinal disorders 71 (53.4) 141 (53)

Bronchitis 38 (28.6) 83 (31.2)

Cough 11 (8.3) 16 (6)

Nasopharyngitis 7 (5.3) 15 (5.6)

Rhinorrhea 15 (11.3) 29 (10.9)

Serious adverse events

Blood and lymphatic system disorders 1 (0.8) 1 (0.4)

Anemia 1 (0.8) 1 (0.4)

Gastrointestinal disorders 0 (0) 1 (0.4)

Gastrointestinal motility disorder 0 (0) 1 (0.4)

Nervous system disorders 1 (0.8) 0 (0)

Meningitis bacterialb 1 (0.8) 0 (0)

Respiratory, thoracic and mediastinal disorders 1 (0.8) 0 (0)

Lower respiratory tract infection 1 (0.8) 0 (0)

Infections and infestations 1 (0.8) 1 (0.4)

Plasmodium falciparum infectionc 1 (0.8) 1 (0.4)

Adverse events causing treatment discontinuation 2 (1.5) 1 (0.4)

Gastrointestinal disorders 2 (1.5) 1 (0.4)

Vomitingd 2 (1.5) 1 (0.4)

Adverse events are reported in alphabetical order of system organ class, then preferred term, according to the MedDRA dictionary (Medical Dictionary for Regulatory
Activities, version 11)
aStatistically significant difference between SAM and non-SAM (more gastro-intestinal disorders in SAM)
bCaused death
cSevere malaria in an HIV-coinfected patient
dIn all cases, children vomited less than 30 minutes after drug intake and had iterative vomiting on re-administration
SAM severe acute malnutrition
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dose-weight received in younger SAM children resulted
in a lower day 7 concentration [31]. Though not corre-
lated with a higher risk of treatment failure or reinfec-
tion in our study, the low concentration achieved in
SAM and young children is still a concern, as sub-
optimal exposure to antimalarials is the first step to the
emergence of parasite resistance [35]. The question of
adapting dosing strategies in younger and malnourished
children should be investigated further [18]. The on-
going PK modelling of our data will include simulation
of different AL dosing scenarios to assess their effect
on lumefantrine PK profile. Additional studies will also
be needed before recommending a change in dosing in
SAM children considering the safety profile as well as
the observations confirmed herein that vomiting was
more frequent when the dose-weight exceeded 100 mg/kg
(as pointed by WWARN earlier) [18]. Gastrointestinal
toxicity is a major concern in children with uncomplicated
SAM because it can compromise outpatient refeeding
with RUTF. It is also likely to affect therapeutic efficacy
outside of the frame of a clinical trial, as the drug would
not always be given again after vomiting.
PK modelling will also investigate whether SAM is as-

sociated with decreased absorption and/or increased vol-
ume of distribution of lumefantrine in relation to age
and other confounders. We noted that younger children
with SAM had more frequent early vomiting after treat-
ment intake. The drug was re-administered within
30 minutes, so the lower concentration is unlikely to be
caused by the vomiting of the first dose. However, an
indirect effect (empty stomach, change in gastric pH,
vomiting of RUTF) could have impaired the drug ab-
sorption. Moreover, absorption of lumefantrine is known
to be dose-limited with saturation at higher dose [36], so
the part of the first dose that was not vomited might have
contributed to saturate the absorption of the second dose.
Our study has several limitations. First, we did not

match recruitment on age in SAM and non-SAM groups.
SAM children were younger than non-SAM because the
peak of prevalence of malnutrition is observed at earlier
ages than that of malaria. We took the effect of age into
account in age-stratified analyses and age-matched sub-
group analyses, but it led to a lack of power. Future
studies should match recruitment on age or recruit
preferentially older SAM children to deal with the con-
founding, prominent effect of age in the comparison be-
tween SAM and non-SAM children. Another confounding
factor could be the use of RUTF in SAM children, which
could have contributed to improved absorption in this
group compared to the other arm where AL was adminis-
tered with milk; other associated therapies, such as iron,
folic acid, and albendazole, were given to SAM as well as
non-SAM children. Amoxicillin was administered to SAM
children only, though there is no evidence of metabolism

interactions between amoxicillin and AL. Finally, the re-
cruitment obtained in Niger was far below our expecta-
tions. Nevertheless, the power reached with our sample
size was 81 % to see a difference of 8 % around the ob-
served 98 %, so we are confident that this difference be-
tween groups truly did not exist. Although limited, Niger
data were generally consistent with Mali data. The import-
ant difference in reinfection rates between sites was linked
to the different recruitment periods, as we only captured
the end of the malaria season in Niger (inclusions between
end of October 2014 and January 2015). Adjusting for the
study site or considering only Mali data in analyses led to
very similar results as in the overall population. There is
no reason to believe that physiopathologic mechanisms
determining the PK profile of ACTs in SAM would be
different in Mali and Niger or other sub-Saharan African
countries.

Conclusions
This study is the first to have compared the efficacy of
AL in SAM versus non-SAM children in relation to drug
concentration, using a comparative intervention design.
It showed comparable therapeutic efficacy of AL given
concomitantly with RUTF in children with SAM com-
pared to non-malnourished children, although a lower day
7 lumefantrine concentration in SAM children could im-
pact its post-treatment prophylactic effect, as witnessed by
more frequent reinfections until day 28.
Sub-therapeutic concentrations of a drug do not ne-

cessarily translate into higher failure at individual level
but would undoubtedly contribute to selecting resistant
parasites and increasing the risk of treatment failure at
population level. We believe further studies should urgently
answer the question of whether ACT dosing strategies are
adequate in children with SAM.
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