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Abstract 

Background  TP53 is a master tumor suppressor gene, mutated in approximately half of all human cancers. Given 
the many regulatory roles of the corresponding p53 protein, it is possible to infer loss of p53 activity – which may 
occur due to alterations in trans – from gene expression patterns. Several such alterations that phenocopy p53 loss 
are known, however additional ones may exist, but their identity and prevalence among human tumors are not well 
characterized.

Results  We perform a large-scale statistical analysis on transcriptomes of ~ 7,000 tumors and ~ 1,000 cell lines, esti‑
mating that 12% and 8% of tumors and cancer cell lines, respectively, phenocopy TP53 loss: they are likely deficient 
in the activity of the p53 pathway, while not bearing obvious TP53 inactivating mutations. While some of these cases 
are explained by amplifications in the known phenocopying genes MDM2, MDM4 and PPM1D, many are not. An 
association analysis of cancer genomic scores jointly with CRISPR/RNAi genetic screening data identified an additional 
common TP53-loss phenocopying gene, USP28. Deletions in USP28 are associated with a TP53 functional impairment 
in 2.9–7.6% of breast, bladder, lung, liver and stomach tumors, and have comparable effect size to MDM4 amplifica‑
tions. Additionally, in the known copy number alteration (CNA) segment harboring MDM2, we identify an additional 
co-amplified gene (CNOT2) that may cooperatively boost the TP53 functional inactivation effect of MDM2. An analysis 
of cancer cell line drug screens using phenocopy scores suggests that TP53 (in)activity commonly modulates associa‑
tions between anticancer drug effects and various genetic markers, such as PIK3CA and PTEN mutations, and should 
thus be considered as a drug activity modifying factor in precision medicine. As a resource, we provide the drug-
genetic marker associations that differ depending on TP53 functional status.

Conclusions  Human tumors that do not bear obvious TP53 genetic alterations but that phenocopy p53 activity loss 
are common, and the USP28 gene deletions are one likely cause.

Keywords  Tumor evolution, Driver genes, p53 pathway, Transcriptomic signature, Gene expression, CRISPR screens, 
Drug resistance

Background
Mutations in the TP53 tumor suppressor gene are a very 
common feature across almost all types of human can-
cer. These mutations abrogate or reduce TP53 activity 
via various mechanisms: dominant-negative acting mis-
sense mutations, loss-of-function missense, nonsense, 
frameshift indel, splice site, or synonymous mutations, or 
copy number losses that frequently delete one TP53 allele 
while the other allele is inactivated by a mutation. That 
such TP53 genetic alterations occur at high frequency 
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in many cancer types implies that they have very strong 
selective advantages for the expanding cancer cell clones 
[1, 2]; indeed this is borne out in experimental data on cell 
lines and animal models of cancer [3, 4].

The large selective advantage of TP53 losses are con-
sistent with its roles in arresting the cell cycle or trig-
gering apoptosis upon threats to genome integrity. 
TP53-null cells better tolerate genomic instability, which 
can result from endogenous causes, most prominently 
oncogene-overexpressing and thus replication-stressed 
cancerous genetic backgrounds. Consistently, TP53-
mutant tumors have higher frequencies of segmental 
copy number alterations (CNA), whole-genome duplica-
tion, and overall mutation rates [5, 6]. Moreover, TP53-
null cells better tolerate DNA damaging conditions that 
would normally trigger cell cycle checkpoints, such as 
those resulting from DNA-acting drugs or radiation [7, 
8]. Consistently, TP53 mutation-bearing tumors tend to 
be more resistant to various cancer chemotherapies [4, 
9–11] and radiotherapy [10–12], and more aggressive 
TP53 R273 and R248 mutants are associated with accel-
erated cancer progression in colorectal tumors [13].

The frequency of TP53 mutations – highest of all can-
cer genes, standing at 37% in The Cancer Genome Atlas 
(TCGA) cohort – indicates that most cancers benefit 
from the loss of TP53.  However, there are nonetheless 
many tumors which do not bear a mutation in TP53. A 
part of those is explained by genetic events that pheno-
copy TP53 loss i.e. that have similar downstream phe-
notypic consequences as TP53 gene loss itself. There are 
three established examples of TP53 loss phenocopying 
events occurring in tumors. Most prominently, this is 
the amplification of the MDM2 and MDM4 oncogenes 
and overexpression of the corresponding proteins. These 
negatively regulate TP53 protein levels by promoting its 
proteasomal degradation, and otherwise inhibit TP53 
activity by binding to its transactivation domain [14–16]. 
The third implicated gene is PPM1D, whose amplifica-
tion overexpresses a serine/threonine phosphatase acting 
upon various targets including TP53, reducing its activ-
ity. (We note that PPM1D can also be affected by point 
mutations that result in gain-of-function [17–19]).

Given the strong selective advantages of the TP53 activ-
ity loss in cancer evolution, we hypothesized that TP53 
loss phenocopying in human cancers extends beyond 
these known examples of MDM2, MDM4 and PPM1D 
alterations. If indeed other common mechanisms of 
TP53 phenocopying exist, this would be relevant to pre-
dicting tumor cell response to various drugs, and to pre-
dicting tumor aggressiveness, thus having implications 
to personalized medicine. Because TP53 loss has clear 
consequences on the mRNA expression levels of various 
downstream targets [4, 20], the TP53-null-like phenotype 

can be inferred from large scale transcriptomic data [20–
23]. Here, we apply a statistical framework to jointly ana-
lyse 966 cancer cell line and ~7000 tumor genomes and 
transcriptomes, aiming to identify additional TP53 phe-
nocopying genetic events and impact on drug sensitivity. 
We find that TP53 loss phenocopies are remarkably com-
mon across tumors and cancer cell lines, and we identify 
USP28 gene deletions as one cause of TP53 loss pheno-
copying, and reveal many links between drugs and their 
targets that are modulated by TP53 activity.

Results
Inferring the functional TP53 status of tumors 
from transcriptomes
We developed a machine learning method to detect 
TP53 loss phenocopies in tumors and cell lines, integrat-
ing RNA-seq data with TP53 mutation data in a logistic 
regression, regularized with an Elastic Net penalty (very 
similar cross-validation accuracy was obtained with 
Ridge or Lasso penalties; see Methods). Regression mod-
els were trained using cross-validation on mRNA levels 
of 7131 tumor samples from the TCGA project, across 
20 different cancer types, controlling for cancer type. In 
addition to using this global analysis of  mRNA expres-
sion levels to infer the functional TP53 status state of 
each tumor, we also identified the genes whose  expres-
sion patterns are associated with TP53 status. Tumors 
with TP53 putatively causal mutations were included as 
positive examples (TP53 status was categorized accord-
ing to Genomics of Drug Sensitivity in Cancer Project 
(GDSC) methodology; see Methods). Previously known 
phenocopying events (MDM2, MDM4 and PPM1D 
amplifications), as well as samples with TP53 deletions 
were excluded from the training set (these known pheno-
copying events will be used to calibrate decision thresh-
olds; see below). Our classifier learned a combination of 
relevant gene weights that differentiate samples with an 
aberrant TP53 activity. Tumor samples that are not TP53 
mutated (by GDSC criteria), but are classified as mutated 
by the machine learning model are considered to be TP53 
loss phenocopies.

Our classifier showed a high performance with an area 
under the receiver operating characteristic (AUROC) 
curve of 96% in cross-validation on TCGA tumors (out-
of-sample accuracy), and 95% on the testing set (con-
sisting of 10% of the samples held out from training set, 
Fig. 1a). Thus, we were able to often correctly detect TP53 
status in tumor samples the classifier was not exposed to, 
with an area under precision-recall curve = 0.9654. The 
TP53 loss phenocopy scores for each TCGA tumor sam-
ple are provided in Additional file 3: Data S1.

To account for cancer type-specific effects, our 
classifier included the  cancer type as a variable. 



Page 3 of 25Fito‑Lopez et al. BMC Biology           (2023) 21:92 	

Fig. 1  Evaluation of the TP53 function loss score classifier and prevalence of TP53 loss phenocopying events in cancer. a Receiver operating 
characteristic (ROC) curve and area under the ROC (AUROC) curve for training and testing sets in TCGA tumor transcriptomes. b Bottom: FDR for each 
tumor sample. X axis shows the classification score thresholds for each tumor sample. The general threshold used for classification (0.6) is highlighted. 
Top: the histogram of frequency of CNV events (“density” refers to smoothed relative frequency) affecting TP53 and the known phenocopying 
genes MDM4, MDM2 and PPM1D at various phenocopy score thresholds. c TP53 loss phenocopying score stratified by 3 known phenocopying CNA 
events and by TP53 deletions. Data points are tumor samples coloured by TP53 status; boxes show median, Q1 and Q3, while whiskers show range 
(outlying examples shown as separate dots). X axis represents the GISTIC thresholded CNV of each given gene. Tumor samples with deletions in 
the corresponding genes (for MDM2, MDM4 and PPM1D) and amplifications (TP53) are omitted for simplicity. P values are by t-test comparisons of 
the TP53 phenocopy score between each shown CNV category to the neutral CNV (0) category in TP53 wild-type samples. d TP53 functional status 
distribution across TCGA cancer types. Left: pan-cancer; “Phenocopy” refers to TP53-loss phenocopying tumors according to the classifier in panels a 
and b. Right: showing only the TP53 loss phenocopying tumor samples by cancer type, further stratified by cause of the phenocopy. Tumor samples 
harbouring a known event that affects TP53 functionality are shown with colours, and the remaining TP53-loss phenocopy tumors are labelled as 
“Unknown cause”. KIRC and DLBC were omitted as they only had 1 phenocopied tumor sample (”unknown cause”)
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Leave-one-cancer-type-out (LOCTO) cross-validation 
showed that classifier performance was robust to removal 
of individual cancer types, with LOCTO AUCs ranging 
from 0.951 (LGG removal) to 0.964 (SKCM removal) 
compared to an are under the curve (AUC) of 0.961 
using the full dataset (Additional file  1: Fig. S1a). TP53 
phenocopy scores from the LOCTO models were highly 
correlated with those from the full model (e.g. R = 0.89, 
p = 4e-163, for BRCA removal, Additional file  1: Fig. 
S1b), indicating that the classifier would generalize well 
to unseen cancer types. Additionally, we tested for cor-
relations between tumor purity estimates and TP53 
phenocopy scores across all cancer types and found 
no significant relationship overall (pan-cancer Pearson 
R = -0.03, p = 0.11, 1/10 cancer types was found corre-
lated, Additional file 1: Fig. S1c).

Out of the ~ 12,000 genes available to the classifier, 217 
genes were deemed relevant for TP53 status classifica-
tion (non-zero coefficients; gene score provided in Addi-
tional file  3: Data S2). These represent a sparse (but not 
necessarily exhaustive) set of genes that are, considered 
together, highly informative for predicting TP53 func-
tional  status.  Expectedly, many of the classifier’s most 
relevant genes are known to be related to TP53 function-
ality. For instance, apoptosis-enhancing nuclease (AEN) 
was the gene with the highest absolute importance score. 
This exonuclease is a direct TP53 target whose expres-
sion is regulated by the phosphorylation of TP53 and its 
tumor suppressor role has been reported [24]. Tumors 
with a high expression of AEN are expected to be p53 
functional, and indeed highly expressed AEN was associ-
ated with TP53 WT status in our classifier’s coefficients. 
On the other extreme, COP1, a ubiquitin ligase that acts 
as an important p53 negative regulator, was the highest 
negative importance score with TP53 mutated status in 
the classifier [25]. We further performed a GO enrich-
ment analysis, revealing that top functional enriched 
sets were related to apoptotic signals, supporting the 
biological rationale underlying this set (Additional file 1: 
Fig. S1d). Most enriched pathways were: intrinsic apop-
totic signalling pathway in response to DNA damage by 
p53 class mediator (8.1-fold enrichment, false discov-
ery rate (FDR) = 4.2%), pyrimidine deoxyribonucleoside 
monophosphate biosynthetic process (47.4 fold enrich-
ment, FDR = 1.9%) and response to UV-B (17.2 fold 
enrichment, FDR = 3.7%) (ShinyGO, see Methods).

Validation and calibration of the TP53 phenocopy score 
model
Our classifier extends recent gene expression-based mod-
els for TP53 functionality [20–23] by being able to gener-
alize across both tumor and cancer cell lines (important 
for identifying drug sensitivity associations, see below), 

and moreover it can provide calibrated FDR estimates for 
TP53 functional status of each tumor or cell line. In par-
ticular, to assess the reliability of the individual predic-
tions from the model, FDR for each tumor was computed 
by considering the cross-validation precision-recall curves 
(Fig.  1b). The previously known phenocopying events 
(MDM2, MDM4 and PPM1D amplifications) and TP53 
deep deletions, which were held out from the training set, 
were largely scored as TP53 mutated. Tumors harbouring 
a known phenocopying amplification were assigned higher 
scores than the rest of TP53 wild-type tumors (mean 
score = 0.56 and 0.27 respectively, p = 1e-65 by t-test). Cells 
harbouring a TP53 deep deletion also had higher scores 
(mean TP53 deleted = 0.47, mean TP53 not deleted = 0.27, 
p = 1e-08). We tested multiple threshold values for defining 
TP53  loss  phenocopies, which expectedly yielded varying 
percentages of phenocopies across cancer types (Addi-
tional file  1: Fig. S1e). Our choice of threshold to detect 
TP53 phenocopied tumors was set based on these known 
phenocopying events, conservatively, corresponding to 
score > 0.6, Methods; Fig. 1b).

This resulted in an empirical FDR estimated at 15% (i.e. 
precision of 85%), based on the known TP53 mutations. 
Importantly this 15% is a conservative upper-bound 
estimate of FDR, since it is based on the assumption 
that there do not exist any unknown TP53 phenocopy-
ing events: it classifies all high-scoring TP53 wild-type 
tumors as false positives. Conversely, using the known 
phenocopying events we estimate a lower-bound recall 
(sensitivity) of this classifier at 63% (Fig.  1b). Again, 
this estimate is conservatively biased, since it is not 
a priori known whether every copy number gain in 
MDM2/MDM4/PPM1D causes a phenocopy; some low-
level gains may not have effects and thus would appear as 
false-negatives.

To additionally validate the classifier, we inspected the 
relationship between known phenocopy genes’ allele 
copy-number (see Methods), and the TP53 pheno-
copy score. There were significant positive correlations 
between three known phenocopying genes copy-number, 
and the TP53 phenocopy score in TP53 wild-type tumors 
(Fig. 1c).

To independently validate our TP53 phenocopy clas-
sifier, we applied it to RNA-seq data from 555 tumors 
across 7 cancer types from the Pan-Cancer Analysis 
of Whole Genomes (PCAWG) study. Using the same 
procedure as with the TCGA dataset (FDR = 15%, 
recall = 80%), the FDR on this validation cohort was 
8.8% (recall = 77%, Additional file 1: Fig. S1f ). TP53 phe-
nocopy scores were significantly higher for TP53-altered 
samples compared to TP53 wild-type samples, both in a 
pan-cancer analysis (0.87 vs. 0.48, p = 2e-60, t-test) and 
in individual cancer types (Additional file  1: Fig. S2a,b). 
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Similarly, known phenocopying genes scored a high phe-
nocopy score (Additional file  1: Fig. S2c). These results 
were consistent with those from the TCGA dataset 
(0.86 versus 0.32 for TP53 altered versus wild-type, p≈0, 
t-test). Together, these data independently validate our 
TP53 phenocopy classifier and findings. The TP53 func-
tion loss phenocopy scores for each PCAWG tumor sam-
ple are provided in Additional file 3: Data S3.

The prevalence of phenocopying events was substan-
tial: overall 12% of all TCGA tumor samples were rede-
fined into a TP53 mutated-like category (Fig. 1d) by our 
criteria. Different cancer types display different pheno-
copy frequencies (Fig. 1d), overall frequency ranging from 
19% for breast cancer (BRCA cancer type) to 3% for B-cell 
lymphoma (DLBC cancer type); phenocopy frequen-
cies are shown in Additional file 1: Fig. S1d. For instance, 
most breast cancer TP53-phenocopied tumors derive 
from previously known events i.e. the MDM4/MDM2/
PPM1D amplifications are the most common event, while 
the remaining 27% of the TP53  loss phenocopies (5% of 
all breast cancer samples) are not associated with a known 
phenocopying event (proportion shown for every cancer 
type Fig.  1d). We note that it is still possible that indi-
vidual examples of tumors may be erroneously classified 
as TP53-deficient at the applied score threshold. Overall, 
51% of TP53-loss phenocopied tumor samples across all 
cancer types were not linked with one of the three known 
causal genes nor a CNA deletion in TP53 itself, suggesting 
that additional TP53 phenocopying mechanisms are com-
monly occurring in human tumors.

TP53 loss-of-function (LoF) mutations can result in 
either complete or partial LoF. Our TP53 phenocopy score 
distinguished between TP53 alterations that likely disrupt 
p53 protein  activity to varying extents (Additional file  1: 
Fig. S2e). The VARITY and EVE variant pathogenicity 
scores (see Methods) predict the likelihood that a given 
missense variant is disease-causing. TP53 phenocopy 
scores were modestly but significantly correlated with these 
variant scores (VARITY: R = 0.16, p = 7e-11; EVE: R = 0.09, 
p = 1e-4), indicating that our classifier also can capture 
differential functional impact of TP53 missense variants. 
Nonsense mutations and frameshifting indels often have 
higher TP53 phenocopy scores than missense variants 
(major cancer types shown in Additional file 1: Fig. S2e).

USP28 deletion phenocopies a TP53 mutated state 
in tumors
Prompted by the abundance of tumor samples that are 
functionally TP53 null but lacking an obvious TP53 loss 
or a known phenocopying event, we sought to iden-
tify other phenocopying genes across all cancer types. 
To this end, we designed a custom association-testing 
methodology that combines six different statistical tests 

across four different genomic data types (see Methods, 
Additional file 1: Fig. S3).

In brief, our methodology is based on the ration-
ale that genes that cause a TP53 loss  phenocopy via 
altered dosage at DNA and mRNA levels should exhibit 
a distinct copy number variant (“CNV” tests) and also 
gene expression (“GE” tests) pattern. Each of these 
two genomic data types is considered in two tests, one 
comparing TP53 phenocopying against TP53 wild-type 
tumors, and another comparing TP53 phenocopying 
against TP53-mutant tumors, for a total of four tests. 
As two additional tests, we considered external data 
from genetic screens across large panels of cancer 
cell lines [26, 27]. In particular, we tested for signifi-
cant codependency scores, explaining how a knockout 
(“CRISPR”) or knock-down (“RNAi”) of a candidate 
phenocopying gene affects fitness across a panel of cell 
lines, when compared with the fitness profile of a TP53 
knockout/knock-down across the same panel [28, 29]. 
As an example supporting the use of our methodol-
ogy that combines cancer genomic analysis and genetic 
screening data analysis, the CRISPR knockout of the 
known TP53 negative regulator MDM2 decreases 
cell line fitness, in a manner anticorrelated to a TP53 
knockout across cell lines. (Additional file 1: Fig. S4a).

In summary, we tested differences of tumor genomics 
CNV and GE patterns (two tests each as above), addi-
tionally considering “CRISPR” and “RNAi” test scores 
from genetic screens, for each gene, performing tests 
stratified by cancer type. Our final score combines the 6 
tests together, providing a ranking of potential TP53 phe-
nocopying genes.

As anticipated, top 3 genes by the overall prioritization 
score are MDM2, MDM4 and PPM1D genes (Fig. 2a). A 
breakdown of our scores by different cancer types is pro-
vided in Additional file 1: Fig. S3. Following those known 
TP53 phenocopying genes, the gene USP28 was the 4th 
ranked gene (genes neighboring MDM2/MDM4/PPM1D 
excluded) in terms of overall statistical significance 
(p = 5.9e-07, combined across all six tests), and in par-
ticular scored highly on CRISPR codependency (pan-
cancer score for USP28 = 0.54,  compared with -0.72 for 
MDM2 and -0.53 for MDM4, breakdown by cancer type 
in Additional file 1: Fig. S4a). An overview of the top 20 
genes according to our prioritization scores is provided 
in Additional file 1: Fig. S4c.We note that, in contrast to 
MDM2 and MDM4, it is the deletions not amplifications 
of USP28 that were associated with TP53 loss  pheno-
copying; this is reflected in the mirrored direction of the 
CRISPR codependency score. USP28 encodes a deubiq-
uitinase enzyme with substantial evidence from previous 
biochemistry and cell model studies that link it to p53 
activity and apoptotic responses.
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While it was proposed that USP28 was linked to DNA 
damage apoptotic responses through the ATM-CHK2-
p53 pathway, recent evidence however suggests that a 
distinct pathway involving TP53BP1 and USP28 induces 
p53 and cell cycle arrest after mitotic delays [30–35]. The 
observation that USP28 deletions are identified as a TP53 
phenocopying event in our analysis with higher prior-
ity than ATM or CHK2 alterations, suggests that loss of 
TP53BP1-USP28-p53 pathway drives selected events to a 
higher degree than loss of the ATM-CHK2-p53 pathway 
in many tumors. This could help tumors adapt to replica-
tion stress that can slow mitotic progression, and to tol-
erate supernumerary centrosomes.

Overall, diverse experimental evidence from genetic 
screens strongly supports our identification of USP28 
deletions as p53-loss phenocopying events, and our 
cancer genomic and transcriptomic analysis suggests a 
widespread distribution of causal USP28 deletions across 
human tumors.

We also assessed how many previously unexplained 
TP53 phenocopying tumors (“Unknown cause” group in 
Fig.  1d) could be attributed to USP28 deletions. USP28 
deletions accounted for a subset of TP53 phenocopying 
tumors (12% had exclusively a USP28 deletion, 24% had 
a USP28 deletion and a TP53 shallow deletion) by tran-
scriptome score that did not bear TP53 mutations nor 
deep deletion and that were not associated with known 
phenocopy mechanisms of MDM2/MDM4/PPM1D 
amplification (Additional file 1: Fig. S4d).

Additional hits from this association study might pro-
vide promising genes for follow-up. For instance, MSI2 
was the 5th most highly prioritized gene, predicted to 
phenocopy TP53 loss by amplification. MSI2 encodes a 
transcriptional regulator that has been recently identified 

as an oncogene in hematologic and solid cancers [36–38]; 
we note that the MSI2 locus is in the broader neighbor-
hood of PPM1D (17q22 and 17q23.2, respectively; 3.3 Mb 
genomic distance). Similar results to CRISPR analyses 
were observed using RNAi screening codependency 
scores, further supporting the association of  the USP28 
losses with TP53 phenocopying, as well as  the MSI2 
gains (Additional file 1: Fig. S4b). Other apoptosis-related 
genes such as CHEK2 and ATM [39, 40] were also in the 
prioritized genes in our analysis, albeit at more modest 
statistical significance. Of note, the TPR gene also had a 
highly significant codependency score but was driven by 
a single cancer type (kidney) and thus with less clear rel-
evance to diverse tumor types. Top prioritized genes and 
significance calls from the individual association tests are 
provided at Additional file 3: Data S4.

Phenocopy scores prioritize causal genes within CNA 
segments
Amplifications of certain chromosomal segments (or 
whole arms) in case of MDM2, MDM4 and PPM1D 
commonly underlie TP53 phenocopies. Such CNA 
genetic events however often affect multiple adjacent 
genes, where an open question in cancer genomics is 
which gene or genes in the affected segment are causal 
[41]. We hypothesized that the known TP53 phe-
nocopying gene CNA segments might in some cases 
harbor more than one causal gene. Our genomic com-
bination  testing approach can prioritize genes with 
enriched gene expression and/or CNA in the TP53 
loss  phenocopying group. Considered together with 
the prioritization by CRISPR and RNAi codependency, 
this method provided a plausible ranking of possible 
TP53 loss phenocopying genes. Applied globally, this 

(See figure on next page.)
Fig. 2  Transcriptomics scores reflecting phenocopying events can identify causal genes in CNA-affected chromosomal segments. a Prioritization 
score of genes for TP53 loss phenocopying effects. Y axis shows gene significance (FDR) when combining six statistical tests (four cancer genomic/
transcriptomic, and two based on CRISPR and RNAi screens), and further pooling p-values across cancer types; see Methods for details. X axis 
represents the effect size specifically from the CRISPR codependency test score of a gene. Crosses represent gene neighbours (same cytoband) to a 
known phenocopying gene. Above-threshold hits in terms of FDR and codependency score are labelled. Shown thresholds (dashed lines) for effect 
size and significance were determined based on scores of known phenocopy events (CRISPR score = -0.21, FDR = 4e-5, according to MDM4 score 
in LUAD, see Methods). Genes with a pan-cancer CRISPR or RNAi codependecy score lower than 0.1 were filtered out. Same figure but showing 
the RNAi codependency score on X axis is provided in Additional file 1: Fig. S4b. b Top: CNV frequency in tumors, and their associations with TP53 
phenocopy transcriptomic scores, in the segment of chromosome 1 containing MDM4. Each dot represents one gene, while colours represent 
groups of tumor samples by TP53 status. Bottom: A zoomed-in view of a commonly amplified region of the chromosome, showing the CRISPR and 
the RNAi TP53-codependency scores for each gene. The data underlying the TP53 codependency score is shown for the top-ranking score of the 
region (left panels), here showing the CRISPR and RNAi fitness effects of MDM4 disruption (Y axis) across many cell lines (dots), compared to TP53 
disruption fitness effects (X axis) across the same cell lines. c Same as panel b, but for USP28, a gene we identified to be associated with a TP53 
loss phenocopying via a deletion. Here, the Y axis on the top plot shows frequency of gene deletions in tumors, subdivided by TP53 functional 
status, whereas panel b shows frequency of amplification. Bottom plots are analogous to  panel b. d Comparison of the TP53 phenocopy score 
of USP28 CNV deletions (by negative GISTIC score), ATM deletions, ATM mutations and MDM4 amplifications. Each dot represents a tumor sample. 
Only TP53 wild-type samples were considered. P-values by Mann–Whitney test. e Fitness effect of USP28 knock-out in TP53 wild-type and mutant 
isogenic cell lines. Comparison of the mean beta score (fitness effect upon CRISPR gene disruption, y-axis) of USP28. , The mean beta scores of genes 
located within its 1Mbp immediate surroundings are shown as negative controls ("1 Mbp neighbors", see Methods). Genes TP53, MDM2, and MDM4 
are also shown as a reference. x-axis bottom labels indicate the TP53 status of the cell line. The USP28 Z-scores, comparing to the distribution of 
neighbouring genes, are plotted in red (see Methods)
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Fig. 2  (See legend on previous page.)
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identified USP28 as a novel phenocopying gene (see 
above). To more formally study if the USP28-adjacent 
genes could contribute to this, we considered that 
the same method could be applied on a local scale: by 
examining profiles of CNVs  along chromosomes, our 
genomic prioritization scores would be able to sin-
gle out the causal gene(s) in the segment of recurrent 
CNA.

As a control for this approach, we sought to con-
firm previously known phenocopies. Indeed, MDM4 
amplification was found to be enriched in the TP53-
phenocopying group of tumor samples, but not in the 
rest of tumor groups – the TP53 mutant and the non-
phenocopying TP53 wild-type (Fig.  2b). The local pro-
file of this enrichment for the chromosome 1q segment 
32.1 peaks at the MDM4 gene and falls off towards its 
flanking genes (Fig.  2b). Our CRISPR and RNAi data 
analysis, consistently, indicate MDM4 as the gene with 
the strongest effect in the region (Fig. 2b). As expected, 
similar CNA and CRISPR/RNAi profiles were observed 
at PPM1D (Additional file 1: Fig. S4e). The MDM2 CNA 
enrichment score segment peak was narrower, suggest-
ing a more focal gene amplification process (Additional 
file 1: Fig. S4e).

Next, we examined the local  shape of the USP28-
adjacent CNA profiles. USP28 deletions were found 
to be enriched in the TP53 phenocopying group when 
compared to the rest of tumor groups (2.3-fold in TP53 
w.t, 2.8-fold in TP53 mutant). USP28 enrichment was 
comparable to MDM4 region enrichments of 2.5–3.7-
fold (TP53 wt., TP53 mutant) (Fig. 2b,c). TP53 pheno-
copying tumor samples appear to have more deletions 
in the USP28 region than TP53 wild-type (non-phen-
ocopying) and TP53 mutant samples. The local profile 
of enrichments presents a plateau-like pattern rather 
than a sharp peak, and USP28 is within the top-ranked 
genes in the plateau, however some neighbouring genes 
do appear similarly so. Therefore, we further used the 
CRISPR and RNAi codependency scores to prioritize 
the causal genes in this deletion segment; these scores 
clearly distinguishes USP28 from its immediate neigh-
bours (Fig.  2c), suggesting that USP28 is indeed the 
causal gene in the chromosomal segment.

Furthermore, this ‘local scan’ can be applied chromo-
some-wide, where we noted another small region on 
chromosome 11q.12.1-q1.13.1 modestly enriched with 
amplifications in TP53-phenocopying tumors (Additional 
file  1: Fig. S5a), thus raising our interest. However, nei-
ther the  genes in this region nor other chromosome 11 
regions showed a positive CRISPR codependency score of 
even half of the USP28 score (Fig. 2c). Of note, the USP28 
codependency score exceeds, in absolute magnitude, the 
score of the known MDM4 phenocopy (Fig. 2b,c).

In the broader neighborhood of USP28, the gene ATM 
seems to also be frequently deleted in the TP53-phe-
nocopying tumor group, meaning ATM is also a can-
didate for the causal gene in this deletion segment at 
chr11 q22.3-q23.2. However, the statistical support from 
genomic enrichment scores (using our methodology for 
meta-analysis across 6 statistical tests) for ATM were less 
strong than for USP28 (p = 1e-5 versus p = 6e-7, respec-
tively). Consistently, comparing the RNAi and CRISPR 
TP53-codependency scores of ATM versus USP28 shows 
a more robust effect of the USP28 knockout (USP28 
RNAi codependency score p = 4.9e-112 versus ATM 
p = 3e-80, in a pan-cancer analysis; Additional file  1: 
Fig. S5b). To further rule out that ATM has the causal 
role in this deleted segment, we considered the cases of 
tumors where ATM is disrupted by a point mutation; 
unlike CNA in the ATM gene, these cases are not com-
monly genetically linked with disruptions in USP28. The 
ATM mutated but USP28 wild-type tumors had consid-
erably weaker TP53 phenocopy transcriptomic scores 
(median = 0.36) than the USP28 deleted but ATM non-
mutated tumors (median = 0.84; p = 0.0013 by Mann–
Whitney test; Fig. 2d). The cases where both USP28 and 
ATM were disrupted, by deletion or mutation, had very 
similar phenocopy scores (median = 0.73) as the USP28 
deleted but ATM non-mutated cases. This analysis of 
ATM mutations supports that USP28 deletion, rather 
than ATM disruption, is the causal change in the deleted 
segment at chr11 q22-q23.

To validate the USP28 finding, we analyzed an inde-
pendent CRISPR data set, consisting of 3 genome-wide 
screens performed on TP53 wild-type and TP53 -/- iso-
genic pairs of cell lines: one on the A549 cell line pair 
and two on the RPE1 cell line pairs (see details in Meth-
ods). In the TP53 wild-type background, the TP53 k.o. 
increases cell fitness, as expected for a high-effect tumor 
suppressor gene (Fig. 2e). Thus, if the USP28 loss was to 
phenocopy TP53 loss, the USP28 k.o. by CRISPR should 
also increase fitness. Indeed, compared to the 10 neigh-
boring control genes residing within 1 Mb of USP28, the 
USP28 k.o. has a stronger fitness effect (beta score from 
MAGeCK tool, see Methods) for 10 out of 10 neighbor-
ing genes in 2 out of 3 screens, and for 8 out of 10 neigh-
boring genes in the remaining screen (Fig. 2e). For ATM, 
this effect is less pronounced (Additional file 1: Fig. S5c). 
In 3 out of 3 cell screening experiments, USP28 fitness 
effect was stronger than ATM effect (1.4-fold, 2.4-fold 
and 2.6-fold increased beta score). To further support 
this finding, we asked if the fitness gain resulting from 
USP28 loss is because of downstream effects on TP53 
activity. We thus considered the isogenic cells where 
TP53-/- was ablated, in which indeed the fitness gain 
from USP28 k.o. was attenuated or disappeared (Fig. 2e) 
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compared to TP53 wild-type cells. In 2 out of 3 cell line 
screens, the fitness attenuation effect of TP53-/- back-
ground cells was stronger in USP28 than in the neigh-
boring ATM gene, supporting the causal role of USP28 
in that segment (Additional file  3: Data S5). Of note, in 
this analysis the effect sizes of USP28 k.o. were less than 
the full effect of TP53 k.o., however they were still sub-
stantial: in 2 out of 3 screens, the fitness gain of USP28 
disruption was comparable in size to the fitness loss of 
MDM4 disruption (Fig. 2e).

Overall, these analyses highlight USP28 as the likely 
causal gene for TP53 loss phenocopying via deletions in 
the chr11 q22-q23 segment.

Cancer type spectrum of TP53 phenocopying events
As stated above, not every cancer type is affected by the 
same types of phenocopies. For instance, MDM2 amplifi-
cation phenocopy occurs often in BRCA, CESC, BLCA, 
LUAD and STAD but less so in HNSC, OV, MESO and   
LIHC (Fig. 1d). To further elucidate the tissue-specificity 
of USP28 phenocopying events, we considered the pri-
oritization scores separately for different cancer types 
(Additional file  1: Fig. S3). We observed that BRCA, 
BLCA and LUAD were the cancer types which showed 
the strongest signal in our prioritization score for USP28 
phenocopies, with a suggestive signal in STAD.

To elucidate the cancer type spectrum of the USP28 
phenocopies, we considered the USP28 amplifications 
as a negative control (in this gene, deletions are expected 
to phenocopy). In particular, we determined in which 
tumor types USP28 deletions had a higher TP53 pheno-
copy score than USP28 copy number-amplified samples. 
As expected, statistical significance (when comparing 
the TP53 phenocopy score) of USP28 copy number-neu-
tral tumor samples versus those bearing deletions was 
stronger than when comparing copy number-neutral to 
amplifications. This supports the impact of USP28 dele-
tions on TP53 loss phenocopy score. The strongest effect 
was found in BLCA, STAD, BRCA, LIHC and LUAD 
(Fig. 2e). In further support of this tissue spectrum, when 
CRISPR TP53 codependency scores were checked, high-
est USP28 scores were found in cancer cell lines origi-
nating from BLCA, STAD, BRCA, LIHC and LUAD 
(Fig.  2e). The leading codependency score was found in 
BLCA (effect size = 0.73, p = 2.2e-08) and BLCA also had 
the most significant value when comparing deletions to 
neutral copy number TP53 phenocopy score (p = 4.2e-
06, Additional file  1: Fig. S5d). LUAD had the second 
most significant codependency p-value (p = 3.8e-6), and 
is also highly ranked in comparison of phenocopy score 
between deletion versus neutral USP28 CNV tumors 
(Additional file  1: Fig. S5d). We found a positive asso-
ciation between USP28 CRISPR codependency score 

and the effect of USP28 deletions in TP53 phenocopy-
ing score across cancer types (Additional file 1: Fig. S5d). 
Of note, the “oncogene-tumor suppressor” dichotomy of 
USP28 was reported [42], which might imply that USP28 
amplification could also result in a TP53 phenocopy in 
certain contexts. However, our analysis did not support 
this in the majority of cancer types: out of 14 cancer 
types, only 3 of them had a stronger TP53 phenocopy 
score in USP28-amplified samples than in USP28-deleted 
samples (Fig. 2e); this was the case for none of the cancer 
types with common USP28 phenocopying (BLCA, STAD, 
LIHC, BRCA and LUAD).

Taken together, these results suggest that USP28 dele-
tion is a novel TP53 phenocopying alteration that com-
monly affects major cancer types such as breast cancer 
(6.2% of total breast tumors, not counting known phe-
nocopying events and TP53 deletions) and also bladder, 
lung, liver and stomach cancer (7.6%, 7.0%, 3.8% and 2.9% 
cases, respectively).

Multiple neighboring genes in CNA segment can 
contribute to a TP53 deficient state
Some of the top hits found in our combined testing 
approach were located near to known TP53 loss phe-
nocopying genes such as MDM2. We thus hypothesized 
that there exist cases of ‘collaboration’ of two or more 
neighboring genes, affected by a single copy-number 
alteration  event, which jointly bear upon the TP53 loss 
phenotype. This would represent a special case of epista-
sis between two genes, caused by a single alteration that 
spans and  affects both genes. Our data suggests that 
the CNOT2 gene, residing in the MDM2 segment in the 
chromosome 12q15, is a likely example of this.

In particular, in our data, MDM2 was frequently co-
amplified with CNOT2, in 72% of the cases of MDM2 
amplification (Additional file  1: Fig. S6a, check by can-
cer type at Additional file 1: Fig. S6b). Data from CRISPR 
and RNAi screening experiments can help resolve asso-
ciations from genomic analysis, where effects of neigh-
boring genes are in genetic linkage (here implying being 
jointly affected by CNA). No other gene in that neigh-
borhood that was amplified together with MDM2 had 
as high CRISPR codependency scores as CNOT2 (effect 
size = -0.24, p = 4.1e-14, Fig. 3a,b); next best gene in the 
20  Mb neighborhood is CDK4 with effect size = -0.16, 
p = 3e-7. However, CDK4 is co-amplified with MDM2 
in only 20% of the cases (Fig. 3a). CNOT2-only amplifi-
cations (i.e. without concurrent MDM2 CNA) do not 
significantly associate with TP53 phenocopy score (Pear-
son’s TP53 phenocopy score vs CNOT2 CNV p = 0.45, 
effect size = -0.83, Additional file  1: Fig. S6c). More 
interestingly, MDM2 CNV was not found to be associ-
ated with our TP53 phenocopy score when MDM2-only 
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Fig. 3  MDM2-CNOT2 co-amplifications are associated with TP53-loss phenocopy score. a Top: Somatic CNVs of MDM2 gene neighborhood 
(20 Mb segment). Y axis represents the percentage of the GISTIC CNV gain states + 1 (blue) and + 2 (red), compared to the neutral CNV state (0). 
Bottom: CRISPR screening TP53-codependency scores (y axis) shown by gene on chromosome 12 (x axis). Genes with labels have a codependency 
score < -0.1, suggesting possible TP53 phenocopying effects. Color shows the frequency of CNV amplification of each gene, together with MDM2 
amplifications. b Co-dependency analysis underlying data from cell line panels. CRISPR and RNAi fitness effect scores for phenocopying gene 
MDM2 and candidate gene CNOT2 (y axes), and fitness effect scores for TP53 in the genetic screens (x axes). Top plots show RNAi screening data and 
bottom plots CRISPR screening data. c Association between MDM2 and CNOT2 gene expression (top) and CNV status (bottom). Each dot represents 
a tumor sample, coloured based on the TP53-loss phenocopy score . Dashed lines represent the 97th quantile across genes, for each data type
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amplified without CNOT2 (Pearson´s TP53 phenocopy 
score vs MDM2 CNV p = 0.57, effect size = 0.09, Addi-
tional file 1: Fig. S6c). On the other hand, MDM2-CNOT2 
co-amplifications were significantly associated with a 
TP53 deficiency transcriptomic score in tumors (Pear-
son’s correlation TP53 phenocopy score vs MDM2 CNV 
p = 2e-05, effect size = 0.41, Additional file 1: Fig. S6c,e).

This genomic evidence is supported by recent 
experimental studies, indicating a  role for CNOT2 in 
p53-dependent apoptosis, and suggesting therapeutic 
potential of CNOT2 suppression (see Additional file  2: 
Text S1 for a summary and references). As supporting 
evidence, we considered fitness effects of CNOT2 k.o. 
by CRISPR in various subsets of cell lines. The MDM2-
gain but CNOT2-neutral genetic backgrounds had more 
modest fitness effects of CNOT2 k.o. (median = -0.37) 
than the CNOT2-gain but MDM2-neutral genetic back-
grounds (median = -0.62; p = 0.072 by Mann–Whit-
ney test, Additional file  1: Fig. S6d). Consistently, the 
CNOT2 k.o. by CRISPR had stronger fitness effects 
(median = -0.55) in the TP53 wild-type backgrounds than 
in TP53-mutant background cell lines (median = -0.45, 
p = 0.0091 by Mann–Whitney test). In other words, fit-
ness effects of CNOT2 disruption by CRISPR are con-
ditional upon MDM2 alterations and TP53 alterations, 
implicating CNOT2 in a three-way genetic interaction 
with the two other genes.

We hypothesized that this role of CNOT2 in boosting 
the TP53-phenocopying effect of MDM2 amplification 
may be variable across tissues. Our data suggests that in 
some cancer types TP53 functional loss seems to rely on 
amplifications of both genes together, rather than solely 
MDM2, but not in all (Additional file  2: Text S2). This 
suggests a model where the MDM2-CNOT2 coamplifica-
tion enhances the TP53 loss effect via a genetic interac-
tion, and amplification of MDM2 alone but not CNOT2 
alone able to generate a TP53 functional loss phenotype. 
Gene expression profiles match this observation from 
CNA: having a MDM2 and CNOT2 co-overexpression 
(over the 97th percentile; n = 40) implies a high mean 
TP53 phenocopy score (above the 84th percentile, mean 
phenocopy score MDM2_CNOT2 = 0.65, Fig.  3c, Addi-
tional file  1: Fig. S6f ), however less so for a MDM2-
only overexpression (76th percentile; mean MDM2 
only score = 0.46, Fig. 3c, Additional file 1: Fig. S6f ), and, 
expectedly, even less so for a CNOT2-only overexpres-
sion (73th percentile; mean CNOT2 only score= 0.41).

This principle might extend beyond the MDM2-
CNOT2 pair. For instance, the MSI2 gene, another highly 
prioritized hit in our combined test (Additional file  1: 
Fig. S6g,h,i), resides near the known phenocopying gene 
PPM1D and has the potential to boost the effects of the 
linked amplification of the PPM1D gene to cause a TP53 

deficient state. Considered jointly, these findings suggest 
the possibility of TP53-loss like phenotype being a result 
of multiple phenocopying events of neighboring genes 
resulting from a single segmental CNA.

Detecting TP53 loss phenocopies in cancer cell line panels
It is well known that TP53 mutations associate with over-
all poorer drug response in tumors [43–45], consistent 
with a lower ability of TP53 deficient cells to trigger cell 
cycle arrest and/or apoptosis [46–50]. We hypothesized 
that, in addition to conferring a generalized drug resist-
ance, the TP53 function loss may also modulate the asso-
ciation between specific drugs and alterations in  their 
target genes. In other words, we asked whether in TP53 
wild-type cancer cells, for instance, amplification in a 
particular oncogene predicts sensitivity to a particular 
drug, while in TP53 mutant cells the same amplifica-
tion does not associate with sensitivity. Cancer cell line 
drug screening panels [51, 52] provide a convenient sys-
tem to test this hypothesis, because many drugs were 
tested systematically across both TP53 wild-type and 
mutant cells originating from multiple cancer types. Con-
sidering TP53 function loss via phenocopy score should 
afford additional statistical power and clarify the associa-
tions discovered; otherwise, some effectively TP53 null 
cells would be erroneously considered wild-type during 
statistical testing, making it more difficult to identify 
associations.

First, we aimed to  generalize our tumor TP53 phe-
notype classifier to cancer cell lines. Because cell lines 
exhibit strong global (i.e. affecting many genes) shifts in 
gene expression patterns, compared to their tumor tissue 
of origin, we applied an adjustment methodology as in 
our recent work [53] using the COMBAT tool [54]. Upon 
adjusting gene expression from cell lines in the CCLE 
and GDSC panels to make it comparable with TCGA 
tumors (see Methods), we applied the TP53 classifier and 
obtained ranked scores. As a positive control, the classi-
fier assigned a significantly higher TP53 phenocopy score 
to TP53 mutated cell lines (mean TP53_wt = 0.43, TP53_
mut = 0.83, p = 1.1e-49 by t-test), therefore cell line data 
served as an independent validation set for the classi-
fier. Of the 610 cell lines labeled as TP53 mutant based 
on genomic sequence (see Methods), 87% were classi-
fied as  having a TP53-loss phenotype (Fig.  4a), suggest-
ing a reasonable ability of the classifier trained on TCGA 
tumor transcriptomes to generalize to cell line data.

Similarly as in tumors, a notable fraction of cell lines 
were apparent false positives, labelled as TP53 wild-type 
by the genomes, but classified as TP53 deficient using 
the phenocopy score. We subdivided these apparent 
false positives into a high-confidence phenocopying  set 
and the rest; the TP53 phenocopy score of the TP53 
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Fig. 4  TP53 loss phenocopy transcriptome scores predict drug sensitivity. a Our TP53 functional status classifier, derived from tumor data, is applied 
to cancer cell line data. Receiver operating characteristic (ROC curve and its area under curve (AUC) are shown. b The false discovery rate (FDR) for 
each cell line is shown as a dot. X axis represents the phenocopy score threshold at which each cell line would be classified as TP53 functionally 
deficient. Yellow horizontal bar represents the range for our definition of a high-confidence set of TP53 phenocopying cell lines (FDR = 0.18, 
threshold = 0.93). In the top part of the plot, cell lines harboring deletions of TP53, and amplifications of known phenocopying genes MDM4, MDM2 
and PPM1D are marked. c TP53 status—drug sensitivity associations. Each panel represents the drugs targeting genes within a given pathway. Each 
dot represents an association of a drug with two possible TP53 functional status labels: X axis with the TP53 phenocopy score and Y axis with the 
TP53 mutational status (“CFE” labels by the GDSC, see Methods). P-values are from a pan-cancer regression test for association between a given 
drug log IC50 with the TP53 status. Associations with FDR < 0.25 are labeled. d Distributions of log IC50 values for several example drugs where TP53 
status is known to confer resistance. The X axis illustrates the different categories based on TP53 mutated status (“Mutated TP53”), wild type TP53 
(“Wild-type TP53”) and a high TP53 phenocopy score (“High confidence”); the “Mutated merge” is a combination of the two. P-values from statistical 
tests results comparing the groups (Mann–Whitney test, two-tailed) are plotted on top. Median values are provided inside each box
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deep-deleted tumor samples was used as the threshold 
(see Methods). The high-confidence set was composed 
of 76 cell lines (FDR = 18%, see Methods, Fig. 4 B). Only 
79% of the cell lines labelled as TP53 wild-type geneti-
cally were also classified as TP53 wild-type by the phe-
nocopy score, suggesting that TP53-loss phenocopying 
events are common among cancer cell lines. For compar-
ison, this percentage was 77% in cancer samples.

Some of the apparent false positive cell lines had a 
MDM2, MDM4 or PPM1D amplification or a USP28 
deletion (43 out of 109, 39% of the high-confidence set). 
Cell lines harboring one of these CNA in known phen-
ocopying genes had higher scores than the rest of TP53 
wild-type cell lines (mean score = 0.58 and 0.37, respec-
tively; t-test p = 5.4e-5, Additional file 1: Fig. S7a). Cells 
harboring a TP53 deep deletion (90th percentile of CNA 
scores) also had higher phenocopy scores than samples 
without deletion (mean score = 0.78 and 0.33, respec-
tively, t-test p = 5.4e-8). 28% of the cell lines in the high-
confidence harbor a TP53 deep deletion (22 out of 76, 
90th percentile of TP53 deletion CNA). These data sup-
port that the apparent false positives are often bona fide 
TP53 phenocopying events in cancer cell lines. All TP53 
phenocopy scores and cell line functional TP53 status 
information are provided in Additional file 3: Data S6.

Effects of TP53 on drug resistance are clarified by TP53 
phenocopy scores
Next, we considered the GDSC drug response distribu-
tions for various drugs, in light of the TP53 functional 
status as determined by the TP53 mutations, and addi-
tionally as determined  by our TP53 phenocopy scores. 
To identify drugs to which response is affected by TP53 
functional status, we predicted drug response (log IC50) 
values of 449 GDSC drugs individually, using TP53 status 
as an independent variable (see Methods).

For most of the tested drugs (105 out of 188 drugs that 
were significantly associated at < 25% FDR, pan-cancer), 
the associations with TP53 had a lower FDR when test-
ing using TP53 phenocopy score, over when using the 
TP53 CFE labels (denoting TP53 mutations which alter 
gene function) (Fig. 4c, effect size at Additional file 1: Fig. 
S7b). For the drugs that affected pathways related to TP53, 
this effect of improved significance by using the pheno-
copy  score was prominent (hits with FDR by TP53 phe-
nocopy score < FDR by TP53 CFE labels: DNA replication, 
12/12 drugs; genome integrity, 8/10; p53 pathway, 3/5; 
apoptosis regulation, 4/6; cell cycle, 4/7; Additional file 1: 
Fig. S7c). As a negative control, randomized TP53 labels 
were not significantly associated with any drug. As a posi-
tive control, the drugs known to be affected by TP53 status 
such as nutlin-3a (effect size = 1.48 vs 1.01, p = 6.7e-68 vs 
1.2e-44) or bleomycin (effect size = 0.25 vs 0.16, p = 0.009 

vs 0.07), exhibited a stronger association with the TP53 
score than with TP53 CFE mutation labels (Fig. 4c).

Next, we examined the IC50 drug sensitivity values 
towards all drugs together, considering the different 
groups of cell lines defined by our TP53 functional sta-
tus classifier (Additional file 1: Fig. S7d). Here, the mean 
IC50 values of high-confidence TP53 phenocopying cell 
lines is more similar to the TP53 mutated cell-lines than 
to the TP53 wild-type cell lines. In drugs known to be 
affected by TP53 status, such as bleomycin (Fig. 4d), IC50 
values were not notably different between TP53 mutant 
and the TP53 phenocopying high-confidence cell lines. 
All drug associations effect size and p-value are plotted in 
Additional file 1: Fig. S8a,b. Cancer type-specific associa-
tions are shown at Additional file 1: Fig. S9.

Taken together, the above analyses support the utility 
of the phenocopy score in identifying TP53-associated 
drug sensitivity or resistance, and also support that our 
tumor-derived classifier is able to generalize to cancer 
cell line transcriptomes to detect a phenotype of func-
tional TP53 loss.

Associations between drug sensitivity and genetic markers 
are modified by TP53 status
A central goal in personalized cancer medicine is to dis-
cover actionable mutations, which are used as genetic 
markers to decide which therapy to apply. Based on the 
role of TP53 mutations in dysregulating various processes 
relevant to tumorigenesis, we hypothesized that various 
druggable cancer vulnerabilities may be conditional upon 
TP53 functional status. To investigate, a regression was 
fit to predict activity (log IC50) for each drug, from can-
cer type and each cancer gene mutation status (via the 
CFE classification, see Methods), and additionally intro-
ducing TP53 status (either via TP53 mutation (“CFE”), 
or via TP53 phenocopy score) as an interaction term in 
the regression. The TP53 phenocopy score was binarized 
(> 0.6 used as threshold) to be able to compare fairly with 
the TP53 mutation status. Comparing TP53 phenocopy 
association FDRs against TP53 mutation association 
FDRs suggested that the application of phenocopy score 
allowed to more confidently identify the drug-gene asso-
ciations where TP53 status modulates the effect size (see 
the comparison of FDR values  in Fig.  5a, broken down 
by pathway that targets the drug). Out of the identified 
three-way associations (gene * drug * TP53 status), 34% 
were identified only by using the TP53 phenocopy score, 
but not by the TP53 mutation status (Fig. 5a). For com-
parison, only 15% three-way associations were uniquely 
identified by TP53 mutation status but not by phenocopy 
score. We provide a tally of all gene-drug associations 
that were conditional upon TP53 in Additional file  1: 
Fig. S10a, and a per-gene comparison of associations 
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identified with TP53 phenocopy score labels, versus 
those identified by TP53 mutational status, in Additional 
file 1: Fig. S10b.

Next, we aimed to select the more robust associations. 
To this end, we applied the “two-way” testing approach 
to identify replicated drug-marker links [55] seen  across 
two or more drugs that share the same target protein or 
pathway. These were tested separately for individual can-
cer types, comparing TP53-deficient versus wild-type cell 
lines. Here, this “two-way” randomization test [55] was 
further modified to be able to detect interactions with a 
third factor, the TP53 functional status. As an additional 
criterion ensuring confidence of associations, only the 
hits that recur in more than one cancer type were taken 
into consideration (as a trade-off, this will cause tissue-
specific associations to be missed). Stratifying by TP53 
functional status, we identified a number of drug-gene 
CFE associations that would not be significant if ignor-
ing the TP53 status  during testing (60% of total, < 25% 
FDR, Additional file 1: Fig. S10c). This corresponds to a 
total of 2303 associations of a drug to specific gene muta-
tional status by cancer type (total number of tests ignor-
ing TP53 n = 486,417 versus n = 402,945 controlling for 
TP53 status, Additional file 1: Fig. S10c,d). Of these, 133 
associations were found in both approaches, but  had a 
lower FDR when considering TP53 stratification (mean 
FDR = 15% versus 19% if not stratifying, p = 5e-08); all 
associations from the “two-way” replication test are listed 
in Additional file 4: Data S7.

Sensitizing effects of driver mutations to HDAC and ATR 
inhibitors are modulated by TP53
Studies suggested a role of the drug AR-42 (a HDAC1 
inhibitor) in prolonging p53 life and triggering apop-
tosis [56, 57]. We hypothesized that, if p53 activity is 
impaired, this effect of HDAC inhibitors may be altered. 
Interestingly, our testing reveals that mutations in the 
PIK3CA oncogene are associated with sensitivity to 
HDAC1 inhibition in a manner conditional upon TP53 

mutation. In other words, when TP53 is functional, the 
resistance to HDAC1 inhibitor AR-42 due to PIK3CA 
mutation is higher than when TP53 is mutant or other-
wise inactivated as indicated by phenocopy score (TP53 
wild-type *A PIK3CA_mut regression coefficient test 
p = 0.005, Cohen’s d = 1.3, TP53 mutant PIK3CA regres-
sion coefficient test p = 0.08, Cohen d = -0.38, Fig.  5b). 
We would not identify this association with AR-42 while 
ignoring TP53 status (test on regression coefficient only 
using PIK3CA mutation status p = 0.67, Cohen d = -0.08). 
In particular, in LUAD the difference in AR-42 sensitivity 
(median of normalized log IC50 across cell lines) between 
PIK3CA mutant and PIK3CA wild-type is hardly evident: 
0.26 versus 0.24 respectively, while in TP53-functional 
LUAD this difference is -0.43 (PIK3CA wild-type) versus 
0.35 (PIK3CA wild-mutant). This response is observed 
across three different HDAC inhibitors and in three dif-
ferent cancer types. For instance, AR-42 and belinostat 
were found significantly associated with PIK3CA muta-
tion in HNSC + LUSC (here considered jointly because 
of known molecular similarities of the cancer types), 
in BRCA, and in LUAD cancer types (Fig. 5b). Similarly, 
the AR-42 association with PIK3CA mutation was sup-
ported in the HDAC1-targeting drug CAY10603 (Addi-
tional file 1: Fig. S11b). Furthermore, in an independent 
drug screening dataset, PRISM [51], we were able to 
recover these associations (Additional file  1: Fig. S11b). 
This example illustrates how being aware of TP53 func-
tional inactivation status allows to detect drug-gene asso-
ciations that may be specific to the TP53 wild-type or to 
the TP53 deficient backgrounds but not both.

We also noted that the HDAC1i  resistance/PIK3CA 
mutation association (conditional upon TP53 func-
tional status)  was only recovered when controlling for 
TP53 phenocopy score, but not when using simply the 
TP53 mutation status (per CFE method, see Methods) 
as an interaction term (belinostat IC50-PIK3CA muta-
tion  Mann–Whitney test, in the TP53 mutation wild-
type background p = 0.13, while in TP53 w.t. phenocopy 

Fig. 5  Associations between drug response and genetic markers are commonly modified by TP53 functional status. a Identifying associations 
of mutations in various genes with antitumour drug sensitivity, controlling for TP53 status. Each panel represents a pathway targeted by drugs, 
and each dot represents a gene * drug *  cancer type combination. Associations are conditioned on TP53 status by including an interaction term 
in the regression, where the Y axis shows associations using TP53 mutated status using GDSC labels (TP53 CFEs), while the X axis represents the 
same using TP53 loss phenocopy score-based labels. Yellow-shaded area contains associations with FDR < 0.25 for TP53 phenocopy labels, and 
blue-shaded area shows the same for TP53 CFE labels. Total counts of significant associations in shaded areas are shown in the Venn diagram. b 
Association of PIK3CA mutation status with HDAC1-targeting drugs (AR-42 and CAY10603), after controlling for TP53 status. Large plots show the 
association without stratification by TP53 labels. “CFE” denotes mutated (Mut) or wild-type (WT) PIK3CA state. An association p-value above each 
box is by Mann–Whitney test. Each dot is a tumor sample belonging to one of the cancer types listed above the panel. Dots are colored according 
to TP53 phenocopy score labels. Small panels represent the same association but upon stratification by TP53 status; top row, stratification using 
TP53 phenocopy score labels; bottom row, using TP53 GDSC CFEs (“cancer functional events”, impactful mutation status, see Methods). The X axis 
represents tumor samples stratified by both the PIK3CA and TP53 status. PIK3CA status groups refer to PIK3CA stratification (WT, Mut) ignoring TP53 
status. Labels should be interpreted as follows: “PIK3CA(WT/Mut) * TP53 (WT/Mut)” refers to stratification by PIK3CA status (CFE i.e. driver mutation 
status), using TP53 phenocopy labels (top) or TP53 CFEs (bottom). c Association of PTEN mutation status with ATR inhibitor drugs (AZD6738 and 
VE821), after controlling for TP53 status. Organization of the plots matches panel b.

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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labels background p = 0.01, Fig.  5b). This example illus-
trates how the use of TP53 phenocopy scores provides 
additional power to identify drug-gene associations, as 
already indicated by the comparison of FDR scores for 
many associations above (Fig. 5a).

Recent reports have pointed out the potential thera-
peutic benefit of ATR inhibitors such as VE-821 or 
VE-822 in PTEN-deficient breast, glioma and melanoma 
cells [58, 59]. ATR is a crucial kinase regulating DNA 
repair and safeguarding genome integrity. ATR inhibition 
in PTEN-deficient cells was associated with accumula-
tion of DSBs, cell cycle arrest and induction of apoptosis 
[58, 59], thus based on these phenotypes we hypothe-
sized that the TP53 functional status may modulate this 
effect. Inspecting our data supports that the ATR inhibi-
tors VE-821, VE-822, and AZD6738 were associated with 
a lower fitness in PTEN-mutant cells of the SKCM, OV, 
BRCA and DLBC cancer types (Fig. 5c, Additional file 1: 
Fig. S11d). This effect was however revealed only when 
TP53 status was taken into consideration, since p53-defi-
cient cells had an increased survival that obscured this 
association  of PTEN and ATRi (Fig.  5c, Additional 
file  1: Fig. S11d). While significance of the TP53 inter-
action term was not reached in this particular example, 
probably because the number of cell lines with a PTEN 
mutation (but TP53 wild-type) was low, nonetheless the 
association of ATRi IC50 values was found to be more 
robustly significant in a TP53 wild-type context than in 
a TP53 deficient context. This means there was a more 
prominent difference in cell fitness upon ATRi treatment 
comparing PTEN-mutated to PTEN wild-type cells in 
a TP53-proficient background (TP53 wild-type  IC50-
PTEN Cohen’s d = -0.41 vs TP53 deficient AZD6738 
IC50-PTEN Cohen’s d = -0.05).

Overall, above we highlighted two examples where 
TP53 functional status modulates the association 
between HDAC1 inhibitors and PIK3CA driver muta-
tions, and ATR inhibitors and PTEN driver mutations. 
There were however many other significant associations 
involving TP53 status, cancer driver gene mutations (or 
CNA) and activity of  drugs (listed in Additional file  4: 
Data S7), for example the association between PIK3R1 
mutations and sensitivity to MET inhibitors (Additional 
file 1: Fig. S11c).

To estimate the importance in considering TP53 sta-
tus in discovering drug associations  more generally, we 
considered overlap in associations recovered when TP53 
status was accounted for versus when TP53 status was 
ignored. Only 14% of significant associations of a given 
molecular target to driver gene alteration status  were 
shared between two analyses (Additional file 1: Fig. S10c), 
indicating that considering TP53 status strongly alters 
the drug-gene links that can be recovered from statistical 

testing of drug screens  on cancer cell lines. The TP53 
status-aware testing recovered a higher number of asso-
ciations (n = 12,150 versus 7853, both at < 25% FDR). We 
also noted this effect depended on the particular gene: 
drug responses in genes such as KRAS or TP53BP1 are 
well explained by gene mutational status alone, not ben-
efitting from TP53 stratification (Additional file  1: Fig. 
S11a). Nevertheless, for most genes, their drug associa-
tions were more confidently retrieved when TP53 status 
was accounted for (e.g. BRAF, HRAS, ATM, APC; n = 18 
genes total). Overall, the above data suggests that TP53 
functionality should be considered when matching drugs 
to cancer patients based on the various driver gene muta-
tions in their tumor, and that this TP53 functional status 
should preferentially be estimated via a phenocopying 
score rather than TP53 gene mutations.

Discussion
Disabling the master tumor suppressor gene TP53 pro-
vides cancer cells with important advantages such as 
avoiding cell cycle arrest or apoptosis upon replication 
stress or DNA damage. Because TP53 acts as a transcrip-
tion factor controlling expression of hundreds of genes, 
a functional read-out of TP53 activity can be obtained 
using gene expression data, both at the level of RNA or 
at the protein level [20–23]. These gene expression-based 
scores of TP53 function have potential clinical relevance 
in predicting cancer aggressiveness/patient survival and 
therapy response [22, 23, 60, 61]. In this study, we devel-
oped a robust  global transcriptome score of TP53 defi-
ciencies, and applied it to ~ 7,000 tumors and ~ 1,000 
cancer cell lines, to answer three questions.

Firstly, we asked how common are the TP53-mutation 
phenocopying events across human cancers. We esti-
mated a 12% frequency of TP53 loss phenocopies, com-
pared to a 58% prevalence of TP53 mutant tumors. In 
some cancer types such as BRCA and BLCA, the TP53 
phenocopies may constitute a high fraction of 19% and 
16% tumor samples, respectively, suggesting that the 
TP53 status of tumors should preferentially be meas-
ured via a functional readout (here, transcriptome-wide 
signature) rather than considering only the TP53 gene 
mutations. Supporting this notion, a recent study using 
a four-gene expression signature of TP53 activity dem-
onstrated that this significantly predicts patient survival 
across 11 cancer types, and that in the majority of those 
it performs better than considering TP53 mutations [22].

Secondly, given the high prevalence of TP53 phenocop-
ies, we asked if there exist additional genetic events that 
are associated with these phenocopies. We developed a 
method that considers CNA profiles jointly with gene 
expression in tumors, further integrating experimental 
data from CRISPR and RNAi screens, which confidently 
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identified the USP28 gene deletion as a common TP53-
loss phenocopying event. This is relevant for at least five 
cancer types: BLCA, STAD, BRCA, LIHC and LUAD, 
and affects 2.9%-7.6% tumor samples therein. The same 
statistical methodology also highlighted additional 
genes neighbouring the known phenocopies MDM2 
and PPM1D – the CNOT2 and MSI2 genes, respectively 
– which are often co-amplified with the ‘primary’ gene 
in the CNA gain segment and may boost the resulting 
TP53-loss phenotype. Our analysis provides an example 
illustrating a more general principle of how molecular 
phenotypes (here, a transcriptional signature and fitness 
effects from a CRISPR screen) can be used to identify 
causal genes in a CNA segment.  Our consideration of 
CRISPR k.o. screening data allowed us to circumvent the 
confounding effects of genetic linkage within the recur-
rent, phenocopying CNA segments, because the CRISPR 
reagent effects are not strongly coupled to the localiza-
tion of the genes. Related genomics methodologies could 
be applied in future work to interrogate various recurrent 
CNA events observed in tumors, for which the causal 
gene(s) are often not known with confidence.

Thirdly, we asked if a better measurement of the TP53 
functional inactivation status may be helpful for pre-
dicting cancer cell response to antitumor drugs based 
on genetic markers. Given that TP53 deficiencies have 
myriad downstream consequences on the cell, including 
e.g. suppression of cell cycle checkpoints, or inactiva-
tion of various DNA repair pathways [4] it is conceivable 
that the TP53 background may affect the activity of vari-
ous drugs to kill cancer cells, including drugs targeted 
towards a particular driver mutation outside of TP53 
itself. We searched large data sets for three-way statisti-
cal interactions involving TP53 status, each drug activity, 
and each mutated cancer driver gene. This suggested for 
instance that TP53 status modulates the selective resist-
ance towards HDAC1-inhibitor drugs in PIK3CA-mutant 
cells. The associations we identified were filtered to retain 
those supported in multiple compounds targeting the 
same protein or pathway; enforcing agreement across 
multiple measurements may allay concerns of reproduc-
ibility in cell line screening databases [62–64]. Recent 
work by us and others [55, 65] has used statistical meth-
ods to integrate over diverse screening datasets, con-
sidering drug and CRISPR genetic screens jointly, thus 
improving reliability of drug-target association discovery. 
Our robustly supported set of drug-target gene links that 
may be modulated by TP53 status (Additional file 4: Data 
S7) provides a comprehensive resource for follow-up val-
idation of the TP53 functional status in modulating gene-
drug associations.

The statistical model that we employed to identify TP53 
loss phenocopying events draws on the expression levels 

of 217 genes, and is largely portable across various human 
tissues. Given that the model’s predictive accuracy is 
high (demonstrated using cross-validation and using an 
independent data set of cancer cell line transcriptomes), 
the errors it makes may be of interest. While the appar-
ent false-positives are often TP53 loss phenocopies using 
still-unknown mechanisms, extending the USP28 exam-
ple addressed in this study, it would also be interesting 
to look into the apparent false negatives in future work. 
These TP53-mutant tumors classified as TP53 wild-type-
like by our transcriptome score were not considered 
here, because of their relatively modest number, mak-
ing statistical analyses difficult. Going forward, analyses 
of genomes from larger cohorts of cancer patients may 
provide enough examples to reveal mechanisms of re-
establishing activity of mutated TP53 in certain cancers. 
Conceivably, this may happen by normalizing expression 
of the TP53-downstream genes which have been dysregu-
lated by the TP53 mutation; understanding these events 
may inspire new avenues for therapy of TP53 mutant 
tumors.

The general statistical approach presented here could be 
applied beyond TP53 also to other driver gene phenocopy-
ing events which may occur in tumors. For instance, RAS 
pathway activation transcriptomic scores were proposed 
[21], and similarly so the homologous recombination DNA 
repair scores were proposed based on mutational signa-
tures [66, 67]. Conceivably, other cancer pathways may 
be similarly addressed as well, systematically analyzing 
their distribution across tumors to identify phenocopying 
events, as well as their implications to drug response pre-
diction, as we have done here for TP53 phenocopies.

Conclusions
Our study provides insights into the prevalence and implica-
tions of TP53 deficiency in human cancers, which often hap-
pens by phenocopying, thus highlighting the need to consult 
a functional readout of TP53 activity in precision medicine 
efforts. Integration of a transcriptomic signature of TP53 
inactivity with experimental data from CRISPR and RNAi 
screens identified USP28 gene deletions as a common TP53-
loss phenocopying event in tumors, and in addition we iden-
tified auxiliary genes neighbouring MDM2 and PPM1D that 
may enhance their phenocopying effect. Furthermore, our 
study suggests that a measurement of TP53 functional status 
can improve the prediction of cancer response to antitumor 
drugs, such as HDAC and ATR inhibitors.

Methods
Data collection and preparation
Gene expression and Copy Number Alteration (CNA) data
We downloaded gene expression data (transcripts per 
million, TPM) from GDC Data Portal [68] for human 
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tumor samples (TCGA) and from GDSC [51] and CCLE 
[69] for cell line samples (CL).

We filtered out genes with missing values in more than 
100 samples and selected the overlapping genes between 
cell lines and tumors. Cancer types with less than 10 
samples were filtered out. Low expressed genes were 
removed (TPM < 1 in 90% of the samples) and applied 
a square-root transformation to TPM. Cancer types. 
Tumors with less than 10 samples were filtered out. In 
total, we have 12,419 features for 966 CL samples and 
9149 TCGA samples.

Tumor purity estimates were obtained from TCGA 
ABSOLUTE (using Tumor.purity function, R package 
TCGAbiolinks 2.25.3). Samples with top quality (ABSO-
LUTE score = 86) were removed for correlation testing.

We collected CNA from GDC Data Portal [68] for 
TCGA samples and from DepMap [63] for CL samples.

For external validation, the RNA-Seq data and CNV 
data for PCAWG [70] was downloaded using Xenahub 
[71]. Samples shared between TCGA and PCAWG data-
sets were removed from PCAWG. Only the genes pre-
sent in the TCGA dataset were kept in PCAWG RNAseq 
data. RNAseq data was square root transformed. Cancer 
types that were considered equivalent between the two 
datasets were the following: ESAD/ESCA, CLLE/DLBC, 
MALY/DLBC, RECA/KIRC, PACA/PAAD, LIRI/LIHC. 
In total, we used 12,419 gene expression features for 555 
PCAWG tumors across 7 cancer types.

Data alignment between tumors and cell lines
In order to later generalize the model to cell lines we pro-
ceed to align TCGA and CL data. For this, we applied 
ComBat, a batch adjustment method, to account for 
intrinsic differences between tumor signal and cell lines 
signal [54]. For the alignment of TCGA and CL data, we 
first applied quantile normalization (normalize.quan-
tiles function, preprocessCore R 1.48.0 package) using 
tumor data as reference and then applied ComBat (Com-
Bat function, R package sva 3.32.1). Each group (TCGA, 
GDSC or CLLC) was treated as a different batch. We pro-
ceed similarly using PCAWG gene expression data.

TP53 status label (according to GDSC)
TCGA Pan-Cancer Atlas somatic mutation data were 
extracted from the MC3 Public MAF (v0.2.8) data set 
[72]. We followed the Iorio et  al. methodology [73] to 
determine bona fide TP53 mutations (0:wild type, 1: 
mutated). We identify recurrent variants that are likely 
to contribute to carcinogenesis. We considered mutated 
variants: non-synonymous missense mutations, indels 
(in frame insertions and deletions and out of frame 
insertions and deletions), nonsense mutations and spe-
cific splice-site mutations (such as “p.X125_splice”). 

Samples without any of these mutations annotated were 
considered TP53 wild type. In only 5% of the cases (179 
out of 3416) our labels differed from the ones provided 
by Iorio et al. In total, we obtained TP53 labels for 7788 
TCGA tumors. TP53 variant pathogenic scores were 
obtained from the EVE data portal [74] and from VAR-
ITY data portal [75]. For the validation dataset, TP53 
mutations were downloaded from PCAWG XenaHub 
(simple somatic mutation (SNVs and indels)—coding 
driver mutations, [70]).

TP53 score classifiers in human tumors
We used the aligned human tumor data to train a 
supervised elastic [20–23] net penalized logistic regres-
sion (using cv.glmnet function with alpha = 0.5, R pack-
age glmnet 4.0–2) classifier with cyclical coordinate 
descendent optimization [76]. The choice of Elastic 
net penalization aims to deal with two concerns: the 
large number of variables can lead to high complexity 
(overfitting) and the feature multicollinearity. Elastic 
net regressions are seen as a good trade-off that ben-
efit from the dimensionality reduction provided by 
Lasso penalization while keeping as many informa-
tive variables as possible (Ridge penalization). Of note, 
these three regularization methods yielded similar 
cross-validation accuracy: Elastic net (i.e. alpha = 0.5) 
AUC 0.960, Lasso (i.e. alpha = 1) AUC 0.965, and Ridge 
(i.e. alpha = 0) AUC 0.952, suggesting that the default 
alpha = 0.5 in Elastic net method is a reasonable choice. 
The model is trained using RNAseq data (X matrix) to 
infer TP53 status (Y matrix). As a reference (Y) during 
training we used TP53 mutation status labels.

For the training set, we excluded the tumor samples 
that have an amplification (not neutral, > 0, according to 
GISTIC CNA thresholded calls downloaded using Fire-
browseR package, Analyses.CopyNumber.Genes.Thresh-
olded function) in previously known TP53 phenocopying 
genes (MDM2, MDM4, PPM1D) or a deep deletion of 
TP53 (n = 2065), to prevent the model from relying too 
much on dosage effects of these genes, instead of the 
downstream response.  Known phenocopies and TP53 
gene expression were removed from the training dataset 
with the same purpose.

In addition, to control for cancer type specific signals 
we included cancer type as a dummy variable. To control 
for class imbalance, we included weights in the classifier.

The model learns a vector of gene-specific weights that 
better classifies TP53 status. The score from the mod-
els determines the probability of a given tumor of being 
TP53 deficient. Optimization of the penalized regression 
formula and further details of the classifier can be con-
sulted at [76].
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Leave‑one‑cancer type‑out (LOCTO) classifier
We used PCAWG gene expression data aligned with 
TCGA data using ComBat to train an Elastic Net classi-
fier with the same features and structure as above. The 
model is trained using RNAseq data (X matrix) to infer 
TP53 status (Y matrix). In this case the models were fit 
excluding from the training data all examples from one 
cancer type, iterating over cancer types. Metrics and 
curves from Additional file  1: Fig. S1a were calculated 
using the held out cancer type data.

Assessment of the classifier and calculation of FDR score
Using 90% of the training set and 5 balanced folds (bal-
anced based on TP53 mutational state) we performed 
cross-validation. We measured the performance of the 
training set (folds used for training) and the testing set 
(10% held out). Areas under the Receiving Operating 
Curve (AUROC) and the Precision Recall curve (AUPRC) 
were calculated for both training (cross-validation) and 
testing sets.

FDR was calculated by sample using each sample prob-
ability score from the classifier as threshold for determin-
ing positive and negative samples FDR = false positive 
/ (false positive + true positive). Samples harboring an 
amplification (GISTIC thresholded amplifications, Fire-
browseR package, Analyses.CopyNumber.Genes.Thresh-
olded function) of known phenocopying genes (MDM2, 
MDM4, PPM1D) or TP53 deletions (GISTIC thresholded 
deep deletions, FirebrowseR package, Analyses.Copy-
Number.Genes.Thresholded function)) were considered 
as true positives when calculating FDR.

In Fig.  1b, density of known phenocopies was calcu-
lated using MDM4, MDM2, PPM1D (amplifications) and 
TP53 (deletions) CNA over/under the 95/0.05 th quan-
tile. All TP53 Phenocopy scores (probabilities of being 
TP53 dysfunctional) are provided at Data S2.

For the validation data (PCAWG), the same procedure 
was followed. In this case, we used the downloaded con-
sensus CNV data to determine samples that were ampli-
fied for MDM4/MDM2/PPM1D or deep-deleted for 
TP53.

Precision and recall in the TCGA and PCAWG dataset 
were obtained similarly to FDR. MDM2/PPM1D/MDM4 
amplification and TP53 deep deletion were considered to 
be positive cases.

The classifier coefficients were analyzed using the GO 
enrichment tool ShinyGO [77]. The 12,419 genes from 
the gene expression matrix with a coefficient equal to 
zero were used as background. Full classifiers relevant 
coefficients are provided at Data S1.

The coefficients of the TP53 model should be inter-
preted with care, for several reasons: some of these genes 
may change in expression levels via indirect association 

meaning they may not be directly regulated by TP53; 
the gene set may omit genes that are bona fide TP53 tar-
gets if the information contained in them is redundant 
with other genes; and finally these genes may individu-
ally be only weakly associated with TP53 status, since 
the method optimizes the expression markers’ collective 
power. Visualization was performed using Revigo [78].

TP53 status detection in cell lines
Using the downloaded RNAseq from GDSC cell lines 
data we applied our trained tumor classifier to cell lines. 
As stated above, RNAseq data was square rooted, nor-
malized and ComBat batch corrected. Cell line predic-
tion performance was measured using as reference TP53 
COSMIC labels [79] combined with Iorio et  al. meth-
odology [73] as we did in tumors. FDR was calculated 
again using samples harboring an amplification of known 
phenocopying genes (MDM2, MDM4, PPM1D) or TP53 
deletions as true positives.

Using the classifier scores we separate the cell lines 
high-confidence set (FDR <  = 18%) using as thresh-
old reference GISTIC tresholded TP53 deep deletions 
(-2) (threshold = 0.93) (FirebrowseR package, Analyses.
CopyNumber.Genes.Thresholded function). Therefore, 
we determine 3 sets derived from our Phenocopy score: 
high-confidence set (predicted TP53 phenocopies, classi-
fied as mutant but originally labeled as wild type), TP53 
mutant (classified and labeled as mutant) and TP53 wild 
type (classified and labeled as wild type). All cell line pre-
dictions are provided at Data S3.

Due to a lack of positive controls, samples that were 
classified as wild type being originally labeled as TP53 
mutant were not considered further. However, in the 
future, analyses with a higher number of cancer genomes 
may reveal mechanisms of re-establishing TP53 activ-
ity in some TP53 mutant cancers (e.g. by normalizing 
expression of the TP53-downstream genes which have 
been dysregulated by the TP53 mutation).

Gene codependency with TP53 knockout/knockdown in cell 
line screens
Following data of the 2021 Q4 release downloaded from 
the DepMap project website: CRISPR data from PROJECT 
Score [26] (“Achilles_gene_effect.csv”), combined RNAi 
from DEMETER2 scores repository [27] (“D2_combined_
gene_dep_scores.csv”), and the cell line metadata (“sample_
info.csv”). In this data, negative scores imply cell growth 
inhibition and/or death following gene knockout.

CRISPR data is normalized so non-essential genes 
scores are close to 0. We used Pearson’s correlation to 
correlate the gene effect of CRISPR TP53 knockout in 
every cell line to other genes’ effect. We tested 990 cell 
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lines for 12,419 genes. This correlation score was calcu-
lated both pan-cancer and by cancer type.

Similarly as with CRISPR codependency data we cor-
related gene knockdown effect with TP53 knockdown 
(RNAi) effect using Pearson’s correlation test. We tested 
700 cell lines for our 12,419 genes. This score was calcu-
lated both for pan-cancer and by cancer type.

Calculation of the combined gene prioritization score
We sought to rank possible TP53 loss phenocopying 
genes testing different data: copy number variant data, 
gene expression data (RNAseq), RNAi codependency 
score and CRISPR codependency score. We used the 
downloaded tumor data (previously described) and our 
TP53 Phenocopy score to test for differences across our 
3 main TP53 groups: TP53 wild type (labeled and classi-
fied as wild type), TP53 mutated (labeled and classified 
as mutated) and predicted TP53 phenocopied (labeled 
as wild type but classified as mutated). We guessed that 
phenocopying genes should have a differential expression 
in the phenocopies group when comparing to wild type 
and mutated TP53 groups individually. We tested 12,419 
genes (by cancer type) in the following manner (via Stu-
dent’s t-test):

CNV_gene_TP53_wt versus CNV_gene_TP53_phe-
nocopies (CNV0 test),
CNV_gene_TP53_mut versus CNV_gene_TP53_
phenocopies (CNV1 test)
GE_gene_TP53_wt versus GE_gene_TP53_pheno-
copies (GE0 test)
GE_gene_TP53_mut versus GE_gene_TP53_pheno-
copies (GE1 test)
RNAi_score_gene versus RNAi_score_TP53 (RNAi 
codependency score, methodology described above)
CRISPR_score_gene versus CRISPR_score_TP53 
(CRISPR codependency score, methodology described 
above).

Three thousand ten genes did not have gene expres-
sion data so GE1 and GE0 tests were omitted from the 
combination test for those genes. We combined the 
p-values values from all available tests by cancer type 
using Fisher’s method for combining p-values. For each 
category (CNV and GE) we only use in the combination 
the worst p-value (i.e. maximum) between CNV0 and 
CNV1 test, and separately between GE1 and GE0 test, 
as a way of aggregating. Genes in which the test direc-
tion is not coherent in CNV, GE and codependency 
score were dropped. A gene with a negative codepend-
ency score, such as a negative regulator such as MDM2, 
is expected to cause a phenocopy of TP53 by amplifica-
tion and overexpression (therefore a higher expression 

in the phenocopies group that TP53 wt or mut). P-values 
were FDR adjusted using Benjamini–Hochberg method 
(p.adjust function of the stats R package). We further 
merged each cancer type combined p-values into one sin-
gle p- value using Fisher’s approach, and FDR adjusted. 
That way we obtained the final Prioritization score for 
each gene in a cancer-combined way. Pearson R score of 
CRISPR/RNAi codependency was merged across cancer 
types by taking its mean value.

We set as reference points the known phenocopying 
genes’ (MDM2, MDM4, and PPM1D) FDRs and CRISPR 
codependency scores. To establish a stringent threshold 
for new candidate phenocopying genes, we required that 
a gene’s prioritization score should have an FDR as signif-
icant as the best-ranked known phenocopying gene (con-
sidered by cancer type). Same requirement was applied 
for the CRISPR codependency score. For example, the 
known phenocopying genes with the best score by can-
cer type was MDM4 in the LUAD cancer type, with an 
combined FDR of 4e-05 and a CRISPR codependency 
score of -0.21.  Finally, we additionally applied a pan-
cancer CRISPR and RNAi codependency score thresh-
old, requiring genes to have at least a modest correlation 
(absolute value >  = 0.1) between the TP53 knockout/
knockdown fitness a candidate gene knockout fitness in 
both CRISPR and RNAi screens (codependency score); 
this filter removes many of the passenger neighboring 
genes that are co-amplified with known phenocopying 
genes.

TP53 wild‑type and TP53 ‑/‑ isogenic cell line genetic screens
Mean beta scores were calculated using MAGeCK-MLE 
[80] for TP53-isogenic pair cell lines A549 [81] and two 
RPE1 cell lines [82, 83]. Beta scores represent the effect 
that gene knock-out has on cell fitness.

We calculated the Z-scores (distance from the mean 
expressed as number of standard deviations) of either 
USP28 or ATM within the distribution of their respective 
neighbor genes, for each dataset and TP53 status "1Mbp 
neighbor genes" are genes present in Brunello [84] and 
Gecko v2 [85] libraries and located within a 1Mbp win-
dow surrounding either USP28 or ATM, obtained from 
genecards.weizmann.ac.il.

Drug response associations with TP53 status
We collected GDSC [73] drug data for a total of 1000 cell 
lines. We used IC50 as a measure of activity of a com-
pound against a specific cell line. If drug data was avail-
able in both GDSC1 and GDSC2 versions, GDSC1 data 
was selected.

We also collected each drug putative target and target 
pathway information from the GDSC website (https://​
www.​cance​rrxge​ne.​org/). We filtered out NA values and 

https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
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transformed IC50 scores to log scale. We downloaded 
GDSC mutational Cancer Functional Events (CFEs) [73] 
in order to: make comparisons between TP53 Pheno-
copy score and GDSC TP53 CFEs and to test other gene 
status-drug response associations, while controlling for 

TP53 status. Mutational CFEs consist of a GDSC curated 
set of cancer genes (CGs) for which the mutation pattern 
in whole-exome sequencing (WES) data is consistent 
with positive selection.

We first used drug response (IC50) values of 449 GDSC 
drugs to fit a pan-cancer regressions against TP53 status 
using cancer type as control variable. We fit three differ-
ent regressions per drug response: against TP53 CFEs, 
against predicted TP53 Phenocopy thresholded scores 
and against TP53 random labels.

For the TP53 status we used the groups obtained 
from our phenocopy score being the TP53 high-con-
fidence phenocopying set (classified as mutant by the 
score, but labeled as wild-type genetically) and TP53 
mutant set (classified as mutant, labeled as mutant) 
the TP53 deficient set (TP53.status = 1) and TP53 wild 
type (classified as wild-type, labeled as wild-type) as 
wild type set (TP53.status = 0). Due to uncertainty, we 
filtered out samples with a TP53 mutation classified as 
wild-type. Cancer types with less than 3 cases for any 
category were filtered out. We used the esc R package 
to calculate effect size (cohens_d function). P-values of 
associations were FDR corrected using the Benjamini-
Hochberg (“fdr”) correction of the p.adjust function 
(stats package).

We separate the drugs into groups according to the 
pathway the gene they target belong to. By pathway, we 
calculated the slope resulting from the comparison of the 
FDR phenocopy score regression versus the FDR TP53 
CFEs. For the visualization we plotted raw IC50 values 
of different drugs and all drugs together across the differ-
ent cell line defined sets. For further analysis, we merged 
the cancer types that are thought to have some similar-
ity: HNSC with LUSC (jointly known as HNSC_LUSC), 
GBM with LGG (LGG_GBM) and OV with UCEC 
(OV_UCEC).

Drug response associations of gene status controlling 
for TP53 status
We collected drug screening data from the PRISM pro-
ject [52] and GDSC project [51]. NA values were filtered 
out and IC50 values were transformed to logarithmic 

log(IC50)∼TP53.status+cancer.type

scale. We downloaded mutation features (GDSC muta-
tional CFEs, see above) from [73]. 

First, we fit a regression for each drug and gene 
CFE including TP53 loss Phenocopy score and the inter-
action term as it follows:

For comparison, we performed the same analysis using 
TP53 random and TP53 CFEs instead of TP53 Pheno-
copy.status.

We tested every gene mutational CFEs out of the 300 
genes provided by GDSC. We filtered out cases with lss 
than 3 samples in any category (mutated:1 or wildtype:0) 
for TP53 status and gen CFEs. Regressions were fitted by 
cancer type using glm package (glment 4.0–2 R package). 
We selected genCFEs p.value and FDR correct using the 
Benjamini-Hochberg (“fdr”) correction of the p.adjust 
function (stats R package). The coefficient of the genCFEs 
variable informs us about the fold change of the different 
variable states (mutant:1-wildtype:0) when TP53Pheno-
copy.status is set to its reference levels (wildtype:0). We 
compared these scores when using TP53 Phenocopy to 
TP53 CFEs by plotting FDR values and calculating slope 
(Fig. 5a, Additional file 1: Fig. S10a).

Two‑way association tests for gene‑drug associations 
modified by TP53
To further analyze TP53 interaction in a more stringent 
way we implemented a version of the “two-way asso-
ciation test” approach recently developed by us and 
reported in Levatic et  al. [55]. In this methodology we 
enforced that, for a given drug, an association between a 
GDSC gene feature (e.g. gene mutation CFEs) and GDSC 
drug response is reproduced in other drugs with the 
same molecular target; here this is additionally controlled 
by TP53 status.

For this, we curated 996 sets of two drugs with the same 
target (ie: Dabrafenib and AZ628, target = BRAF). For the 
two drugs separately, we fitted a regression comparing 
the GDSC drug response against gene mutational status 
(CFE) controlling for TP53 status (as stated above) by 
cancer type. We tested the different labels in the regres-
sion: TP53 CFEs, TP53 random labels and TP53 pheno-
copy labels. We considered associations by cancer type. 
We calculated the two-way association score by averag-
ing the estimates (effect size) obtained between drug 1 
and drug 2. To calculate the p-value for each drug-drug 
combination, we shuffled the TP53 labels and compared 
the obtained random estimates with the actual estimate 
as described in our previous work [55].

For an association to be selected, we require that it is 
observed in more than one cancer type (merged cancer 

log(IC50)∼genCFEs+TP53Phenocopy.status+genCFEs∗TP53Phenocopy.status
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types excluded), FDR < 25% across all cancer types where 
the hit is observed and that the direction (value from 
gene CFEs variable estimate) is maintained across drugs. 
When selecting relevant hits we also required that each 
hit TP53 interaction term variable in regression is signifi-
cant (FDR < 25%). This informs us of deviation from the 
behavior of the regression variables gen_status = 1 and 
gen_status = 0 when TP53 is controlled as interaction. 
We filtered out cases with less than 3 samples in any cat-
egory (mutated:1 or wildtype:0) for TP53 status and gene 
CFEs in a cancer type-specific manner. Supported hits by 
this methodology are reported at Fig.  6 b,c, Additional 
file 1: Fig. S10c, Additional file 1: Fig. S11a and e and in 
Additional file 4: Data S7.

In addition, as a validation for some hits we per-
formed a “two-way” using PRISM data. In this case we 
enforced that, for a given drug, an association between 
a gene feature (GDSC gen mutational CFEs) and GDSC 
drug response is reproduced in the same drug using the 
PRISM dataset. The rest of the methodology was applied 
in the same manner (see GDSC “two-way test” above).

As control, we followed the same procedure of the two-
way testing method but fitting regressions of IC50 ~ gene 
CFEs (without interaction term). FDR corrected p-values 
of gen CFEs coefficient in regressions with and without 
interaction term were compared. We made different 
types of comparisons: by gene associations (Additional 
file 1: Fig. S10b), molecular target-gen CFEs associations 
(different 2-sets of drugs can target the same molecular 
feature) and all associations (Additional file 1: Fig. S10a).
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