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Abstract

Background: Castration-resistant prostate cancer (CRPC) is associated with wide variations in survival. Recent
studies of whole blood mRNA expression-based biomarkers strongly predicted survival but the genes used in these
biomarker models were non-overlapping and their relationship was unknown. We developed a biomarker model
for CRPC that is robust, but also captures underlying biological processes that drive prostate cancer lethality.

Methods: Using three independent cohorts of CRPC patients, we developed an integrative genomic approach for
understanding the biological processes underlying genes associated with cancer progression, constructed a novel
four-gene model that captured these changes, and compared the performance of the new model with existing
gene models and other clinical parameters.

Results: Our analysis revealed striking patterns of myeloid- and lymphoid-specific distribution of genes that were
differentially expressed in whole blood mRNA profiles: up-regulated genes in patients with worse survival were
overexpressed in myeloid cells, whereas down-regulated genes were noted in lymphocytes. A resulting novel
four-gene model showed significant prognostic power independent of known clinical predictors in two
independent datasets totaling 90 patients with CRPC, and was superior to the two existing gene models.

Conclusions: Whole blood mRNA profiling provides clinically relevant information in patients with CRPC. Integrative
genomic analysis revealed patterns of differential mRNA expression with changes in gene expression in immune cell
components which robustly predicted the survival of CRPC patients. The next step would be validation in a cohort of
suitable size to quantify the prognostic improvement by the gene score upon the standard set of clinical parameters.
Background
Prostate cancer is an extremely heterogeneous disease [1].
For patients with castration-resistant prostate cancer
(CRPC), overall survival can range widely from months to
years. Accurate prediction of survival is crucial for clinical
management and for patient stratification into clinical tri-
als. Unfortunately, monitoring genetic alterations in meta-
static prostate cancer has been inhibited by the difficulty
in obtaining serial metastatic biopsies, since these are not
routinely needed for clinical management. Blood-based
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biomarker assays are minimally invasive and can be easily
implemented in clinical practice. As such, diagnostic and
prognostic models built on peripheral blood gene expres-
sion have been reported for various types of cancers [2–9].
Two recently published studies from our respective
groups [10, 11] suggested that the RNA transcript levels of
specific gene sets in whole blood samples were signifi-
cantly associated with overall survival in patients with
CRPC. However, the lists of genes identified by the two
studies were completely non-overlapping and questions
remained regarding the underlying pathogenic processes
reflected by the two distinct signatures.
Such lack of consistency is not uncommon in genome-

wide biomarker discovery studies given the large pool of
candidate genes with complex correlation structures,
relatively small sample sizes, the noisy nature of high-
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throughput technologies, and cross-platform variables. Spe-
cifically, a six-gene signature reported by Ross et al. [11]
was derived from qRT-PCR profiling and modeling of 168
pre-selected genes associated with inflammation, immune
response, angiogenesis, apoptosis, tumor suppression, cell
cycle, DNA repair, and tumor progression using whole-
blood RNA samples from CRPC patients. Gene expression
changes in patients with increased mortality was associated
with down-regulation of cellular and humoral immunity
and monocyte differentiation towards the production of tis-
sue macrophages. A second signature developed by Olmos
et al. [10] was constructed by selecting top ranking
differentially-expressed genes from microarray whole
blood RNA profiling data comparing a group of CRPC pa-
tients showing worse survival. This resulting gene signa-
ture associated a poor prognosis to increased CD71(+)
erythroid progenitor cells. While both models strongly
predicted prognosis, the very different gene signatures
suggested different underlying immunological drivers.
Computational techniques can improve the results of

genome-wide biomarker discovery studies, although each
has its own shortcomings. For instance, meta-analysis iden-
tifies robust biomarkers that correlate with the phenotype
of interest across multiple datasets [12]. However, multiple
datasets must be available with similar experimental de-
signs. Advanced machine learning techniques, such as
ElasticNet [13], can construct predictive models from gen-
omic data, but these models are overly reliant on the train-
ing dataset; the resulting algorithms cannot distinguish
genuine from random correlations with phenotype. Further-
more, there is often no clear molecular mechanism under-
lying these biomarker models. As a result, it is difficult to
develop biological interpretations of the generated models.
To overcome these issues, we developed a novel compu-

tational strategy that builds robust prognostic models by
selecting genes within stable co-expression modules. This
method integrates independent mRNA expression datasets
that come from different experimental designs, and derives
stable co-expression modules among candidate signature
genes. Representative genes are then selected from each
stable co-expression module to build a predictive model.
This method thus generates gene expression models which,
together with underlying biological pathways, facilitate
hypothesis formation. We applied this novel strategy to
reanalyze the Olmos et al. [10] dataset and generated a
superior four-gene prognostic model. The new model was
then validated in two independent CRPC cohorts.

Methods
Workflow of a co-expression module-based integrative
approach to build robust prognostic models
Step 1. Create a list of candidate prognostic genes
The Olmos dataset [10] was downloaded from GEO
(GSE37199) and the non-CRPC samples were removed
from the dataset. A list of candidate prognostic genes was
created by applying differential expression analysis to the
two groups of CRPC patients with different survival out-
comes in Olmos dataset. We used the R package LIMMA
[14] and identified 2,209 candidate prognostic genes at a
false discovery rate of <0.05 [15].

Step 2. Identify stable co-expression modules among
candidate prognostic genes
We extracted whole blood gene expression profiles of
437 males from the Iceland Family Blood (IFB) study
[16] and 99 male samples from the Genotype-Tissue
Expression (GTEx) study [17]. Based on each of the two
datasets, we identified co-expression modules among the
up-regulated and down-regulated candidate genes from
step 1, separately using the R package WGCNA [18].
We then compared modules derived from the two data-
sets and ranked the overlap between modules according
to their significance (Fisher’s exact test). We noted sig-
nificant overlap (P value of Fisher’s exact test <0.01) of
stable co-expression modules. If the list of up-regulated
stable co-expression modules was not of the same length
as that of the down-regulated ones, we discarded the
bottom ranking stable co-expression modules from the
longer list to make them the same length.

Step 3. Identify functional cores of stable co-expression
modules
We carried out gene set enrichment analysis for each
stable co-expression module from step 2 using two types
of gene sets. The first gene set was the canonical path-
way downloaded from the MsigDB database [19]. The sec-
ond set consisted of genes overexpressed in specific types
of hematopoietic cells, obtained from the HematoAtlas
study [20]. The functional core of each module was defined
as the intersection between the module and its most sig-
nificantly enriched canonical pathway (P value of Fisher’s
exact test <1×10−4, corresponding to a family wise error
rate of 0.1 after Bonferroni correction). In case there was
no significantly enriched canonical pathway for the module
(the first type of gene set), we used the intersection be-
tween the module and its most significantly enriched gene
set of cell type-specific overexpression (the second type of
gene set).

Step 4. Select representative genes for each co-expression
module
From the functional core of each stable co-expression
module (step 3), a representative gene was selected as
the most differentially expressed between good and poor
prognosis groups in step 1. To avoid selecting genes with
very low expression levels, we also required the expres-
sion level of the representative gene to be higher than
half of genes in the genome. We thus obtained two lists
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of representative genes from up-regulated and down-
regulated modules, respectively, which were ordered ac-
cording to their corresponding modules, i.e. P value of
the overlapping significance (step 2).

Step 5. Train and cross-validate prognostic models
We then built gene models based on the representative
genes (step 4), using the Olmos dataset as the training
dataset and the naïve Bayesian classifier (R package e1071)
as the learning algorithm. The pre-assumption of features
independent of the Bayesian classifier was largely satisfied
since the representative genes were chosen from modules
with distinct expression profiles. We used leave-one-out
cross-validation to determine the optimal number of genes
included in the model (Additional file 1).

Validation sets I and II
The first validation dataset (I) consisted of 25 CRPC pa-
tients recruited from Mount Sinai Medical Center in
New York. Whole-blood RNA was extracted using the
PAXgene RNA extraction kit. After proper RNA quality
control, the samples were sent for RNA-seq at the Gen-
omic Core Facility at Mount Sinai. Illumina HiSeq 2500
was used for RNA-seq with 100 nt single read and
poly(A) enriched library. The TopHat software was used
to generate fragments per kilobase of exon per million
fragments mapped (FPKM) values for each gene. We ap-
plied a gene-wise standardization strategy [21, 22] to ad-
just the platform difference between the training and
validation datasets. More specifically, for each gene in
the validation dataset, we linearly transformed the log2
FPKM value to make its median and median absolute
deviation the same as that of the training dataset. We
then calculated the four-gene score based on the gene
expression after transformation. Similarly, to calculate
Ross six-gene score in the validation dataset, we scaled
the log2 FPKM values according to the gene distribution
in the Ross training dataset [11]. Since the original data
(by qRT-PCR using a custom Taqman array) to optimize
the parameters and the cutoff value of the Olmos nine-
gene score were no longer available, such transformation
was not applicable to this score.
To get four-gene PCR measurements for validation set I,

first-strand cDNA was synthesized from oligo-dT primed
RNA templates using SuperScript® III First-Strand Synthesis
System for RT-PCR (Life Technologies). Expression levels
of individual genes in the four-gene signature were deter-
mined on the ViiA7 qPCR instrument using custom-made
Taqman Array Cards (Life Technologies) with the Taqman
Universal qPCR master mix. The delta Ct value was
normalized using 18S RNA as endogenous control. To
adjust the platform difference, we did a similar trans-
formation of delta Ct value according to its distribution
in the training dataset.
The second validation dataset (II) consisted of 66
CRPC patients recruited from the Urology Clinic at the
University of Technology in Munich, Germany. Whole
blood samples were collected in PAXgene™ Blood RNA
tubes. The four-gene qPCR measurements were ob-
tained as described for the first validation set.

Ethical considerations
The first validation dataset (I) consisted of 25 CRPC pa-
tients recruited from Mount Sinai Medical Center in
New York. The PPHS (Program for the Protection of
Human Subjects) at Mount Sinai Medical Center ap-
proved the study (protocol #10-1180; PI: W.Oh) to allow
blood collection. All patients provided written informed
consent to allow linking of clinical data and serum speci-
mens for research purposes through participation in this
specimen-banking protocol.
The second validation dataset (II) consisted of 66

CRPC patients recruited from the Urology Clinic at the
University of Technology in Munich, Germany. The
study was approved by the Ethics Committee (ethikkom-
misson, fakultät für Medizin) (project # 313/13; PI: M.
Heck) to allow blood collection and all patients provided
written informed consent.
The IFB dataset was downloaded from GEO database

with accession number GSE7965. The Olmos dataset was
downloaded from GEO database with accession number
GSE37199. The GTEx dataset was downloaded from
dbGap database with study accession phs000424.v5.p1.
These three datasets are publicly available. Further con-
sent for using these datasets was not required.

Results
Candidate prognostic genes formed stable co-expression
modules
In this study, we reanalyzed the dataset of Olmos et al.
[10], one of two recently published studies of blood
gene expression prognostic biomarkers in CRPC pa-
tients [10, 11]. There were a total of 63 CRPC patients
in the Olmos dataset. In the original report, an unsuper-
vised classification method was first used to identify a
subgroup consisting of 14 CRPC patients with signifi-
cantly worse survival outcomes. A nine-gene signature
(Olmos nine-gene score) was then derived to separate
the 14 CRPC patients from the others. These 14 pa-
tients were thus referred to as the ‘high-risk group’ and
the others as the ‘low-risk group’ in the current study.
Instead of selecting the best fitting models using can-

didate prognostic genes which might result in overfit-
ting, we aimed to understand what biological processes
were associated with prostate cancer progression in
order to represent these biological processes in a prog-
nostic model. As described in Methods, Figure 1 outlines
the five-step procedure for our module-based integrative



Fig. 1 Flowchart of building robust prognostic models from stable co-expression modules
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analysis strategy. Our approach begins with a standard
two-group differential expression analysis. By comparing
expression profiles of high and low-risk patients, we cre-
ated a candidate prognostic gene pool, which consisted
of 1,408 significantly up-regulated and 801 significantly
down-regulated genes in the high-risk group (false de-
tection rate <0.05). The nine genes in the Olmos score
ranked at the top of our candidate gene list as expected,
since they were derived from the same dataset. In contrast,
only two of the six signature genes from the Ross study
[11] (Ross six-gene score) were in this differential gene list,
and both ranked low (CDKN1A ranked 1154th and C1QA
ranked 1243rd in the up-regulated gene list), while the
other four genes had a false discovery rate of >0.05.
To understand the biological processes involved

among these candidate prognosis genes, we applied co-
expression network analysis [16, 23–25] and identified
stable co-expression modules across multiple blood
gene expression data sets. Stable co-expression modules
were defined as those whose expression profiles are cor-
related consistently under various conditions, and thus
less likely to be dataset-specific or due to artifact. We
leveraged two large human whole blood gene expression
datasets: the IFB dataset [16], consisting of 437 males,
and the GTEx dataset [17], consisting of 99 males. Of
note, only male samples were used. First, from each
dataset, we built co-expression networks and identified
co-expression modules for the 1,408 up-regulated and
801 down-regulated genes, respectively. Figure 2 shows
the co-expression patterns based on the IFB dataset (the
co-expression patterns based on the GTEx dataset are
shown in Additional file 1: Figure S1). There were clear
modular structures in all four co-expression networks
(Fig. 2 and Additional file 1: Figure S1). Modules de-
rived from the two datasets overlapped significantly
(Fig. 3). In this study, we refer to co-expression modules
as stable if the corresponding modules in the two data-
sets overlapped significantly (P value of Fisher’s exact
test <0.01). Using such criteria, we obtained four stable
co-expression modules for genes up-regulated in the
high-risk group and three stable co-expression modules
for genes down-regulated in the same group. It has been
shown that classifiers constructed according to relative
expression levels of pairs of genes are more robust than
individual genes [26, 27]. Thus, we selected the same
number of up-regulated and down-regulated modules
to create a paired analysis so that resulting scores were
less likely affected by normalization procedures [26, 27].
The six stable co-expression modules consisted of 286

genes: three up-regulated modules (referred to hereafter
as “up_module_1”, “up_module_2”, and “up_module_3”)
and three down-regulated modules (referred to hereafter
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Fig. 2 Co-expression networks among genes up-regulated in high-risk CRPC patients (a) and genes down-regulated in high-risk CRPC patients
(b) are constructed from whole blood mRNA profiling of 437 male samples in the IFB dataset. Light color represents low overlap and progressively
darker red color represents higher overlap. The gene dendrogram and module assignment are shown along the left side and the top. Each color
represents one module, and a grey color represents genes that are not assigned to any modules
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as “down_module_1”, “down_module_2”, and “down_-
module_3”) corresponding to the top three cells in the
diagonal in Figs. 3a and b, respectively. We annotated
the stable co-expression modules against canonical
pathways using gene set enrichment analysis (results
shown in Additional file 1: Table S1). The up_module_1
was significantly enriched for genes involved in cell
cycle (P = 8×10−27) and the up_module_2 was signifi-
cantly enriched for genes involved in response to ele-
vated cytosolic Ca2+ (P = 7×10−6). In contrast, the
down_module_1 and down_module_3 were enriched
for genes involved in the B-cell receptor signaling path-
way (P = 1×10−8) and TCR signaling in naïve CD8+ T
cells (P = 1×10−5), respectively. The results suggest that
A

Fig. 3 Overlap between IFB modules and GTEx modules for up-regulated g
corresponds to one IFB module, and each column corresponds to one GTEx m
the corresponding modules. Coloring of the table encodes –log(p), with P be
modules are ordered according to its maximum –log(p) with other modules.
multiple biological processes account for differences in
prognosis among CRPC patients.

Genes in up- and down-regulated modules were
overexpressed in myeloid cells and lymphocytes,
respectively
Since a whole blood mRNA expression profile reflects
genes pooled from a mixture of hematopoietic cells from
different lineages, we dissected potential sources of the ob-
served changes in expression level. In addition to compar-
ing the stable co-expression modules with the canonical
pathways, we compared them with genes overexpressed in
different types of hematopoietic cells (results listed in
Additional file 1: Table S2). Both enrichment analyses
B

enes (a) and down-regulated genes (b). Each row of the table
odule. Numbers in the table indicate gene counts in the intersection of

ing the Fisher’s exact test P value for the overlap of the two modules. The
‘Grey module’ consists of genes that are not assigned to any modules
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indicated that different co-expression modules were likely
driven by biological process changes in different types of
hematopoietic cells. For instance, the “down_module_1”
was significantly enriched for both the “B cell receptor sig-
naling pathways” (P = 1×10−8, Additional file 1: Table S1)
and “B cell overexpressed gene set” (P = 8×10−25,
Additional file 1: Table S2); the “down_module_3” was
enriched for both the “TCR pathway” (P = 1×10−5,
Additional file 1: Table S1) and “T cell overexpressed
genes” (P = 5×10−9, Additional file 1: Table S2). Similarly,
the “up_module_2” was enriched for “platelet activation
signaling” (P = 4×10−5, Additional file 1: Table S1) and
“erythroid cell overexpressed genes” (P = 9×10−7

Additional file 1: Table S2).
In fact, when comparing the expression levels of genes

in these modules across a panel of hematopoietic cells of
different lineages (Fig. 4), we identified a clear pattern of
Fig. 4 Heatmap of gene expression across different types of blood cell line
within the stable co-expression modules (row legend). Columns represent blo
legend). HSC, Hematopoietic stem cell; MYP, Myeloid progenitor; ERY, Erythroi
BASO, Basophil; DEND, Dendritic cell
cell type-specific overexpression for each stable co-
expression module. Genes in the three up-regulated
modules were overexpressed in different lineages of
myeloid cells, e.g. erythroid cells, megakaryocytes, and
granulocytes/monocytes. Genes in the three down-
regulated modules were overexpressed in lymphocytes,
e.g. B cells and T cells. Such a pattern was not limited
to stable co-expression modules (Additional file 1:
Table S3), but cell type-specific overexpression was
higher in these modules compared to all genes consid-
ered together (enrichment score in Additional file 1:
Table S2 and Table S3). In summary, high-risk CRPC
patients demonstrated increased expression of myeloid-
overexpressed genes and decreased expression of
lymphocyte-overexpressed genes.
To best represent the biological processes underlying

differing prognosis in CRPC patients, we selected a
s for stable co-expression modules. Rows represent genes which are
od cell lines which are grouped according to the lineage (column
d cell; MEGA, Megakaryocyte; GM, Granulocyte/monocyte; EOS, Eosinophil,
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functional core consisting of genes involved in the top
enriched functional gene set for each stable co-expression
module. There were a total of 78 genes in the cores and
their cell type-specific overexpression patterns are shown
in Additional file 1: Figure S2.

Genes in the two published gene models were
overexpressed in different hematopoietic cells
We conducted a similar analysis of cell type-specific over-
expression to understand the interrelationships among
genes used in the two published prognostic models. Figure 5
shows the expression profiles of genes used in Olmos nine-
gene score and Ross six-gene score across different
hematopoietic cells. Genes used in Olmos nine-gene score
(blue) and those used in Ross six-gene score (red) were
overexpressed in different cell types (Fig. 5). Specifically, all
genes in the Olmos nine-gene score were overexpressed in
erythroid cells. For genes in the Ross six-gene score, two
genes (SEMA4D and ITGAL) were overexpressed in T cells,
while the other two (TIMP1 and CDKN1A) were overex-
pressed in the granulocyte-monocyte and megakaryocyte
lines. In fact, in the linear formula used to calculate the six-
gene score, the signs for SEMA4D and ITGAL are opposite
that of TIMP1 and CDKN1A, consistent with our observa-
tion that myeloid overexpressed genes were up-regulated
and the lymphocyte overexpressed genes were down-
regulated in CRPC patients with a worse prognosis. None
Fig. 5 Heatmap of gene expression across different blood cell lines for gen
different prognostic models (row legend) and columns are cell lines of diff
available cell line expression profiles are shown here
of the genes in Fig. 5 were overexpressed in B cells. Thus,
the two existing prognostic models reflect only portions of
the underlying expression changes.
A four-gene model was derived from stable
co-expression modules
To comprehensively reflect all biological processes, we se-
lected one representative gene from the functional core of
each of the six stable co-expression modules to construct
a prognostic model. In this study, we chose the most sig-
nificantly differentiated gene between high-risk and low-
risk groups in the Olmos dataset in each functional core
to represent the activity of the co-expression module.
Using the Olmos dataset as the training dataset and naïve
Bayesian as the learning algorithm, we thus built prognos-
tic models from the six representative genes or a subset of
them. To select the optimal number of genes to include in
the final model, we used leave-one-out cross-validation to
assess the performance of different models (see Methods
for details). We derived a four-gene model that performed
best in the cross-validation tests (Additional file 1: Figure
S3, estimate hazard ratio (HR) = 2.65, P value of log rank
test = 0.004). The four genes included in our final model
were MCM2 from “up_module_1”, PROS1 from module
“up_module_2”, CD22 from module “down_module_1”,
and TMEM66 from module “down_module_2”.
es in the two published prognostic models. Rows are genes from
erent lineages (column legend, same as in Fig. 4). Only genes with
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Assessing the four-gene model in validation set I
Next, we evaluated the performance of the four-gene
prognostic model in two independent datasets. The
evaluation procedure is outlined in Fig. 6. The first inde-
pendent validation dataset consisted of 25 CRPC pa-
tients recruited at Mount Sinai Medical Center. Baseline
patient characteristics are listed in Table 1. The whole
blood gene expression profile for each patient was gener-
ated using RNA-seq technology. We calculated the scores
of the two published whole blood gene expression-based
prognostic models and the four-gene score after adjusting
for platform differences (see Methods) and compared their
prognostic utility in three ways.
First, the model score was treated as a continuous

value and its association with survival outcome was
assessed using a univariate Cox proportional hazards
model. As shown in Table 2A, all three gene models
were significantly associated with survival outcome, with
the four-gene score (Wang_4gene score) being the most
significant. Second, we compared the independent infor-
mation carried by each model score by including pairs of
model scores in the bivariate Cox proportional hazard
model (Table 2B). Conditioned on the four-gene score,
neither the Olmos nor the Ross scores remained associ-
ated with survival (P = 0.4 for Olmos score and P >0.9 for
Ross score). In contrast, the four-gene score remained sig-
nificantly associated with survival when conditioning on
either of the two existing model scores (P = 0.048 condi-
tioning on Olmos score and P = 0.010 conditioning on
Ross score). These comparisons suggest that the four-gene
model captures information associated with survival
Fig. 6 Flowchart of the multistage and multi-platform evaluation of the fou
independent from existing models. Third, a predefined
cutoff was applied to the model score to partition patients
into high- and low-risk groups. For the four-gene score, a
universal cutoff of 0.5 was used. For the Ross six-gene
score, a cutoff of 21.21 was used as suggested by the ori-
ginal publication. The median value was used for the
Olmos nine-gene score (Additional file 1). The survival
curves for low- and high-risk groups defined by each score
are shown in Fig. 7. The two defined groups based on the
four-gene score were most significantly different (HR =
4.98 and log rank test P = 0.001). In summary, all three
comparisons in this validation dataset reveal that the
newly derived four-gene score predicts survival better than
the two previously published models.
Finally, we compared the performance of the four-gene

score with known clinical parameters using a univariate
Cox regression analysis (Table 3A). The significant clinical
parameters (P <0.05 in Table 3A) were then included in a
multivariate analysis together with the four-gene score
(Table 3B). The four-gene score was the only variate with
P <0.05 in the multivariate analysis. It is of note that the
sample size here was small for developing multivariate
models. Nevertheless, the fact that the four-gene score
remained significant (P <0.05) in multivariate analysis in-
dicates that it carried additional predictive power inde-
pendent of prognostic clinical factors.

Validating expression levels of genes used in the
four-gene model by qPCR
Before further assessing the four-gene prognostic model
in additional validation sets, we measured the gene
r-gene model



Table 1 Characteristics of patients in validation sets I and II

Validation set I (n = 25) Validation set II (n = 66)

Age, years 71 (68, 77) 69 (63, 73)

Gleason ≤6 1 (4.8 %) 5 (10 %)

Gleason = 7 5 (24 %) 16 (32 %)

Gleason ≥8 15 (71 %) 29 (58 %)

Bone metastasis 19 (76 %) 37 (59 %)

Visceral metastasis 3 (12 %) 26 (41 %)

PSA (ng/mL) 38 (7, 437) 221 (39, 657)

Hemoglobin (g/dL) 11.9 (11.2, 13.3) 11.1 (10.0, 12.4)

LDH (U/L) 223 (200, 273) 342 (256, 561)

AP (IU/L) 84 (69, 194) 163 (85, 399)

Prior treatment Docetaxel 7 (28 %) 52 (79 %)

Abiraterone 4 (16 %) 11 (17 %)

Cabazitaxel 5 (20 %) 0

Sipuleucel-T 3 (12 %) 0

Enzalutamide 2 (8 %) 0

Number of different prior treatments 0 13 (52 %) 14 (21 %)

1 4 (16 %) 41 (62 %)

2 8 (32 %) 11 (17 %)

Median follow-up, months 28.9 30.8

Number of events 15 58

Data are median (0.25 quantile, 0.75 quantile) or count (%). Median follow-up time was calculated based on survivors. All samples in validation set II were drawn
right before the next treatment. The samples in validation set I were obtained either right before the next treatment or between two treatments. None of these
blood samples were collected immediately after a treatment to reduce the acute impact of treatments

Table 2 Univariate Cox regression modeling for the overall
survival using each of the three gene models (A) and bivariate
Cox regression modeling by combining two of the three gene
models (B) in validation set I

A. Univariate analysis
(individual gene model)

Concordance
index

P value
(Likelihood
ratio test)

P value
(Logrank test)

Wang_4genescore 0.81 0.0006 7×10−05

Olmos_9genescore 0.72 0.004 0.005

Ross_6genescore 0.68 0.028 0.026

B. Bivariate analysis (Combining two gene models)

P value
(Wald’s test)

Wang_4genescore 0.042

Olmos_9genescore 0.35

Wang_4genescore 0.010

Ross_6genescore 0.99

Olmos_9genescore 0.054

Ross_6genescore 0.40
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expression levels of the four genes using the same blood
samples collected from 25 CRPC patients in the valid-
ation set I on the ViiA7 qPCR instrument using custom-
made Taqman Array Cards. The correlations between
the RNAseq and PCR measurements for the four genes
were within an appropriate range (Fig. 8a, Pearson’s cor-
relation coefficient >0.6). The four-gene score calculated
using qPCR measurements was also able to partition pa-
tients into low- and high-risk groups with significantly
different survival times (HR = 3.21, log rank test P =
0.02; Fig. 8b). Thus, the four-gene model developed in
the Olmos dataset (profiled using Affymetrix arrays) was
validated in an independent dataset, validation set I,
using both RNAseq and qPCR after linear transform-
ation to adjust for platform differences.

Optimizing the four-gene model based on qPCR
Since the qPCR platform is more cost efficient than RNA-
seq in practical applications, we used it to further validate
the four-gene model. We fine-tuned the parameters of the
four-gene model based on qPCR measurements in valid-
ation set I so that there was no need to correct for plat-
form differences each time. In particular, we selected nine



A B C

Fig. 7 Survival curve of high- and low-risk patients in the first validation set based on Wang_4genescore (a), Ross_6genescore (b) and Olmos_9genescore
(c) calculated using RNAseq measurement with predefined cutoffs
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high-risk patients (survival time <12 months) and 10 low-
risk patients (survival time >24 months) from validation
set I. We then trained a linear model of the four genes to
distinguish the two patient groups using logistic regres-
sion. The resulting linear formula was s = −27.28–
Table 3 Univariate Cox regression modeling for the overall survival
regression modeling by combining four variables (P <0.05 in univari
metastasis site) were considered as continuous values

A. Univariate analysis of validation set I

Concordance index

Wang_4genescore 0.81

Hemoglobin 0.75

VisceralMetastasis 0.58

LDH 0.72

BoneMetastasis 0.56

EosinophilCount 0.69

PSA 0.62

AP 0.61

NLRatio 0.57

MonocyteCount 0.46

PlateletCount 0.62

NeutrophilCount 0.50

Gleason 0.52

LymphocyteCount 0.59

BasophilCount 0.48

B. Multivariate analysis of validation set I

P value (Wald’s test)

Wang_4genescore 0.045

Hemoglobin 0.18

visceralMets 0.13

LDH 0.4
3.43×MCM2–0.68×PROS1+3.06×CD22+3.49×TMEM66,
and Wang_4genescore was calculated as exp(s)/(exp(s)+1).
The linear model was trained based on the qPCR meas-
urement of the four genes (gene expression in the for-
mula refers to the delta T measurement in qPCR) and
using each of the clinical parameters (A) and multivariate Cox
ate analysis) (B) in validation set I. All the variables (except the

P value (Likelihood ratio test) P value (Logrank test)

0.0006 7×10−05

0.001 0.001

0.006 1×10−05

0.043 0.016

0.051 0.15

0.052 0.068

0.12 0.066

0.18 0.13

0.18 0.14

0.19 0.11

0.3 0.3

0.4 0.4

0.7 0.7

0.7 0.7

>0.9 >0.9



A

B

Fig. 8 a Correlation between PCR and RNAseq measurements of the four-gene expression. b Survival curve of high- and low-risk patients in the
first validation set based on Wang_4genescore calculated using PCR measurement
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the coefficients in the formula were specifically opti-
mized for the qPCR platform.

Evaluating the four-gene model in validation set II
The second independent dataset, validation set II, con-
sisted of 66 CRPC patients recruited from the Urology
Clinic at the University of Technology in Munich,
Germany. Patient characteristics are listed in Table 1.
A

Fig. 9 Survival curve of high- and low-risk group in the second validation s
(a) and when patients with visceral metastasis or under the third line treatm
Expression levels of the four genes were measured using
qRT-PCR and the four-gene scores were calculated
using the formula noted. Patients were partitioned into
high- and low-risk groups according to the four-gene
score using a universal cutoff of 0.5. The two groups
had significantly different survival outcomes (P = 0.002,
Fig. 9a). It is worth noting that, although not statistically
significant, the estimated HR (HR = 2.38) was smaller than
B

et based on Wang_4genescore when all patients are considered
ent are removed (b)



Table 4 Univariate Cox regression modeling for the overall
survival using each of the clinical parameters (A) and
multivariate Cox regression modeling by combining seven
variables (P <0.05 in univariate analysis) (B) in validation set II.
All the variables (except the metastasis site and treatment line)
were considered as continuous values

A. Univariate analysis
of validation set II

Concordance index P value
(Likelihood
ratio test)

P value
(Logrank test)

Hemoglobin 0.65 7×10−05 6×10−05

LDH 0.68 0.0004 7×10−06

Wang_4genescore 0.60 0.002 0.0007

ThirdLineTreatment 0.56 0.006 0.002

AP 0.63 0.008 0.001

VisceralMetastasis 0.58 0.043 0.038

LeucocyteNr 0.60 0.048 0.045

NLR 0.56 0.15 0.095

Lymphocytes_percent 0.58 0.3 0.3

SecondLineTreatment 0.55 0.3 0.3

FirstLineTreatment 0.51 0.4 0.4

BoneMetastasis 0.51 0.4 0.4

Gleason 0.53 0.6 0.6

Neutrophile_percent 0.47 >0.9 >0.9

PSA 0.57 >0.9 >0.9

B. Multivariate analysis of validation set II

P value (Wald’s test)

Hemoglobin 0.2

LDH 0.3

Wang_4genescore 0.03

ThirdLineTreatment 0.002

AP 0.9

visceralMets 0.05

LeucocyteNr 0.07
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in validation set I (HR = 3.21 and 4.98 for qPCR and
RNAseq measurements, respectively). The lower HR or
prognostic power in validation set II was likely caused by
patient characteristic differences in the two datasets: valid-
ation set II included many more advanced patients and
patients with heavier prior treatments. For instance, 41 %
of the patients in validation set II had visceral metastasis,
while only 12 % in the first set did. In addition, 79 % of the
patients in validation set II had received prior treatment
compared to 48 % in the first set. We noted survival
curves were different between visceral metastasis and no
visceral metastasis and between patients receiving first,
second, and third line treatment (Additional file 1: Figure
S4). As a result, the risk of death by 24 months was much
higher in validation set II (87 %) as compared to validation
set I (60 %). If patients with visceral metastasis or having
third line treatment were removed from the analysis, the
estimated HR of the four-gene score increased (HR = 3.64;
Fig. 9b). On the other hand, the estimated HR decreased if
only patients with visceral metastasis or having third line
treatment were considered (HR = 2.14; Additional file 1:
Figure S5). Thus, a future multivariate analysis combining
these clinical parameters and the four-gene score is
warranted in a larger cohort.
Univariate and multivariate analysis of clinical parame-

ters was conducted in this group and again suggested
that the four-gene score carried additional prognostic
power independent of clinical parameters (Table 4). In
addition, multivariate analysis revealed that the presence
of visceral metastasis and treatment line was comple-
mentary to the four-gene score. Thus, the analysis sug-
gests that combining certain clinical parameters with the
four-gene score could provide better performance in
predicting overall survival.

Discussion
Herein, we developed a module-based integrative compu-
tational strategy to construct robust prognostic models
from expression profiles by dissecting candidate genes into
stable co-expression modules that were functionally related
to cancer progression. The advantages of our strategy and
the resulting four-gene model are summarized below.
First, in selecting signature genes to be included in the

model, we focused on stable co-expression modules that
reflect the activity of biological pathways rather than in-
dividual genes. It is not a ‘black box’ learning approach,
but rather a gene-selection approach guided by under-
lying biology. We showed that all of the up-regulated
modules were overexpressed in myeloid cells and all of
the down-regulated modules were over-expressed in
lymphoid cells. A simplistic interpretation would be that
observed mRNA expression changes may represent al-
terations in the composition of hematopoietic cells dur-
ing prostate cancer progression. However, the four-gene
score performed better than cell count-based clinical pa-
rameters in both validation datasets (Tables 3 and 4),
suggesting that cell component change was only one fac-
tor contributing to the patients’ prognosis. For example,
there was a significant correlation between the gene ex-
pression level of TMEM66 (overexpressed in T cells) and
lymphocyte count (Additional file 1: Figure S6A, Pearson’s
correlation coefficient = 0.48), indicating TMEM66 ex-
pression level reflected lymphocyte cell abundance change.
However, TMEM66 gene expression level predicted pa-
tient survival much better than lymphocyte cell count
using a bivariate cox regression model (P = 0.002 and 0.2
for TMEM66 and lymphocyte count, respectively), sug-
gesting TMEM66 gene expression level carried more
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prognostic information than T cell or change in lympho-
cyte counts. Another related cell count-based clinical
measurement is the neutrophil to lymphocyte ratio (NLR),
which has been shown to be prognostic in several cancer
studies [28–31]. We similarly observed a trend of patients
with higher NLR having a worse survival outcome
(Additional file 1: Figure S7). However, since the HR
was relatively small (1.52 and 1.38 for validation sets I
and II) and the sample size in our study was smaller
than those of the previous studies, the prognostic power
of NLR was not statically significant in our validation
sets (Tables 3 and 4, P >0.05). While there was a signifi-
cant correlation between the four-gene score and the
NLR in our study (Additional file 1: Figure S6B,
Pearson’s correlation coefficient = 0.55), our four-gene
score demonstrated much better prognostic power than
NLR. We reason that beside cell count changes, gene
expression levels also reflect cellular or pathway activity,
and it is likely that the alteration of both the abundance
and activity of different cells eventually leads to differ-
ential prognostic outcomes. Another explanation is that
the expression change also reflects a combination of cell
count changes of multiple types or sub-types of cells
which were not directly measured in our study. The ob-
servation that up-regulated stable co-expression mod-
ules were also overexpressed in early erythroid cells,
myeloid progenitor cells, and hematopoietic stem cells
suggests that their up-regulation may come from
myeloid-derived cells whose counts are not routinely
measured. For example, they may represent myeloid
progenitor cells which have ‘leaked’ from bone marrow
due to metastasis [32] or circulating myeloid-derived
suppressor cells, which have been shown to greatly in-
fluence tumor progression and metastasis [33].
Second, the module-based procedure enabled us not

only to comprehensively represent diverse pathways but
also to distinguish biological signals from data-specific
‘noise’. There are many advanced machine learning algo-
rithms (e.g. Lasso [34] and ElasticNet [13]) which can
automatically select the best set of features to be in-
cluded in the model. However, since the features are
usually learned entirely from the training dataset, they
may be biased to dataset-specific effects. For instance,
the model trained using ElasticNet showed high accur-
acy in the training dataset by cross-validation, but such
high accuracy failed to be reproduced in the independ-
ent validation datasets (Additional file 1: Figures S8 and
S9 and Supplementary Methods in Additional file 1).
Third, the new four-gene model was evaluated in a

multi-stage, multi-platform, and multi-institutional process.
The training dataset and the two validation datasets were
generated from CRPC cohorts recruited at three different
institutions using three different platforms, i.e. Affymetrix
array, RNAseq, and qPCR. Our four-gene model performed
extremely well across all of these datasets with a universal
cutoff value. We also showed that the four-gene score was
stable for intra-patient and inter-day blood samples and the
four-gene score changed along with disease progression.
More details about the four-gene score variability can be
found in Additional file 1.
There are many important clinical and translational

implications to these data. First, if host immune function
is so reproducibly critical to prostate cancer progression
and survival, then current efforts to model therapeutic
efficacy in certain models, such as patient-derived xeno-
grafts, will likely fail to represent the true outcome in
patients. Second, the current development of promising
immunotherapies in cancer, including vaccines, check-
point inhibitors, and other immunomodulatory agents,
will clearly need improved biomarkers to predict benefit
and to better guide personalized therapies. Whole blood
RNA profiles hold great promise in evaluating such
baseline and serial changes in immune parameters, given
its ability to provide a potentially holistic view of the key
RNA transcripts involved in clinical benefit. Finally, clin-
ical trial stratification using prognostic and predictive
models based on whole blood RNA profiles will enable
more rapid drug development by targeting specific pop-
ulations with differential outcomes in CRPC but also
with different baseline characteristics that would be
more likely to benefit from specific therapies.
Despite these encouraging findings, there are import-

ant limitations and unaddressed questions that need fur-
ther study. For instance, some alternative biomarker
approaches, such as circulating tumor cell count [35],
were not directly compared in this study. Halabi et al.
[36, 37] described how standard clinical variables can be
used to predict prognosis for CRPC. While we included
as many clinical parameters available to us, there were
several variables not available in our current study (e.g.
opioid analgesic use and Eastern Cooperative Oncology
Group performance status). Follow-up studies are
needed to uncover the causal and mechanistic interac-
tions between blood gene expression changes and clin-
ical disease progression.
Conclusions
In summary, we developed a four-gene model which
provides a robust and minimally invasive approach for
determining prognosis of CRPC patients using periph-
eral blood gene expression. The initial results are prom-
ising and the next step would be validation in a cohort
of suitable size to quantify the prognostic improvement
by the gene score upon the standard set of clinical pa-
rameters. The novel module-based computational strat-
egy described herein may have broader applications, and
significant impact, in precision medicine.
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Additional file 1: This file includes the supplementary methods,
Tables S1–S3 and Figures S1–S9. (DOCX 2139 kb)
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