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Abstract 

Background  CRISPR-based screens are revolutionizing drug discovery as tools to identify genes whose ablation 
induces a phenotype of interest. For instance, CRISPR-Cas9 screening has been successfully used to identify novel 
therapeutic targets in cancer where disruption of genes leads to decreased viability of malignant cells. However, low-
activity guide RNAs may give rise to variable changes in phenotype, preventing easy identification of hits and leading 
to false negative results. Therefore, correcting the effects of bias due to differences in guide RNA efficiency in CRISPR 
screening data can improve the efficiency of prioritizing hits for further validation. Here, we developed an approach 
to identify hits from negative CRISPR screens by correcting the fold changes (FC) in gRNA frequency by the actual, 
observed frequency of indel mutations generated by gRNA.

Results  Each gRNA was coupled with the “reporter sequence” that can be targeted by the same gRNA so that 
the frequency of mutations in the reporter sequence can be used as a proxy for the endogenous target gene. The 
measured gRNA activity was used to correct the FC. We identified indel generation efficiency as the dominant factor 
contributing significant bias to screening results, and our method significantly removed such bias and was better at 
identifying essential genes when compared to conventional fold change analysis. We successfully applied our gRNA 
activity data to previously published gRNA screening data, and identified novel genes whose ablation could synergize 
with vemurafenib in the A375 melanoma cell line. Our method identified nicotinamide N-methyltransferase, lactate 
dehydrogenase B, and polypyrimidine tract-binding protein 1 as synergistic targets whose ablation sensitized A375 
cells to vemurafenib.

Conclusions  We identified the variations in target cleavage efficiency, even in optimized sgRNA libraries, that pose 
a strong bias in phenotype and developed an analysis method that corrects phenotype score by the measured dif‑
ferences in the targeting efficiency among sgRNAs. Collectively, we expect that our new analysis method will more 
accurately identify genes that confer the phenotype of interest.
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Background
CRISPR-Cas9 screens [1–4] have been widely adopted 
to discover novel therapeutic targets, whose disruption 
leads to a favorable phenotype in relevant disease mod-
els. For instance, crucial factors that modulate cancer 
immunotherapy [5], as well as other diseases, including 
ferroptosis-associated lipid peroxidation [6] and hemo-
globinopathies [7] have been discovered. CRISPR-Cas9 
screens are widely used as viability screens for cancer 
research to search for genes whose ablation can decrease 
cancer cell fitness.

CRISPR-Cas9 screens, especially dropout screens that 
identify the sgRNAs that are depleted in the popula-
tion, typically yield tens to hundreds of candidate “hits.” 
Therefore, efficient prioritization of the hits among those 
candidates for further validation can enhance efficiency 
in finding genes whose ablation reduces cellular fitness. 
However, low-activity sgRNAs inevitably add bias to the 
screening results, leading to false negative hits. Different 
sgRNAs targeting the same gene often result in varying 
changes in the phenotype despite the assumption under-
lying CRISPR-Cas9 screens that the change in phenotype 
by sgRNA expression is purely a consequence of the abla-
tion of the sgRNA target gene. Several attributes of sgR-
NAs have been proposed to contribute to the noise and 
bias in CRISPR screens, such as (i) sgRNAs can induce 
off-target effects by targeting other unintended gene sites 
[8–11]; (ii) the copy number of targeted genes varies in 
cells, especially in the cancer cells [12, 13]; and (iii) effi-
ciencies of insertions and deletions (indels) differ among 
gRNAs [14]. Therefore, one of the most crucial tasks in 
the discovery of target genes using CRISPR screens is 
minimizing the noise and bias in CRISPR-Cas9 screens 
to maximize the likelihood of finding true hits within the 
candidate hits.

Several approaches have been developed to refine 
CRISPR screening results. Doench and colleagues have 
used an increasing number of sgRNAs targeting the 
same gene [15]. Elling and colleagues and other groups 
used a unique molecular identifier (UMI) to lineage trace 
single cell in CRISPR screens to remove outlier cells 
with aberrant behaviors [16–18]. Also, Garnett and col-
leagues and others made extensive characterization of 
the standard sgRNAs widely used to generate minimized 
sgRNA library consisting of the most effective guides 
[13, 19]. Many groups have developed rules that govern 
the on-target and off-target activities of sgRNAs to suc-
cessfully predict them [15]. However, considering that 
sgRNA sequence design is restrained by the presence of 
PAM and the sequence of the target gene, it is practically 
impossible to expect that thousands of sgRNAs used in 
CRISPR screens are all perfectly optimized. In addition, 
sgRNA optimization rules must be established for each 

Cas nuclease, including the less characterized Cas nucle-
ases [20] and engineered SpCas9 nucleases [21–23], lim-
iting generalizability.

Parts and colleagues and Tsherniak and colleagues 
developed methods to infer sgRNA activity from pub-
lished CRISPR screen data to correct the screen results 
[24, 25]. The inference requires an established set of 
CRISPR screen results across multiple cell lines for best 
performance. Therefore, while this approach may be use-
ful for correcting CRISPR screen data with established 
sgRNA library with records of well-validated results, such 
data are again limited for CRISPR screens with custom 
sgRNA libraries or with less characterized Cas nucleases. 
We reasoned that the above limitations in optimization 
and correction of CRISPR screens can be overcome if the 
frequency and DNA cleavage efficiency of each sgRNA 
can be measured simultaneously (Fig.  1). This approach 
enables efficient correction of CRISPR screen results 
without existing knowledge in sgRNA activity or requir-
ing multiple replicates across multiple cell lines because 
each replicate contains both the changes in viability and 
frequency of indel mutations in cells carrying a specific 
sgRNA.

By taking a library architecture that enables such a task 
[26], we present a novel analysis method for adjusting 
changes in viability with the actual, observed differences 
in indel frequencies. By performing a “tiling array” screen 
that involves the use of every possible sgRNA that targets 
seven different genes, we confirmed that the variation in 
sgRNA activity is by far the dominant factor contribut-
ing to bias in the results. We further developed and vali-
dated an analysis method to correct the viability score 
based on differences in sgRNA activity. We applied our 
new analysis method to previously published CRISPR 
screens to improve the receiver operating characteris-
tic area under the curve (ROC-AUC) value for the true 
positive discovery of essential genes exceeding 0.983. We 
expect our method to provide a framework for removing 
bias in CRISPR screens for more efficient prioritization 
of screen hits for further validation where pre-existing 
evidences of sgRNA activities are limiting.

Results
Indel generation efficiency of sgRNA is the dominant factor 
influencing the changes in phenotype
We first identified the contribution of each sgRNA attrib-
ute to the bias in the CRISPR screen results. To this end, 
we generated a tiling array library that contained all pos-
sible sgRNAs targeting seven selected genes. The selected 
genes included two essential genes (RPL8 and RPL15), 
two dispensable genes (CCR5 and CD4), and three genes 
that were expected to give an intermediate phenotype 
(FNTA, WWTR1, GSK3B). As previously described 
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[26], each sgRNA within the library was paired with 
a sequence (hereafter called the “reporter sequence”) 
that can be targeted by the same sgRNA (Fig. 2A). If the 
sgRNA is active and can cleave the endogenous target 
gene, the sgRNA will similarly generate an indel muta-
tion in the reporter sequence. The library construction 
was done with fold coverage of at least 500 to preserve 
even representation of sgRNAs. Also, PCR amplification 
of the oligonucleotide pool was optimized to minimize 
the decoupling of sgRNA and reporter sequence (see 
the “Methods” section) [27]. We confirmed that > 70% of 
reporter sequences were correctly paired with their cor-
responding sgRNAs using deep sequencing (Additional 
file  1: Fig. S1A). We delivered this library into an A375 
melanoma cell line stably expressing Cas9. The activity 
of Cas9 was confirmed in at least 87% of cells using flow 
cytometry (Additional file  1: Fig. S1B). The indel muta-
tions in the reporter sequence and endogenous target 
were well correlated (Additional file  1: Fig. S1C). A375-
Cas9 cells were infected with the lentiviral library and 
were collected at multiple time points for 3  weeks for 
genomic DNA extraction and deep sequencing (Fig. 2B).

Paired-end sequencing of the PCR amplicon derived 
from the lentiviral genome could simultaneously iden-
tify sgRNA and the presence of indel mutations in the 
reporter sequence (Fig.  2A). NGS analysis revealed that 
most sgRNAs are well represented with 89% (962/1086) 
and 97% (1045/1086) of sgRNA frequencies within 
library within twofold and fivefold difference from 
median frequency (0.93 reads per thousand), respectively 
(Additional file  1: Fig. S1D). 2.6% (28/1086) of sgRNAs 
with reads per thousand of less than 0.1 were excluded 
from analysis as these sgRNAs showed large variation in 

sgRNA frequency and indel frequency between biologi-
cal replicates, indicating genetic drift (Additional file  1: 
Fig. S1E, F). Fold changes (FC) in the frequency of each 
sgRNA and the fraction of reporter sequences that had 
been mutated had a very good correlation (Pearson’s 
r = 0.98, p < 0.0001) between biological replicates, high-
lighting the reproducibility of the screening approaches 
(Fig. 2C, D). FC and mutation frequency of the reporter 
sequence were correlated with viability scores in previ-
ously published screen results (Additional file 1: Fig. S1G) 
and the predicted on-target cleavage efficiency score 
(Additional file 1: Fig. S1H), respectively. We observed a 
gradual increase in indel frequency over time (Fig.  2E), 
indicating that the saturation of the indel mutation was 
minimal during the experiment. The indel frequencies 
varied between 0 and 94%, reflecting that the library con-
sisted of an unoptimized set of sgRNAs.

We first assessed the effect of several attributes of the 
sgRNA, including indel frequency, off-target effect, and 
positions of the sgRNA target sequences within the gene 
sequence, on the FC values for each sgRNA. The FC 
showed a negative correlation with the indel frequency 
of the reporter sequence (Pearson’s r =  − 0.30, p < 0.0001, 
Fig.  3A, Additional file  1: Fig. S2). In contrast, the pre-
dicted number of off-targets, position of targeted sites 
within the coding sequence, predicted frequency of in-
frame mutation, and sgRNA specificity scores had little, 
if any, influence on FC values (Pearson’s r =  − 0.14–0.13, 
p > 0.05, Fig. 3B–D). sgRNAs whose target sites are span-
ning the exon–intron junctions [28] did not show any 
significant differences in fold change compared to those 
targeting within an exon (Fig.  3E, F). These results sug-
gest that indel frequencies of the gRNAs are by far the 

Fig. 1  Approaches for correcting sgRNA activity in CRISPR screens. The conventional method for adjusting guide RNA activities based on the 
pre-existing CRISPR screening database (left). The new method enables efficient correction of CRISPR screen results only with the detection of fold 
change and indel frequencies of gRNAs from the specific libraries (right)
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most dominant factor in determining the FC of sgRNAs. 
This prompted us to develop a new analysis method to 
correct the bias.

Mutations in the reporter sequence are coupled with those 
in the endogenous target gene in the same cell
We recognized that there are sgRNAs with a very low 
FC and indel frequency. Cells expressing inactive or 
low-activity sgRNA should have viability comparable 

to those expressing non-targeting sgRNA. Therefore, 
the theoretical minimum FC value for each sgRNA 
(assuming zero viability for cells that have indel muta-
tion in the target sgRNA gene) is 1-indel frequency. 
However, the FC values of sgRNAs, especially those 
targeting essential genes (RPL8 and RPL15), fell far 
below the theoretical minimum, leading to an unac-
ceptable conclusion that the viability of cells with tar-
get gene cleaved is below zero (Fig.  4A–C, Additional 

Fig. 2  Schematic design and data quality control of tiling array library CRISPR screening. A Schematic diagram of the library construction procedure 
and paired-end sequencing for simultaneous detection of guide RNA and the reporter sequence. B Tiling array library CRISPR screening workflow. 
C Correlation of indel frequencies between two replicates of day 21 samples. D Correlation of log fold changes between two replicates of day 21 
samples. R indicates Pearson correlation coefficient r and p value is calculated by two-tailed test. E Indel frequencies at indicated timepoints from 
the tiling array library. The black line indicates the median indel frequency
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file  1: Fig. S3A-B). Hence, we hypothesized that the 
indel frequency is particularly underestimated for sgR-
NAs targeting genes whose disruption causes signifi-
cant decreases in viability. To this end, we hypothesized 
that the mutation of the reporter sequence is coupled 
with that of endogenous target genes. Therefore, cells 
expressing sgRNA against essential genes with the 
reporter sequence and sgRNA target gene mutated 
will quickly be eliminated from the population, lead-
ing to the underrepresentation of indel mutation in the 
reporter sequence (Fig. 4D).

To test our hypothesis, we performed a 6-thiogua-
nine (6-TG) selection assay [15]. 6-TG is metabolized by 
HPRT1 to thioguanosine monophosphate, which blocks 
purine biosynthesis and ultimately causes DNA damage 
and toxicity [29]. Therefore, ablation of HPRT1 prevents 
cell death after 6-TG treatment. If the mutation of the 
reporter sequence is independent of that of endogenous 
genes, the frequency of the mutated reporter sequence 
will be the same regardless of the 6-TG selection. Alter-
natively, if the mutation is a reporter sequence coupled 
with that of endogenous genes, the cells that survived 

Fig. 3  Indel frequency influences log fold change (LFC) viability scores. A–D Correlation between moving median of LFC in the frequency of 
sgRNAs targeting RPL8 or RPL15 and A indel frequency (day 21), B predicted off-target rank percentage, C percentage of gRNA-targeting cut sites 
within target gene coding sequences, and D percentage of predicted in-frame mutations. Gray dots indicate values for each individual sgRNA while 
black bold dots indicate the moving median of the 20 nearest neighbors. R indicates Pearson correlation coefficient r and p value is calculated by 
the two-tailed test. E, F Comparison of sgRNA fold changes between sgRNAs targeting near exon–intron junction (Junction) and those targeting 
within exon (Other)

Fig. 4  New analysis method with v metric reduces bias generated from the conventional method. A Theoretical minimum fold change as a 
function of indel frequency (viability = 0). B Scatter plots for indel frequency and fold change at day 21 for sgRNAs targeting indicated genes. The 
black line indicates the theoretical minimum FC at viability = 0. Gray shade indicates the area below theoretical minimum FC. C Quantification 
of cells at expected viability below 0 from B (gray). D Two theoretical scenarios showing the relationship between the reporter sequence and 
endogenous sgRNA target gene. E Quantification of indel frequencies of the reporter sequence and endogenous HPRT1 gene using four different 
gRNAs targeting HPRT1 in the presence and absence of 6-TG. F Linear regression of indel frequency and fold change at day 21 of negative control 
gRNAs (solid line). The dotted line is an expected line at viability = 0. Gray dots indicate individual points of negative control sgRNAs and the 
black bold dot indicates a hypothetical point. G The moving median of 4 genes according to X analyzed by LFC or Log2v. All data are presented 
as mean ± s.d. n = 3 biological replicates. Pearson correlation coefficient r is represented by R with X > 0.44 cutoff and the p value is calculated by 
a two-tailed test. H The receiver operating characteristic (ROC) curve of the two analysis methods. The true positive rate is decided by RPL8 and 
RPL15 and plotted against the false positive rate, decided by CCR5 and CD4 (left). The area under the curve analysis for essential (solid line) and 
non-essential (dotted line) genes (right)

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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6-TG selection and those with endogenous HPRT1 muta-
tions will have the reporter sequence mutations as well. 
We constructed vectors containing an HPRT1-targeting 
sgRNA coupled with a reporter sequence that could be 
targeted by the same sgRNA. Surprisingly, we found that 
up to 94% of cells that survived the 6-TG treatment had a 
mutated reporter sequence, suggesting that the mutation 
of the reporter sequence and that of endogenous sgRNA 
target genes were coupled (Fig.  4E). This is remarkable 
as the reporter sequence is located at random location 
independent of endogenous sgRNA target in HPRT1 
gene. Any changes in the frequency of sgRNA, which is 
a consequence of the change in viability upon mutation 
of the endogenous target gene, will also change the indel 
frequency by the same magnitude (Fig.  4D). Therefore, 
the observed indel is underrepresented by FC-1 when 
compared with the actual indel frequency. This led us to 
define an adjusted, actual indel frequency denoted as “X,” 
as a function of the FC and observed indel. The equation 
for “X” is given below:

Establishing a model for inferring viability upon gene 
perturbation from the changes in sgRNA frequency
We then established a model scenario that can be used 
to infer the actual viability v upon ablation of the sgRNA 
target gene from the changes in sgRNA frequency within 
the library. Any changes in the frequency of each sgRNA 
were a consequence of the change in viability v − 1 in 
the X fraction of the total population carrying the given 
sgRNA. Therefore, the FC, the observed fold change in 
sgRNA frequency in CRISPR screens, can be described as 
a function of v and X as follows:

In this model, FC is equal to 1 and 1 − X when v is 1 
and 0, respectively. The deviation of FC from 1 − X is pro-
portional to v. Therefore, v can be calculated as

We first tested whether using the new viability metric 
v as the actual viability could attenuate bias. Contrary 
to our expectation, v still showed a clear negative cor-
relation with X, even for genes whose ablations are not 
expected to affect the viability (e.g., CD4 and CCR5) 
(Additional file 1: Fig. S3C, D). In search of the cause of 
this correlation, we found that even v values for the nega-
tive control sgRNAs showed a negative correlation with 
X. This correlation may be a consequence of the DNA 
damage response and subsequent proliferation arrest 

X = 1− FC+ FC× indel

FC = (v − 1)× X + 1

v =
FC− (1− X)

X

upon indel mutations [30, 31]. The sgRNAs with higher 
cleavage efficiencies may also have higher off-target 
cleavage frequencies.

To adjust the changes in FC by simple negative correla-
tion with X, we used the linear regression of FC and X 
values of the negative control sgRNAs as the hypotheti-
cal FC values when v = 1. With FCv=1 as the expected FC 
when v = 1 inferred from the negative control sgRNAs 
(Fig.  4F), we newly defined the viability v for any given 
sgRNA as follows:

The new analysis method reduces bias in the phenotype 
score of sgRNAs in screens with custom sgRNA library
We examined whether the use of our new viability met-
ric v can attenuate the bias in the viability score by indel 
frequency. Actual viability v values had a much weaker 
correlation with X values than with FC within the 
range of moderate to high X values (X > 0.44) (Pearson’s 
rFC =  − 0.94 to − 0.52, rv =  − 0.32–0.13; Fig. 4G). Notably, 
the v values tended to increase with decreasing X values 
for the X values less than 0.44. This may be due to noise 
in the FC values generated by the off-target effect, which 
can be amplified with very low X values (see the “Discus-
sion” section). We also tested whether sgRNAs targeting 
the essential genes RPL8 and RPL15 were more efficiently 
identified with v than with FC in our tiling array screens. 
Remarkably, the v score more efficiently identified RPL8 
and RPL15 as essential genes with an increase in the 
ROC-AUC value of 6.27% and an increase in delta AUC 
value, which quantifies the ability in distinguishing essen-
tial and non-essential genes within library [32] by 21.7% 
(Fig. 4H). The AUC values were lower than those previ-
ously reported in genomewide screens, largely because 
the library mainly consisted of unoptimized sgRNAs.

Simultaneous quantification of sgRNA frequency and 
activity can be used for correcting bias in screens with 
custom sgRNA library without the existing database 
of sgRNA activity or screening results across multiple 
cell lines (Fig. 1). As a proof of concept, we investigated 
whether our new analysis method can more accurately 
identify essential genes in a customized sgRNA library 
containing 6932 sgRNAs chosen from the Brunello 
library [15] targeting 2305 genes that are predicted to be 
druggable by small molecules [33] (Fig. 5A). NGS analysis 
revealed that most sgRNAs are well represented with 76% 
(5236/6932) and 98% (6793/6932) of sgRNA frequencies 
within library within twofold and fivefold difference from 
median frequency (0.12 reads per thousand), respectively 
(Additional file 1: Fig. S4A). Up to 80% of sgRNAs were 

v =
FC− FCv=0

FCv=1 − FCv=0
=

FC− (1− X)

FCv=1 − (1− X)
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correctly paired with their reporter sequences (Addi-
tional file 1: Fig. S4B). Variations between replicates were 
consistent regardless of sgRNA frequency in the library, 
indicating minimal genetic drift (Additional file  1: Fig. 
S4C, D). The fold change and indel frequency between 
biological replicates were well correlated (Pearson’s 
r = 0.81–0.83, p < 0.0001 for fold change and Pearson’s 
r = 0.88–0.90, p < 0.0001 for indel frequency; Additional 
file 1: Fig. S4E, F). The median indel frequency reached 
77.9% 21  days after infection (Additional file  1: Fig. 
S4G), suggesting that a significant portion of the opti-
mized sgRNAs did not edit 100% of their target genes. 

Low-specificity sgRNAs predicted by GuideScan [34] 
did not have lower fold change compared to high-spec-
ificity sgRNAs (Additional file: Fig. S4H). Remarkably, 
the v value obtained with the same method as Fig. 4 was 
much less dependent of indel frequency calculated as X 
(Fig. 5B). Similar to what was performed for tiling array 
screens, we first compared the effectiveness of conven-
tional FC and v in identifying previously identified essen-
tial genes [35]. Similar to the results shown in Fig.  4H, 
the ROC-AUC value and dAUC were enhanced by 5.24% 
and 15.75%, respectively, with the v metric as the viabil-
ity score (Fig.  5C). Our screening results analyzed with 

Fig. 5  sgRNA activity-corrected viability metric v more efficiently identifies essential genes. A Druggable gene library CRISPR-Cas9 screening 
workflow. B The moving median of all sgRNAs according to X analyzed by FC or v. C The receiver operating characteristic (ROC) curve of three 
analytic methods. The true positive rate is decided by essential genes and plotted against the false positive rate, decided by non-essential genes 
(left). The area under the curve analysis for essential (solid line) and non-essential (dotted line) genes (right). D The receiver operating characteristic 
(ROC) curve of CRISPR screening results of Brunello library using three analytic methods. E Calculated ROC-AUC values from D. F Recall percentage 
at 20% false discovery rate (FDR) calculated by three methods. G False discovery rate (FDR) recall at 95%, 97.5%, and 98% calculated by three 
methods
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the v metric were more consistent with previous screen-
ing results in the DepMap project [36] compared to those 
with FC metric (Additional file 1: Fig. S5A). In contrast, 
JACKS analysis failed to increase ROC-AUC in our 
screens (Fig.  5C), possibly because of the difference in 
our library design containing reporter sequence.

Finally, we tested whether our analysis method and the 
indel frequencies analyzed in Fig.  4B, C can be applied 
to screening results generated by an independent group 
using the same library [32]. The v viability metric more 
efficiently identified essential genes with ROC-AUC 
reaching 0.9830, outperforming conventional FC analy-
sis (0.9716) and JACKS analysis [25] (0.9771) (Fig.  5D, 
E, Additional file 1: Fig. S5B). Our analysis did not com-
promise accuracy (98.4%, 96.8%, and 96.8% at 20% false 
discovery rate with v, FC, and JACKS, respectively) 
(Fig. 5F) while it was particularly effective in decreasing 
false negative data, with false discovery rate at 95% and 
98% recall (true discovery) decreased by 2.0%p and 60%p 
compared to using FC values (Fig. 5G). This is expected 
as the essential genes represented in the library with 
low-activity sgRNAs, such as critical cell cycle regulator 
CDC25A [37, 38] in the present sgRNA library (median 
indel frequency of 37.7% 21 days after transduction), are 
classified as not essential (Additional file 1: Fig. S5C).

Our method also increased ROC-AUC in CRISPR 
screening results in 75% (12/16) of cell lines analyzed 
with an independent whitehead library [39, 40] (Addi-
tional file  1: Fig. S5D). The improvements were less 
dramatic compared to those in Fig.  5D–G because 
experimental conditions of our CRISPR screening would 
likely differ from those of previously published studies 
and therefore the sgRNA activity values are not accurate. 
Also, our analysis was limited to sgRNAs that are com-
mon in the libraries used in published results and those 
used in Fig. 5A (Additional file 1: Fig. S5D) [25, 39–41]. 
In fact, the whitehead library, which benefitted by using 
the v metric, had the largest number of common sgRNAs 
(1206 sgRNAs), whereas TKO (436 sgRNAs) and Yusa 
(1002 sgRNAs) libraries with fewer number of common 
sgRNAs failed to achieve a significant increase in ROC-
AUC across cell lines. Our method showed comparable 
performance as JACKS across all libraries tested (Addi-
tional file 1: Fig. S5D).

The new analysis method identified NNMT, LDHB, 
and PTBP1 as vemurafenib resistance genes
sgRNA activity-corrected viability profile could be used 
for more efficient identification of genes with the desired 
phenotype. Hence, we analyzed CRISPR screens in Fig. 5A 
using conventional FC or v as metrics of viability in the 
presence and absence of the BRAF inhibitor, vemurafenib 
[42], to identify genes whose ablation could sensitize 

melanoma cells to vemurafenib. Both FC and v values were 
used for MAGeCK analysis [43] to calculate the gene-level 
significance of essentiality in the presence and absence 
of the drug (Fig.  6A–F). The PANTHER overrepresen-
tation test [44, 45] revealed that the Notch signaling and 
PI3 kinase pathways (Fig.  6E, F), which are known to be 
involved in BRAF or MEK inhibitor resistance in mela-
noma [46–51], were exclusively identified in the list of hits 
obtained by analyzing v. In addition, the MaGECK [43] 
analysis using v identified NNMT, LDHB, PTBP1, recep-
tor-interacting serine/threonine-protein kinase 1 (RIPK1), 
insulin-like growth factor 1 receptor (IGF1R), and preseni-
lin-2 (PSEN2) as among the top hits that were not identi-
fied by conventional analysis with FC (Fig. 6A–C). IGF1R 
[52], RIPK1 [53], and PSEN2 [54] are already known to 
contribute to vemurafenib resistance, suggesting that our 
new analysis method using v reliably identified hits whose 
ablation can sensitize melanoma to vemurafenib. We simi-
larly used FC and v values as input for the DrugZ analysis 
[55] (Fig.  6A). LDHB, RIPK1, and NNMT were similarly 
more effectively identified as hits using v values for the 
DrugZ analysis. TANK-binding kinase 1 (TBK1) [56, 57] 
and fibroblast growth factor 2 (FGF2) [58–60], which were 
previously reported to be involved in vemurafenib resist-
ance, were also identified as top hits by using DrugZ with v 
input (Additional file 1: Fig. S6).

NNMT [61–63], LDHB [64, 65], and PTBP1 [66–68] 
have been studied for promoting cancer development, 
but their synergistic effects with vemurafenib are not 
clear. To validate the effect of NNMT, LDHB, and PTBP1 
in A375 cells with vemurafenib treatment, we performed 
a GFP competition assay, where the sgRNA-expressing 
cells labeled with GFP were cocultured with unlabeled, 
wild-type cells, and the relative viability of sgRNA-
expressing cells was analyzed by changes in the frequency 
of GFP-positive cells (Fig. 6G, H). When each of the three 
genes was knocked out by CRISPR-Cas9, the GFP-guide 
RNA-expressing cells selectively lost their fitness in the 
presence of vemurafenib (Fig. 6I). We further confirmed 
that the NNMT or LDHB knockout (Additional file 1: Fig. 
S7) reduced the survival rate when compared to wild-
type cells under vemurafenib treatment (Fig. 6H). Finally, 
JBSFN000088, (R)-GNE-140, and NVP-ADW742 which 
are inhibitors of NNMT, LDHB, and IGF1R respectively, 
showed a synergistic effect with vemurafenib compared 
to the DMSO-treated control group (Fig.  6J–L, Addi-
tional file  1: Fig. S8). In addition, these inhibitors over-
came resistance in vemurafenib-resistant A375-VR cells 
and Hs294T cells, which are intrinsic BRAF inhibitor-
resistant cell lines [69] (Additional file 1: Fig. S9, 10). Col-
lectively, the new analysis using v effectively identified 
potential therapeutic target genes whose inhibition can 
overcome resistance to targeted therapy.
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Fig. 6  CRISPR-Cas9 screening using v metric prioritizes hits in A375 melanoma cells treated with vemurafenib. A–C MAGEcK results from the two 
analysis methods. A Schematic flow for analyzing hits from CRISPR-Cas9 screening using two methods. B Volcano plots of MAGEcK results using v 
(left) and FC metrics (right). C Top rank genes were selected through the MAGEcK score using v (left) and FC metrics (right). D Comparison of the 
MAGEcK score of hits between v and FC. B–D Orange color genes were previously reported as synergistic genes with vemurafenib while red color 
genes were newly identified in this study. E, F Pathway analysis results using Panther pathway overrepresentation test (score < 0.09 from E) using 
E v and F FC. G Schematic figure of GFP competition assay. H GFP competition assay with GFP-labeled A375 cells ablated of indicated genes in 
the presence of vemurafenib. I Proliferation assay of A375 cells ablated of indicated genes. All data are presented as mean ± s.d. n = 3 biological 
replicates. J–L Drug synergy score calculated by SynergyFinder in A375 cells treated with indicated drugs in combination with vemurafenib



Page 11 of 16Park et al. BMC Biology           (2023) 21:45 	

Discussion
Pooled CRISPR screens enable a massive parallel inquiry 
of phenotypic changes upon ablation of thousands 
of genes in one experiment. Although this method is 
robust and economical, inherent noise and bias is stem-
ming from the fact that the behaviors of individual cells 
ablated with each gene cannot be observed. Our work 
provides a widely applicable method to perform genetic 
screening and identify hits with a substantially reduced 
risk of bias due to variations in sgRNA activity. Espe-
cially, we successfully implemented our method to previ-
ous CRISPR screening results for better identification of 
essential genes. This highlights the generalizability of our 
approach.

Our method is unique as we used actual, measured 
sgRNA efficiency estimate to correct the screening results 
whereas other approaches were intended to use sgRNA 
efficiency estimates inferred from screening results gen-
erated in previous studies. Therefore, our method is best 
suited for screens using custom sgRNA libraries with 
little to no available published screening results to infer 
sgRNA activities. Our method is also easily applicable 
to screens using other Cas nucleases such as Cas12a and 
Campylobacter jejuni Cas9 (CjCas9) and Streptococcus 
canis Cas9 (ScCas9) [20, 70], with much less options in 
sgRNA activity optimizations. The increasing number 
of sgRNAs per gene in the library can improve the qual-
ity of the CRISPR screens by minimizing false negative 
results. However, especially for genomewide screens, the 
scales of the sgRNA library and subsequent screens grow 
too large with this approach. Our method can be used 
to downsize the sgRNA library by adjusting the viability 
phenotype of low-activity sgRNAs and minimizing false 
negatives with less number of sgRNAs. This could par-
ticularly be useful for CRISPR screens performed with 
complex models such as primary cultures with limited 
scalability.

Intriguingly, the presence of a mutation in the reporter 
sequence was tightly coupled to that of the endogenous 
sgRNA target gene at the single-cell level. This is likely 
a consequence of the variation in the expression of the 
lentivirally delivered Cas9 gene and sgRNAs. Cells with 
edited reporter sequences are likely to have a higher 
expression of Cas9 and sgRNAs than those with intact 
reporter sequences. Thus, cells with edited reporter 
sequences are also more likely to have an endogenous 
target gene edited.

Finally, our new analysis method identified NNMT and 
LDHB, which would otherwise be missed in conventional 
analysis, as novel target genes whose ablation sensitizes 
melanoma cells to vemurafenib. One of the mechanisms 
of BRAF inhibition is the induction of apoptosis [71]. 
NNMT1 reinforces chemoresistance by stabilizing the 

SIRT1 protein [63], which plays a crucial role in cancer 
drug resistance, including apoptosis inactivation [72, 73]. 
In addition, inhibiting LDHB increases apoptosis in can-
cer cells [64], in combination with chemotherapy [74]. 
Further studies are needed to identify the detailed molec-
ular mechanisms underlying the role of the novel target 
genes in promoting resistance to therapy.

There are several sources of inaccuracies in measur-
ing sgRNA activity with reporter sequence edit. The 
editing efficiency by sgRNA does not only depend on 
the sequence of sgRNA but also by the chromatin land-
scape of the target sequence [75]. Our reporter sequence 
as part of a lentiviral transgene integrated at random 
sites within genome cannot have the same chromatin 
landscape as the endogenous target gene. In fact, while 
the indel frequencies of the reporter sequence and the 
endogenous target gene are correlated, the values were 
not identical (Fig. S1E). Also, our reporter sequence can-
not detect moderate to large size (> 10nt towards the 5′ 
end of the sgRNA sequence) deletion. This was inevita-
ble as the distance between the sgRNA and the reporter 
sequence should be minimal for maximal efficiency in 
PCR amplification of the sgRNA-reporter cassette for 
NGS, and to prevent decoupling of the sgRNA and the 
reporter sequence. However, recent studies showed that 
the size of the indel mutation is non-random and can 
vary with sgRNA [76]. Therefore, varying fraction of 
indel mutations in the reporter sequence for each sgRNA 
may have been lost in the analysis, contributing to bias 
in the analysis. Finally, the sgRNA and reporter sequence 
can be coupled at a higher rate than achieved in our 
screens (Figs. S1A, S4A) by minimizing the physical dis-
tance between sgRNA and the reporter sequence, reduc-
ing PCR cycles and extending elongation time during 
library construction and NGS amplicon generation, and 
decreasing transfection rates [27]. Further modifications 
for maximizing the accuracy of reporter sequence as a 
proxy for target gene edit in our analysis may significantly 
improve the CRISPR screening results.

Although our analysis revealed that the differences in 
sgRNA activity are the major determinant of variations 
in viability in CRISPR screens, this does not exclude the 
possibility that the other attributes of sgRNAs contrib-
ute to the bias in screens. It is likely that the effects of 
other attributes are masked by the sgRNA activity effect. 
For example, the off-target effect of sgRNA can still be a 
contributing factor to the noise in the screens. The use of 
high-fidelity variant Cas9 [21, 23, 77] and specificity-opti-
mizing tools such as GuideScan [34] can be used in com-
bination with our library design for optimal performance. 
Also, the functional importance of the sgRNA target site 
within a gene can influence the viability phenotype. Xu 
and colleagues reported that in frame mutations, which 
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are generally considered neutral, targeting essential pro-
tein domain can abolish protein function thereby form-
ing CRISPR knockout hypersensitive regions [78]. As 
previous studies showed that a significant fraction of 
indel mutations are in frame [76], designing sgRNAs to 
maximize the essentiality of the sgRNA targeting site 
within the gene will significantly improve the robustness 
of the phenotype.

Other sources of noise can originate from population 
drift or off-target effects. Our method for determining 
v relies on identifying the relative FC values within the 
window of FC values expected when v is equal to 0 and 
1. However, the expected values of FCv=1 and FCv=0 con-
verge with low X values, so a small noise in FC can be 
overrepresented as a large fluctuation in v. Therefore, 
we believe that our analysis will be particularly useful in 
combination with on-target activity-optimized sgRNA 
libraries with high X values.

Conclusions
We develop and validate the method to adjust the phe-
notype scores with measured sgRNA activity in CRISPR 
viability screens. We expect our method can be used for 
broad applications where options for sgRNA optimiza-
tion are limited.

Methods
Cell culture
HEK-293 T cells were maintained in Dulbecco’s modified 
Eagle’s medium (DMEM) supplemented with 10% fetal 
bovine serum (Welgene) and antibiotics. A375, Hs294T 
cells were maintained in RPMI1640 supplemented with 
FBS and antibiotics. All cell lines were obtained from 
Korean Cell Line Bank (https://​cellb​ank.​snu.​ac.​kr).

Library construction
Oligonucleotide pools synthesized by Twist Biosciences 
were cloned into the hU6 destination vector with Gib-
son assembly. The number of PCR cycles was minimized 
(~ 10 cycles) and extension time lengthened (5  min per 
kilobase) to maximize the sgRNA-reporter coupling rate 
[79]. The resulting hU6-sgRNA cassette was subcloned 
to FUW-EFS-BlastR lentiviral plasmid. The tiling-array 
library contained 1126 gRNAs for seven genes (RPL8, 
RPL15, WWTR1, FNTA, GSK3B, CCR5, and CD4) and 
the druggable gene library contained 6935 gRNAs target-
ing 2305 genes. All library vectors included the reporter 
target sequences that could be cleaved by the gRNA 
expressed in the same vector. All library constructions 
were done at a fold coverage of at least 500 to preserve 
the diversity of the sgRNAs within the library.

Viral vector transfection and virus production
The lentiviral sgRNA library plasmid was co-transfected 
with packaging vectors psPAX2 and pVSV-G (kind gifts 
from the lab of Timothy Lu) into HEK-293 T cells using 
PEI Max (Polyscience, Inc.). The lentiviral supernatant 
was collected 48 h after transfection, cleared of contami-
nating HEK-293 T cells, and stored at − 80 °C. To obtain 
appropriate lentiviral titer, A375-Cas9 cells were infected 
with twofold serial dilutions of lentivirus, and cells were 
grown in 96-well plates in the absence and presence of 
blasticidin. The fraction of infected cells were calculated 
by the relative viability of cells treated with blasticidin 
compared to those not treated.

Viral transduction into A375 cells
The lentiviral sgRNA library was delivered into A375-
Cas9 cells stably expressing Cas9 at a multiplicity of infec-
tion (MOI) of 0.3–0.5, using 8  µg/mL polybrene. Two 
days later, the A375 cells were treated with blasticidin for 
3 weeks until A375 cells were harvested. For the druggable 
gene library screens, A375 cells were treated with vemu-
rafenib (MedChemExpress) or DMSO. Cells were pas-
saged with fold coverage of at least 500 every 2 or 3 days.

Genomic DNA extraction and next‑generation sequencing 
(NGS)
Genomic DNA was extracted using Accuprep genomic 
DNA extraction kit (Bioneer), according to the manufactur-
er’s instructions. The PCR amplicon spanning the sgRNA 
and reporter sequence was generated using primers.

F: 5′-CAA​GCA​GAA​GAC​GGC​ATA​CGA​GAT​NNNNN 
NGGA​CTA​TCA​TAT​GCT​TAC​CGT​AAC​TTG-3′ R: 5′-AAT 
​GAT​ACG​GCG​ACC​ACC​GAG​ATC​TACAC AAG​CAG​
CGT​ATC​CAC​ATA​GC-3′. Deep sequencing was performed 
using HiSeq2500 at a 100 nucleotide read length paired 
end. The primers used for sequencing were as follows  
(5′-3′): Read1 (reading the reporter sequence): CGT​CAG​GAA​
TTA​TCC​GGT​GCC​TAG​AGA​AGG​TCC, Read2 (reading the 
sgRNA): CCG​TAA​CTT​GAA​AGT​ATT​TCG​ATT​TCT​TGG​
CTT​TAT​ATA​TCT​TGT​GGA​AAG​GAC​GAA​ACA​CCG, and 
Index: CGT​CCT​TTC​CAC​AAG​ATA​TAT​AAA​GCC​AAG​
AAA​TCG​AAA​TAC​TTT​CAA​GTT​ACG​GTA​AGC​ATA​
TGA​TAG​TCC​.

6‑TG treatment in HPRT1 knockout cells
Four guide RNAs targeting HPRT1 were cloned into 
lentiviral vectors and used to construct the lentiviruses. 
Each constructed vector contained HPRT1 reporter 
sequences targeted by each HPRT1 guide RNA to check 
the indel frequency rates of the reporter sequences. Each 
virus was transduced into A375 cells and 10 µg/mL blas-
ticidin (Invivogen) for 1  week for selection. Then, 6-TG 

https://cellbank.snu.ac.kr
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or DMSO was added for 2 weeks until the cells were har-
vested for genomic DNA extraction. The genomic locus 
flanking the sgRNA target sequence and the reporter 
sequence were PCR amplified with Q5 High-Fidelity 
DNA polymerase (New England Biolabs). The adapters 
for deep sequencing were appended to the PCR ampli-
cons using xGen DNA library prep kits (Integrated DNA 
Technologies) for NGS analysis. The presence of indel 
mutations in the HPRT1 locus and the reporter sequence 
were quantified using CRISPRESSO2 [80].

Calculating actual indel frequency X and new phenotype 
score v
The frequencies of guide RNAs and their respective indel 
frequencies were counted using custom code available in 
github (https://​github.​com/​tackh​oonkim). The resulting 
read counts were subject to analysis as described below 
with Microsoft Excel.

As noted in Fig.  4F, the non-targeting control sgRNA 
frequency changed with its target cleavage efficiency. 
Therefore, the normalized fold change of each sgRNA 
frequency, FCnorm, was calculated as:   

where FC0 is the fold change of a theoretical control 
sgRNA of zero target DNA cleavage activity. FC0 was 
obtained by linear regression of fold change and indel 
frequency of control sgRNAs (Fig. 4F). 

 Subsequent calculation of adjusted indel frequency 
X and viability metric v was done as described in the 
“Results” section. Briefly, the adjusted, “actual” indel fre-
quency X was calculated as:

where indel is the “observed” indel frequency of obtained 
from the NGS analysis.

Next, adjusted, actual viability v of cells with sgRNA 
target gene disruption was calculated as:

where FCv=0 is a theoretical FC value given zero viability 
upon gene disruption and indel frequency X and is equal 
to 1 − X. FCv=1 is a theoretical FC value given no change 
in viability (v = 1) upon gene disruption and was obtained 
as an equation for linear regression of FCnorm and X for 
non-targeting control sgRNAs (Fig. 4F).

MAGEcK analysis was done as previously described 
[43]. The sgRNA count data for the day 21 sample for 
input data were generated by multiplying either FC 
or v to the initial sgRNA count in the plasmid. Subse-
quent procedures were followed by the user instruction 

FCnorm = FCraw ÷ FC0

X = 1− FCnorm + FCnorm × indel

v =
FCnorm − FCv=0

FCv=1 − FCv=0
=

FCnorm − (1− X)

FCv=1 − (1− X)

(https://​sourc​eforge.​net/p/​mageck/​wiki/​Home/). DrugZ 
[81] was performed following user instruction (https://​
github.​com/​hart-​lab/​drugz).

To apply our approach to previous works, CRISPR 
screening results as raw sgRNA counts were obtained 
from previous studies by Doench and colleagues [15] 
and Parts and colleagues [25], for identical analysis to 
obtain X and v. The sgRNA activities obtained in Fig. 5A 
are directly applied to the data. The fold changes of rep-
licates were averaged. JACKS analysis was performed as 
instructed in https://​github.​com/​felic​ityal​len/​JACKS.

GFP competition assay
The gRNAs for each hit gene were cloned into GFP-
expressing lentiviral vectors FUW-EFS-GFP. Five days 
after virus transduction into A375 cells stably express-
ing Cas9, the fraction of GFP-positive cells was meas-
ured using BD Accuri C6Plus as the initial fraction of 
knockout cells. The same quantification of GFP-positive 
cell fraction was done 7 and 14 days after the initial flow 
cytometry experiment. The relative viability of GFP-pos-
itive knockout cells at “day x” relative to GFP-negative 
wild-type cells was calculated as below:

Pathway enrichment analysis
After discovering hits using MAGEcK, we performed 
pathway analysis using the PANTHER overrepresenta-
tion test with selected genes (genes from each method, 
score < 0.09).

Cell viability assay with chemical inhibitors
A375 and A375-VR cells (1000 cells/well) and Hs294T 
cells (2000 cells/well) were seeded in 96-well plates. The 
next day, inhibitors and vemurafenib were treated at indi-
cated concentrations. The WST assay was performed 
using EZ-cytox reagent (DogenBio) diluted in RPMI1640. 
The absorbance at the 450-nm wavelength was measured 
using Wallac EnVision (Perkin Elmer) 3  days after drug 
treatment. Drug synergies were evaluated by performing 
SynergyFinder (https://​syner​gyfin​der.​org) [82].

Statistical analysis
Data are presented as mean ± s.d. Correlations were eval-
uated using Pearson’s correlation coefficient r analyzed 
by GraphPad Prism. One-sample Wilcoxon test and two-
tailed test were used to calculate the p value.

Relative viability =

GFP+
day x

/

GFP−
day x

GFP+
initial

/

GFP−
initial

https://github.com/tackhoonkim
https://sourceforge.net/p/mageck/wiki/Home/
https://github.com/hart-lab/drugz
https://github.com/hart-lab/drugz
https://github.com/felicityallen/JACKS
https://synergyfinder.org
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