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Abstract 

Background:  Escherichia coli (E. coli) has been one of the most studied model organisms in the history of life sci-
ences. Initially thought just to be commensal bacteria, E. coli has shown wide phenotypic diversity including patho-
genic isolates with great relevance to public health. Though pangenome analysis has been attempted several times, 
there is no systematic functional characterization of the E. coli subgroups according to the gene profile.

Results:  Systematically scanning for optimal parametrization, we have built the E. coli pangenome from 1324 
complete genomes. The pangenome size is estimated to be ~25,000 gene families (GFs). Whereas the core genome 
diminishes as more genomes are added, the softcore genome (≥95% of strains) is stable with ~3000 GFs regardless of 
the total number of genomes. Apparently, the softcore genome (with a 92% or 95% generation threshold) can define 
the genome of a bacterial species listing the critically relevant, evolutionarily most conserved or important classes of 
GFs. Unsupervised clustering of common E. coli sequence types using the presence/absence GF matrix reveals dis-
tinct characteristics of E. coli phylogroups B1, B2, and E. We highlight the bi-lineage nature of B1, the variation of the 
secretion and of the iron acquisition systems in ST11 (E), and the incorporation of a highly conserved prophage into 
the genome of ST131 (B2). The tail structure of the prophage is evolutionarily related to R2-pyocin (a tailocin) from 
Pseudomonas aeruginosa PAO1. We hypothesize that this molecular machinery is highly likely to play an important role 
in protecting its own colonies; thus, contributing towards the rapid rise of pandemic E. coli ST131.

Conclusions:  This study has explored the optimized pangenome development in E. coli. We provide complete GF 
lists and the pangenome matrix as supplementary data for further studies. We identified biological characteristics of 
different E. coli subtypes, specifically for phylogroups B1, B2, and E. We found an operon-like genome region coding 
for a tailocin specific for ST131 strains. The latter is a potential killer weapon providing pandemic E. coli ST131 with an 
advantage in inter-bacterial competition and, suggestively, explains their dominance as human pathogen among E. 
coli strains.
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Background
Escherichia coli is one of the most well-known commen-
sal Gram-negative bacteria, which is commonly associ-
ated with the gut microbiome. Since first identified in 
1844, it has been widely studied as a model organism in 
the laboratory. However, recent findings have shown not 
only the versatility of E. coli living in different ecological 
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niches but also the diversity of its genotypes including 
strains with pathogenicity for animals and human [1, 2]. 
Escherichia coli has been implicated in several disease 
outbreaks involving food contamination and diarrhea 
[3–7]. It is also one of the bacteria most commonly iso-
lated from the urine of patients suffering from urinary 
tract infection (UTI) worldwide [8–11]. Recently, the 
ST131 strains, some of the most prominent variants of E. 
coli, have risen quickly to become pandemic with a mul-
tidrug-resistant phenotype [12, 13]. All these evidences 
suggest that E. coli is not simply a model organism but 
it has implications for public health [14, 15], which need 
attention with regard to the mechanisms of pathogenicity 
[16, 17].

Escherichia coli is known to inhabit the lower intestinal 
tract of warm-blooded animals, including human. It can 
be discharged through fecal material to the living envi-
ronment, particularly soil and water, which could have 
public health implications [15, 18]. This environmental 
E. coli can then adapt to new environmental habitats by 
acquiring genes, virulence factors, and mobile genetic 
elements through horizontal gene transfer with the envi-
ronmental bacteria [19].

There is no obvious association of E. coli phylogroups 
with the geographical location, as well as the living areas 
and feeding habits [20]. Nonetheless, existing studies 
have shown that the phylogroups A and B1 can be iso-
lated from multiple hosts as well as environment [21–26]. 
Phylogroups B2 and D are usually extraintestinal patho-
types [27–29]. Phylogroup E, particularly O157, is usually 
isolated from contaminated food [30]. To date, the dif-
ferent pathotypes of E. coli can be isolated from multi-
ple hosts and the commonly associated phylogroups are 
summarized by Denamur et al. [31].

Depending on the location or site where pathogenic E. 
coli is isolated, it can be broadly categorized into intes-
tinal pathogenic E. coli (InPEC) [32] or extraintestinal 
pathogenic E. coli (ExPEC) [33]. The pathogenic E. coli 
strains can be further classified by pathotypes. InPEC 
is categorized into several major groups, namely AIEC 
(Adherent Invasive E. coli), EHEC (Enterohemorrhagic 
E. coli), EAEC (Enteroaggregative E. coli), ETEC (Entero-
toxigenic E. coli), EPEC (Enteropathogenic E. coli), and 
DAEC (Diffusely Adherent E. coli). On the other hand, 
several notable ExPEC are UPEC (Urinary Pathogenic 
E. coli), NMEC (Neonatal Meningitis-associated E. coli), 
and APEC (Avian Pathogenic E. coli). Different patho-
types have their own associated virulence factors and 
disease manifestations that have been summarized in 
several publications [32, 34, 35]. Virulence factor typing 
was attempted to be used for predicting the pathotypes 
of E. coli. However, there are often ambiguities [35–38] 
as some pathogenic E. coli share similar virulence factors. 

For example, InPECs share similar virulence factors with 
similar pathology within the same subgroup, whereas 
ExPECs frequently do not even have specific virulence 
factors that define a given subtype [35].

Rasko et  al. [39] performed a first comparative analy-
sis of 17 E. coli genomes available in 2008 and showed 
that the E. coli pathotypes can be distinguished by using 
a limited set of molecular markers that are annotated as 
pilus or fimbrial components as well as their secretion 
system. Clark et  al. [34] constructed a pathotype data-
base with 107 E. coli genomes showing presence/absence 
of selected virulence factors. They found a trend of cer-
tain pathotype-associated virulence factors correlat-
ing with evolutionarily related groups of E. coli strains 
(phylogroups). Notably, all these studies do not provide 
a comprehensive characterization of E. coli subtypes but 
instead just rely on known virulence factor lists for clas-
sification. Undoubtedly, the problem of virulence fac-
tors’ overlap across the different pathotypes remained 
unsolved in these analyses.

To date, the largest study of E. coli genomes (more than 
10,000 including incomplete ones) has been reported 
by Horesh et  al. [40]. They provide a classification of E. 
coli lineages according to sequence types (STs; defined 
by multi-locus sequence typing of seven housekeeping 
genes) and phylogroups. Horesh et  al. noted that their 
collection is severely biased towards E. coli strains of 
clinical significance. In fact, the two largest lineages are 
the collections of pathogenic ST11 and ST131 E. coli 
strains, which belong to phylogroups E and B2, respec-
tively. Therefore, efforts should be taken to sample a 
more diverse collection of E. coli genomes.

The available literature about pangenome analyses [41] 
of E. coli revealed several surprising insights: (i) The E. 
coli genomes are very diverse and less than 1000 genes of 
any specific E. coli genome are shared across the species 
(core genome) [42], while tens of thousands of genes are 
considered part of the accessory genome shared by only a 
limited number of strains. (ii) With the availability of an 
increasing number of E. coli genomes, we see the pange-
nome size increasing while the core genome size keeps 
decreasing. This can be seen from the published analyses 
of 17 genomes [39], 61 genomes [42], 186 genomes [43], 
and 307 genomes [44]. The pangenome size increased 
from ~13,000 to ~23,000 genes. At the same time, the 
core genome size fell from ~2200 to ~800 genes in these 
studies. Due to the diversity of E. coli living environ-
ments, it is expected that further genome sequencing 
will continue the trends [45]. To note, the core genome is 
generally expected to represent the essential genes of E. 
coli [46]. However, the definition of the core genome (as 
genes shared by all the genomes) is apparently too strin-
gent and, therefore, several authors experimented with 



Page 3 of 26Tantoso et al. BMC Biology          (2022) 20:146 	

softcore genome definitions (the set of genes shared by a 
certain percentage of genomes) [43, 47].

The pangenome construction critically depends on 
identifying clusters of homologous genes/proteins or 
gene/protein families (GF) among all the genomes in the 
study [39, 42–44, 48]. Various publications have used 
different criteria of defining clusters of homologous 
genes; however, two most important parameters are the 
sequence identity (SeqID) and sequence length cover-
age (SeqLC) in the pairwise alignment of two protein 
sequences. Based on these thresholds, a binary decision 
(belonging or not belonging to a GF) is taken. It has been 
shown that too stringent criteria lead to overestimation 
of cluster numbers, while too relaxed criteria put unre-
lated genes/proteins into the same cluster and under-
estimate the pangenome size [48]. Whereas previously 
published studies have taken arbitrary, ad hoc thresholds, 
finding the optimal parameters (with a criterion such 
as the Jaccard similarity index for a comparison of two 
or more methods for sequence homology assignment) 
should be used for this purpose. An exhaustive search in 
the SeqID and SeqLC parameter space was published for 
the pangenome expansion of Streptococcus pyogenes [49] 
with an optimum for SeqID=50…60% and SeqLC=60%. 
Finally, the presence/absence matrix (PAM; with GFs and 
genomes as indices) with values of 1 (indicates presence 
of GF in the genome) and 0 (indicates absence of GF in 
the genome), respectively, can be determined from the 
gene/protein list in the GFs.

The pangenome matrix can be utilized to find relation-
ships between E. coli genomes, particularly for creating 
a pangenome tree of E. coli [43]. More importantly, we 
expect that the pangenome matrix can be used for molec-
ular characterization of different subtypes of E. coli. The 
frequency or distribution of a gene family across all the 
genomes is expected to follow U-shape distribution. As 
previous pangenome studies have shown [50], most gene 
families are either singletons or commonly shared across 
genomes. Thus, for the characterization of subgroups 
of E. coli strains, most gene families are not informative 
except for those in the accessory genome.

Putting all perspectives together, in this study, we aim 
at performing (1) the construction of the E. coli pange-
nome with a careful preprocessing of genomes and a sys-
tematic search for optimal pangenome parametrization; 
(2) the characterization of E. coli subtypes at the level of 
gene and biomolecular mechanism occurrences, particu-
larly phylogroups, sequence types, and virulence factors; 
and (3) in-depth analysis of specific, insufficiently char-
acterized gene families in the distinct E. coli subtypes 
for the discovery of their actual biological function. This 
analysis provides an unparalleled insight into distinctive 
molecular characteristics of various subtypes of E. coli 

that explain hitherto not understood biological differ-
ences between groups of these bacterial strains.

Results
Characteristics of the E. coli genomes
As described in the “Methods” section below, we 
extracted E. coli genome sequences and their annota-
tions from public repositories. We applied a clean-up 
procedure to ensure data quality and to suppress redun-
dancy. In the final set of 1622 E. coli genomes, the num-
ber of nucleic acid sequences per genome ranges from 1 
to 14, with 389 genomes containing only chromosomal 
sequences with no plasmid sequence and 1233 genomes 
containing at least one plasmid sequence. The genomic 
sequence length ranges from 4,456,672 to 6,162,737 bp 
with an average GC content of 50.65%. The total number 
of protein sequences per genome ranges from 3973 to 
5618 sequences. The number of proteins is highly corre-
lated with the genomic length with correlation coefficient 
of 0.9776.

Given the genome sequences, we performed in sil-
ico sequence typing, phylotyping, and serotyping for 
each genome as described in the “Methods” section. 
We detected 18 genomes with unknown sequence type 
(in addition to 385 sequence types for all remaining 
genomes) and 176 genomes with ambiguous H-serotypes 
(H-unknown; all other genomes have defined O- and 
H-serotypes). There are eight major phylogroups of E. 
coli (A, B1, B2, C, D, E, F, and G [51, 52]) that cover all 
but four genomes that are outliers in the phylogenetic 
tree (one belongs to clade I, two are classified as E or 
clade I, and one genome is unknown). The distribution of 
genomes among the most important sequence types and 
phylogroups (with at least 10 genomes) has been illus-
trated in Additional file 1: Fig. S1.

Additional file  1: Figure S2 shows the phylogroups’ 
genome sizes as well as proteome sizes. As a trend, phy-
logroup A of E. coli has the smallest genome/proteome 
size whereas the phylogroup E has the largest. The phy-
logroup B1 has an especially wide range of genome sizes. 
This is probably due to the presence of two distinct 
groups in phylogroup B1 of E. coli, which will be dis-
cussed later.

Our results show that the pairwise average nucleotide 
identity (ANI) across the genomes is not below 95%, 
which indicates that all genomes are from the same spe-
cies [53]. We used the pairwise ANI to exclude sequen-
tially redundant genomes (with more than 99.99% 
similarity as described in the “Methods” section). This 
has led to the total number of genomes for further 
analysis to be 1324. The detailed information regarding 
retained and removed genomes is available in Supple-
mentary file 1 (as part of zip package Additional file  3) 
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together with the information about serotypes, sequence 
types, and phylogroups.

Additional file 1 Figure S3 displays the distribution of 
sequence types and phylogroups in the remaining 1324 
genomes. Out of the 385 sequence types (ST) available, 
364 of them are represented by fewer than 10 genomes. 
For 21 STs, we find at least 10 genomes. The top 3 
sequence types are ST10, ST11, and ST131. The E. coli 
K-12 belongs to ST10, whereas ST11 includes the O157 
EHEC strain and ST131 is one of the important subtypes 
manifesting multidrug resistance. Similarly to what has 
been reported previously, these three STs are the domi-
nant ones in the genome collection [40]. Focusing on STs 
with at least 10 genomes, these 21 STs include a total of 
674 genomes. This represents 50.91% of the total num-
ber of genomes. In terms of phylogroups’ prevalence, the 
genomes are dominated by phylogroups A, B1, and B2 
followed by phylogroups E, D, F, C, and G.

The different subtypes of E. coli and their relevance 
to virulence
Several studies have distinguished the different patho-
types or subsets of E. coli strains according to virulence 
factors [34, 39, 54]. However, the lists of virulence fac-
tors are expected to be incomplete. Though some phy-
logroups are more associated with certain pathotypes, 
we find that certain virulence factors are not as specific 
[29] as previously described. For example, the coloniza-
tion factor antigen I (CFA/I), which is often associated 
with ETEC strains, is also present in some of the EHEC, 
APEC, and nonpathogenic strains [20]. Further, the 
Nissle 1917 strain known to be a commensal one shares 
many virulence factors with ExPEC strains (though it 
does not have some other of the ExPEC virulence factors 
such as hlyA and pap).

Taken together, we think that the prediction of poten-
tial pathogenicity of E. coli is more relevant than the 
exact pathotype assignment. Therefore, we classified the 
potential pathogenicity (likelihood of virulence) of E. coli 
genome according to its virulence factor count instead. 
Based on the number of virulence factors present in 
the E. coli genome, the virulence category is defined as 
likely nonpathogenic, likely virulent, highly virulent, and 
extremely virulent (see “Methods”).

Figure 1 shows the distribution of virulence categories 
in the different phylogroups. It is clear that each phy-
logroup has genomes with different levels of virulence 
category. Phylogroups B2 (including both non-ST131 
and ST131 strains), E, and G are overrepresented with 
genomes of higher-level virulence categories. Thus, these 
three phylogroups are the most likely ones to have path-
ogenic strains. The phylogroups D and F have a moder-
ately high number of virulence genes. On the other hand, 

the phylogroups A, B1, and C have overwhelmingly low 
virulence strains. This is in concordance with existing 
knowledge that phylogroups A and B1 tend to belong to 
commensal strains of E. coli [55, 56]. The phylogroup C 
(though commonly associated with APEC strains, avian 
pathogens) is phylogenetically close to phylogroups A 
and B1 [31].

Further, we focus on the virulence analysis among the 
more common sequence types in E. coli genome, which 
have at least 10 genomes. Additional file  1: Figure S4 
shows the distribution of virulence categories in the dif-
ferent sequence types. It can be seen that there are cases 
of quite different levels of virulent strains within the same 
phylogroup. It is interesting to note that the E. coli ST131 
strains generally have fewer virulence factors compared 
to some other sequence types in the same phylogroup B2; 
thus, the virulence of ST131 strains is apparently not pri-
marily driven by the number of known virulence factors.

Optimized parameters for finding clusters of homologous 
genes
Despite the pangenome profiling of E. coli has previously 
been attempted several times [39, 42–44, 48], there is no 
standardized protocol with optimized parameters for 
identifying clusters of homologous genes or GFs. We fol-
lowed the sequential steps of a previously validated pro-
tocol [49] for pangenome development. Details for the 
E. coli data set are shown in Fig. 2 and are described in 
the “Methods” section below. We exhaustively scanned 
the parameter space for SeqID and SeqLC for homolo-
gous clustering of protein sequences. Additional file  2: 
Table  S1 shows the total number of clusters identified 
with CD-HIT and ProteinOrtho as well as the Jaccard 
similarity indices across different ranges of SeqID and 
SeqLC. While it is reasonable to expect a higher Jaccard 
similarity index with increasing SeqID and SeqLC, how-
ever, the number of clusters is also increasing monoto-
nously. We find that the SeqID influence is higher than 
the SeqLC effect on the number of detected clusters (by a 
factor of 1.5–2; see Additional file 2: Tab. S2).

We observe a near plateau of the Jaccard similar-
ity index for both SeqID and SeqLC at about 60% (see 
Fig.  3). This result essentially repeats the outcome of 
the Streptococcus pyogenes pangenome study pub-
lished earlier [49]. We argue that SeqID=60% and 
SeqLC=60% are the optimized parameters for generat-
ing the clusters of homologous genes/proteins also in 
the E. coli case. To note, too relaxed parameters lead to 
smaller number of clusters albeit (i) the possible occur-
rence of actually non-homologous genes/proteins in 
the same cluster and (ii) a low concordance between 
the two different methods for homology assignment. At 
the same time, too stringent parameters create a much 
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Fig. 1  Steps in pangenome development. The complete genomes of E. coli (1324 genomes) with a total of 6,201,720 protein sequences are 
evaluated through multiple steps, i.e., (1) within-genome cluster analysis to extract representative (longest) protein sequences with at least 
98% identity; (2) across-genome analysis to extract core genome sequences with at least 98% identity; (3) across-genome analysis to extract 
representative sequences from clusters of homologous sequences at SeqID=90% and SeqLC=90%; (4) parametrization of representative sequences 
from step (3) across different SeqID [range 40 to 80%] and SeqLC [range 50 to 90%] to obtain clusters of homologous genes/proteins; (5) put all the 
clusters together from step (1) to (4); and (6) merging of clusters with identical PFAM domains through re-clustering of representative sequences 
from each cluster from step (5) with SeqID=40% and SeqLC=50%

Fig. 2  The distribution of virulence categories across the eight phylogroups of E. coli. Based on the total number of virulence factors (VFs) present 
in the genome, we categorized the genome into four virulence categories, i.e., (1) likely nonpathogenic (#VFs <6); (2) likely virulent (6 ≤ #VFs <14); 
(3) highly virulent (14 ≤ #VFs < 22), and (4) extremely virulent (#VFs ≥ 22)
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larger number of clusters/GFs (by essentially break-
ing up true homologous clusters) with no significant 
increase in the concordance between the two methods.

Even with the optimal choice of SeqID and SeqLC, 
manual analysis of selected GFs shows some clusters 
being split into two or more groups with the sequen-
tially more distant members forming independent 
GFs. Therefore, we introduced a re-clustering phase 
to reduce the scale of this problem. We selected long-
est sequences from each cluster as representative leads 
and subjected them to re-clustering by CD-HIT with 
parameters SeqID=40% and SeqLC=50%; however, 
with the additional criterion that the merged clusters 
must share the same PFAM domains as illustrated in 
Fig.  2. Notably, the re-clustering approach leads to an 
increase of the Jaccard similarity index from 80.62% 
(Additional file 2: Tab. S1) to 87.97% (Table 1), as well 
as a reduction of the pangenome size from ~30,000 
gene families to ~25,000 gene families.

Pangenome profile of 1324 E. coli complete genomes
Table  1 shows the summary of the pangenome, core 
genome, and softcore genome sizes of the 1324 E. coli 
strains as calculated with the two methods CD-HIT and 
ProteinOrtho. We have provided the pangenome matrix 
with Supplementary file 2 for the CD-HIT and Supple-
mentary file 3 for the ProteinOrtho method, respectively 
(in zip package Additional file 3).

The concordance of the pangenome clusters between 
the two methods is at least 87%; i.e., there are at least 87% 
common clusters among them. We have ~25,000 GFs in 
the E. coli pangenome, ~420 GFs are in the core genome 
and ~3050 GFs belong to the softcore genome. Figure 4 
illustrates how the pangenome, the core genome size, 
and the softcore genome (GFs in ≥95% of strains) sizes 
change as the number of genomes n increases. As we 
can clearly see, the pangenome size grows monotonously 
without visible signs of saturation.

To quantify the growth trend, we approximated the 
curve with Heap’s law (see legend in Fig. 4). When the nth 

Fig. 3  The SeqID effect (A) at SeqLC=60% and SeqLC effect (B) at SeqID=60%. The x-axis represents the SeqID percentage (A) or SeqLC percentage 
(B) to evaluate the effect of SeqID and SeqLC, respectively. The red and blue lines show the number of clusters (left y-axis) detected in CD-HIT and 
ProteinOrtho, respectively, whereas the green line represents the Jaccard similarity index as shown in the right y-axis

Table 1  Pangenome profile in 1,324 E. coli identified based on CD-HIT and ProteinOrtho. The Jaccard index measures the similarity 
between the two methods. The softcore genome is defined as the set of clusters of homologous genes, which exist in at least 95% of 
the genomes

Methods PanGenome Core Genome Softcore Genome Singletons

CD-HIT 25,420 425 3057 5654

ProteinOrtho 24,889 427 3056 5568

Jaccard Index 87.97% 95.41% 95.49% 93.28%
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genome is added, as a trend, further genes with a number 
proportional to n−α (with α being about 0.75 and clearly 
smaller than one) complement the pangenome. Nota-
bly, α for a 4071 genome ST131 set was found to be in a 
very similar range [57]. Thus, E. coli appears to have an 
open pangenome. At the same time, the core genome size 
decreases to a ridiculously small number that is hardly 
sufficient to make up a surviving E. coli cell. The number 
of absolutely essential genes in E. coli is estimated to be 
in the range of a few hundred (303 as reported by Baba 
et  al.) [58, 59]. The number of essential genes remains 
hotly debated as gene interactions and specifics of experi-
mental assays cannot be ignored. Actually, the value that 
the core genome size in Fig. 4, if extrapolated as further 
genomes get added, is approaching this number.

The softcore genome is stable and consistent with at least 
100 genomes in the pangenome analysis
The softcore genome (defined as set of GFs in at least 95% 
of all genomes) size is ~3050, which is consistent with 
the value from a previous study (~3000) using just 186 

genomes [43, 60]. Interestingly, we find that the softcore 
genome size is stable once a sufficient number of suf-
ficiently diverse genomes (>100) has been included into 
the pangenome analysis (Fig. 4). To test the robustness of 
the observation and the influence of parametrization, we 
varied the definition of the softcore genome as shown in 
Fig.  5A (exploring the thresholds 92% and 98% in addi-
tion to the standard 95%). To our surprise, we obtained 
stable softcore genome sizes of ~3200 GFs (for 92%) and 
~2800 GFs (for 98%) as long as the number of sufficiently 
diverse genomes in the pangenome analysis is larger than 
100.

Nonetheless, similarity in size does not necessarily 
mean similar members of GFs. Therefore, it is impor-
tant to evaluate if the stability in the softcore genome 
size reflects consistency of the softcore genome clusters 
as well, i.e., the same or similar members of gene families 
are identified independently of the number of genomes 
used to generate the pangenome. We calculated the 
softcore genome clusters 100 times for random selec-
tions of 5, 10, 15… 50, 100, 150, 200… 1300 genomes 

Fig. 4  Pangenome plot of E. coli genomes across different number of genomes used for pangenome construction. Along the x-axis, we indicate 
the number of genomes used for pangenome construction and the y-axis shows the number of identified gene families. Each small filled circle 
specifies the average number of genes identified across 100 random permutations of randomly selected genomes. The number of genomes tested 
range from 5, 10... 50, 100, 150, 200, 250...1200, 1250, 1300, to 1324. The red and blue lines represent the CD-HIT and ProteinOrtho method results, 
respectively. The pangenome, core genome and softcore genome lines are shown accordingly. The procedures using CD-HIT or ProteinOrtho give 
the same or very similar softcore and core genome sizes and, therefore, the respective two curves overlap. Tettelin et al. [41] demonstrated that the 
number N of distinct gene families (= pangenome size) computed from n genomes can be estimated with a power law-type model (Heap’s Law) as 
N = kn(1 − α)with curve fitting constants k and α. The pangenome is said to be open (infinitely growing with n) if α < 1. Otherwise (α ≥ 1), it is a closed 
pangenome. This pangenome seems open (if computed with ProteinOrtho data, α ~ 0.7439 and k = 4206; for the CD-HIT curve, α = 0.7521 and k = 
4221)
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and determined the average (Fig.  5B) and the standard 
deviation (Fig. 5C) of the Jaccard similarity index at each 
point. Subsequently, we evaluated the Jaccard similarity 
index between the softcore genome clusters at different 
genome sizes to the softcore genome clusters with 1324 
genomes. Evidently, we can see that, for the 92% and the 
95% thresholds, the softcore genome is not only stable 
with regard to total size but also consistently determines 
almost the same set of GFs when we have at least diverse 
100 genomes in the pangenome analysis. In the case of 
the 98% threshold for the softcore genome generation, 
more genomes (>1000) are needed to achieve similar lev-
els of numbers of related GFs in the softcore genomes.

Further, if we compare the softcore genome cluster 
sets calculated with 100 genomes (for the 92% and 95% 
thresholds for softcore genome generation) with that 
obtained from the full set of 1324 genomes, the two soft-
core genomes have about 98% clusters in common.

The stability and consistency of the softcore genome 
(i.e., the stable size and GF composition regardless of the 
number of genomes included) happen apparently not by 
chance. A previous study with 48 E. coli genomes [60] 
experimented with the notion of a “percent pangenome” 
based on the percentage of genomes sharing the GFs. 
The authors note that there is a trend for saturation (for 
example, for the 50% pangenome) despite any increase 

of the number of genomes included into the pangenome. 
In this context, it is also notable that the distribution of 
functional categories among COGs [61] found in the GFs 
in the E. coli softcore genome is essentially the same as 
that of the functional attributes of COGs associated with 
the two E. coli genomes E. O157:H7 str. Sakai and E. coli 
str. K-12 substr. MG1655 (see Additional file 1: Fig. S5). 
Our findings suggest that the softcore genome (with a 
92–95% generation threshold but not with higher thresh-
olds) could be used to define the genome of a bacterial 
species (particularly that of E. coli) listing the critically 
relevant, evolutionarily most conserved, biologically 
most important classes of GFs.

The accessory genome reveals specific distinct gene family 
clusters in different sequence types and phylogroups of E. 
coli
The STs and phylogroups of all E. coli strains are available 
in Supplementary file 1 (as part of zip package Additional 
file  3). The pangenome matrix provides the opportu-
nity to explore the molecular characteristics of differ-
ent sequence types or phylogroups of E. coli genomes. 
As there are many rare STs of E. coli genomes, we have 
focused only on the 21 STs with at least 10 genomes. This 
gives a total of 674 genomes and 6244 GFs (in at least 
10 genomes and at most 640 genomes) for analysis. The 

A

B

C

Fig. 5  A Evaluation of softcore genome definition across different number of genomes. The CD-HIT and ProteinOrtho methods give the same or 
very similar results and, therefore, the lines overlap. The evaluation is performed for three definitions of the softcore genome, i.e., 92, 95, and 98%. 
B, C The mean and standard deviation of the Jaccard similarity index comparing the softcore genome at a specific number of genomes from the 
total set of genomes (i.e., 1324 genomes). The high mean Jaccard similarity index together with a low standard deviation suggests the stability and 
consistency of the softcore genome at different definition levels. The vertical black dashed line marks the number of genomes equal to 100
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purpose is to evaluate the most informative GFs in this 
accessory genome.

Figure 6 shows the heatmap profile (presence/absence 
matrix) of these 674 genomes with unsupervised clus-
tering at the genome and GFs level. We annotated the 
genomes with its corresponding ST and phylogroup, 
respectively. At the genome level, it can be clearly seen 
that the pangenome profile correlates well with the STs as 
well as the phylogroups. In fact, sequence types are asso-
ciated with phylogroups without any ambiguity. While 
the different phylogroups can be distinguished from each 
other clearly, interestingly, the phylogroup B1 has two 
distinctive clusters, i.e., one that groups together with 
phylogroups A and C, and the other that clusters together 
with phylogroup E. The former B1 cluster includes ST58, 
ST101, and ST156, whereas the latter comprises ST16 
and ST21. We find that the latter B1 cluster carries Shiga 
toxin genes, whereas the former one does not have the 
Shiga toxin. This suggests that the strains in the B1-non 
shiga cluster are more likely to be of low virulence (likely 
nonpathogenic). At the same time, the B1 strains with the 

Shiga toxin are more likely to be of high virulence simi-
larly to ST11 E. coli from phylogroup E.

At the gene families’ level, several distinct GF clusters 
specific for certain groups of phylogroups or sequence 
types are clearly recognizable at the background of scat-
tered minor differences (Fig.  6). We highlight the six 
most obvious GF clusters distinguishing sequence types 
and phylogroups:

(1)	 Cluster 1 (rare in ST11);
(2)	 Cluster 2 (common in B2);
(3)	 Cluster 3 (common in ST131);
(4)	 Cluster 4 (rare in ST131);
(5)	 Cluster 5 (B1-shiga); and
(6)	 Cluster 6 (common in ST11).

The list of GFs for each group is provided in Supple-
mentary file 4 (as part of zip package Additional file 3). 
Further below, we analyze the biological implications that 
can be derived from the functional annotations of those 
genes, especially for three types of E. coli, particularly 

Fig. 6  Heatmap profiling of GFs for frequently observed sequence types. Heatmap profiles have been derived by unsupervised clustering of 674 E. 
coli genomes with common sequence types (STs), i.e., at least 10 genomes in each ST. There are 6244 GFs included in the analysis with presence in 
at least 10 genomes and at most 640 genomes, respectively. The yellow color represents present and black color represents absent GFs (column) 
in the genome (row), respectively. The ST (1) and phylogroups (2) are labelled accordingly. The dendrograms for genomes and GFs are shown in 
rows and columns, respectively. The six most distinguishing patterns are highlighted in red boxes representing Cluster 1 (Rare in ST11), Cluster 
2 (Common in B2), Cluster 3 (Common in ST131), Cluster 4 (Rare in ST131), Cluster 5 (B1-shiga), and Cluster 6 (Common in ST11). The blue box 
represents the cluster with T6SS-2 in ST11
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the E. coli ST11 group (basically O157 EHEC), the E. coli 
ST131 strains, and the phylogroup B1 E. coli.

Unique characteristics of ST131 E. coli
ST131 E. coli, one of the most important E. coli clonal 
group, which belongs to phylogroup B2, has risen to 
prominence in recent years due to its prevalence among 
the ExPEC E. coli including UTIs and bloodstream infec-
tion as well as its multidrug-resistant profile [12, 13, 
62–65]. It can be easily seen in Fig. 6 that there are two 
distinct groups of gene families that characterize E. coli 
ST131—Cluster 3, a cluster of genes, which are common 
in ST131 genomes and rare or completely missing in 
almost all other phylogroups, and Cluster 4, a cluster of 
genes, which are rare in ST131 genomes, but common in 
almost all other genomes. Unfortunately, a considerable 
number especially of Cluster 3 genes are incompletely or 
not at all functionally annotated. In this section, we focus 
on the genes with well described function. In the next 
section, we will dive into the yet functionally uncharac-
terized part.

The analysis of the distribution of COG functional 
categories [61] reveals the enrichment of cluster 3 with 
mobilome-related genes (Additional file  1: Fig. S6A). 
Their relative occurrence in the gene set is at least 8-fold 
higher than in the functional category distribution for the 
COGs for the two E. coli reference genomes (Additional 
file 1: Fig. S5A) and more than 30-fold higher compared 
to that in the softcore genome computed in this work 
(Additional file  1: Fig. S5B). This observation is also in 
sharp contrast to the occurrence of mobilome genes in 
Cluster 1 (more than 30 times lower than in Cluster 3, 
see Additional file  1: Fig. S 6B). Thus, expansion of the 
mobilome was one of the critical innovations of ST131 in 
evolution compared to other E. coli strains.

There are several important annotated genes in Clus-
ter 3 that help understanding the nature of ST131. For 
example, the gene wzx is the O25 family O-antigen flip-
pase. This explains why the ST131 strains are dominated 
by the O25 serotype, probably, a sampling artifact due to 
the biased selection of strains for genome sequencing.

The gene sat (secreted autotransporter toxin) is a 
known virulence factor implicated in uropathogenesis 
[66]. It belongs to the SPATE gene family (serine protease 
autotransporters of enterobacteriaceae) that includes 
multiple virulence factors involved in bloodstream infec-
tion [67]. We have noted that sat also exists in 30% of the 
phylogroup D strains, but it is rare in A and F. It is com-
pletely missing in phylogroup E.

Whereas the distribution of functional categories in 
Cluster 4 (Additional file  1: Fig. S6B) is very similar to 
that of the COGs for reference genomes (Additional 
file 1: Fig. S5A) and for the softcore genome (Additional 

file 1: Fig. S5B), the suspicious relative absence of metab-
olome-related genes is another distinguishing feature of 
ST131. The following five GFs are in Cluster 4:

(1)	 The cluster of frv genes,
(2)	 The cluster of hca genes,
(3)	 The cluster of pao genes,
(4)	 The cluster of puu genes and
(5)	 The cluster of lsr genes.

Briefly, frvA from the cluster of frv genes has been 
shown to be sensitive to iron intoxication [68]. The hca 
cluster is involved in the catabolism of different phenyl-
propanoid compounds [69] and, hence, affects the toler-
ance to the living environment for ST131. The pao gene 
cluster has been thought to play a role in detoxifying aro-
matic aldehydes [70]. The puu gene cluster is part of the 
putrescine utilization pathway genes, which means that 
lacking this gene suggests inability of utilizing putres-
cine for growth [71]. The lsr operon has been suggested 
to affect overall strain fitness [72]. Its induction increases 
the pathogenicity of APEC [73] whereas deletion of lsr 
operon leads to reduction of virulence.

Synteny analysis of common gene families in ST131 E. coli 
reveals the presence of full intact prophage with tailocin 
structure
In the previous section, we have discussed some well-
annotated common and rare GFs of E. coli ST131 strains. 
There are many genes in cluster 3 with cryptic or absent 
functional description. As a step towards their func-
tional characterization, we performed a synteny analysis 
among them and we identified two synteny clusters that 
are highly conserved across the ST131 E. coli genome. 
The two clusters (s1-ST131 and s2-ST131) are shown in 
Additional file 2: Tab. S3. Both clusters have a length of 
approximately 23 kbp involving 30 genes and 33 genes, 
respectively. Next, we investigated the DNA sequences 
of the two clusters by evaluating (1) the specificity of the 
synteny regions for E. coli ST131 and (2) the sequence 
homology to other species (excluding E. coli).

To investigate the specificity of the clusters, the DNA 
sequences of each cluster are searched with blastn against 
the ST131 and non-ST131 genomes, respectively. Addi-
tional file  1: Fig. S7 shows clearly that the two clusters 
are highly conserved in the ST131 E. coli genomes. There 
are 13 hits to non-ST131 genomes with >90% sequence 
coverage for the first cluster (s1-ST131), whereas there is 
only a single hit to non-ST131 genomes for the second, 
longer cluster (s2-ST131). We find that 68 out of the 79 E. 
coli ST131 genomes carry the s2-ST131 synteny region. 
Only a single non-ST131 strain, the singleton ST2279, 
has it as part of its genome. Further investigation shows 
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that the difference in sequence typing between ST131 
and ST2279 is due to just a single-nucleotide differ-
ence at position 263 bp of the gene purA (ST131 car-
ries purA_8 allele and ST2279 carries purA_28 with the 
mutation purA.263 G>T). Thus, ST2279 is rather close to 
the ST131 group if not just a misclassified case due to a 
sequencing inaccuracy.

To find homologous sequences in other species, we use 
NCBI blastn to the non-redundant database excluding 
E. coli genomes. The top 20 hits are shown in Additional 
file 1: Fig. S8 and Additional file 1: Fig. S9 for s1-ST131 
and s2-ST131, respectively. With high sequence similar-
ity and coverage, the synteny region s1-ST131 hits into 
the genomes of several pathogens such as Klebsiella spe-
cies, which share a similar living environment as E. coli. It 
also has very high similarity to Myoviridae sp., which is a 
class of bacteriophages (Accession ID: BK037528.1).

In contrast, s2-ST131 has 100% identity with and 
coverage by a bacteriophage sequence (Accession ID: 
BK034715.1). Both bacteriophages BK037528.1 and 
BK034715.1 were recently reported [74] as the viral 
components from microbiome samples. This provides 
experimental evidence that these prophage regions in the 
genome of ST131 strains might be expressed during SOS 
response, a complex bacterial reaction to DNA damage 
with cell cycle arrest, DNA repair, and induced mutagen-
esis [75].

Next, we investigated the protein sequences for each 
of the genes within the s1-ST131 and s2-ST131 synteny 
clusters as described in the “Methods” section. The pro-
tein sequences were submitted to HHPRED, blastp, and 
ANNOTATOR and manual analysis of results was per-
formed. We observed that some of the protein sequences 
have obvious similarity to pyocin R2 components of 
Pseudomonas aeruginosa PAO1 [76]. Given this clue, we 
further annotated all the genes in s1-ST131 and s2-ST131 
relative to proteins in Pseudomonas aeruginosa PAO1 as 
shown in Additional file 2: Tab. S4 and Additional file 2: 
Tab. S5, respectively. Genes that remained unmapped to 
Pseudomonas aeruginosa PAO1 were annotated with the 
most significant hits from the in-house sequence analysis 
(see the “Methods” section) accordingly.

Interestingly, some of the s1-ST131 genes map only to a 
sub-structure of pyocin R2 in P. aeruginosa PAO1 (a tai-
locin [77]), whereas the s2-ST131 genes can be aligned to 
the complete structure of pyocin R2 with the exact same 
order of genes in the operon. The actual protein sequence 
identity is not high (from 24 to 47%) but the fold- and 
function-critical sequence profiles of the 13 of the 14 
components of the tailocin nanomachine are detected 
with search tools such as blastp and HHPRED.

It is worth noting that there might be a potential 
annotation error in the synteny region s2-ST131 for the 

remaining 14th gene (late control gene: SY51_RS10535 
of GCF_000931565.1) between the loci for GF_6212 and 
GF_13723 (Additional file  2: Tab. S6). In RefSeq, it is 
annotated as a predicted pseudogene due to a frameshift. 
In fact, this genome region is 100% identical with the 
late control protein (accession DAS35886.1). In view 
of this, we added DAS35886.1 between GF_6212 and 
GF_13723. This finalizes the mapping of the first 14 genes 
of s2-ST131 to the complete structure of pyocin R2 of P. 
aeruginosa PAO1. It would be interesting to see if this 
interpretation can be experimentally validated.

For the next 19 genes, manual annotation suggests that 
the next 10 genes seem to code for the capsid head of 
bacteriophage and, finally, the rest of genes code for lysis-
related proteins (Additional file 1: Fig. S10 and Additional 
file 2: Tab. S5).

The striking similarity of synteny regions s1-ST131 and 
s2-ST131 to a bacteriophage suggests integration into the 
E. coli ST131 genome of prophage after lysogenic infec-
tion. Notably, these two regions were previously reported 
as potential mobile genetic elements as prophage 2 (simi-
lar to s1-ST131) and prophage 5 (similar to s2-ST131) 
[78, 79]. We used PHASTER [80] to evaluate the DNA 
sequences for the presence of functional bacteriophage 
sequences. Synteny region s1-ST131 has an incomplete 
prophage structure with score of 30. In contrast, syn-
teny region s2-ST131 has intact prophage structure and 
reaches the maximum score of 150. Taken together, the 
results suggest that s1-ST131 appears a prophage rem-
nant, whereas s2-ST131 seems a functional prophage. 
As we have shown above, this synteny region encodes a 
prophage with its tail resembling the tailocin structure 
that has been demonstrated to be functional as killer 
weapon [77].

Variation of bacterial secretion system and iron acquisition 
system in E. coli ST11 and B2 groups
Escherichia coli ST11 has the pathotype EHEC with the 
O157 serotype. Its distinct molecular capabilities are 
characterized by three GF clusters: Cluster 1 (rare in 
ST11), Cluster 2 (common in phylogroup B2 but very 
rare in ST11), and Cluster 6 (common in ST11). Given 
the subsets of well-annotated genes, we find that genic 
variations in E. coli ST11 affect the bacterial secretion 
systems (type II secretion system (T2SS), type IV secre-
tion system (T4SS) and type VI secretion system (T6SS)) 
as well as the iron acquisition system.

All E. coli ST11 strains (except two: E. coli O157 strain 
A1 Ain / GCF_008462425.1 and E. coli strain M7638 / 
GCF_009432795.1) carry plasmids with genes for the 
type II secretion system (T2SS) as part of GF Cluster 
6. The T2SS operon in ST11 is called etp (EHEC type 
II secretion pathway) [81], whereas in other non-ST11 
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E. coli, the T2SS is of a different type and the operon 
is identified as gsp (general secretory pathway). T2SS 
has been shown to contribute to bacterial pathogenicity 
[82], either through delivering toxins to the mammalian 
host [83] or by helping the bacteria to adapt to the host 
environment [84, 85]. Concordantly, the T2SS etp gene 
clusters have also been shown to be important for bac-
terial adaptation to its environmental niche [86, 87].

The Type IV secretion system (T4SS) is typically not 
found in E. coli ST11 but is common in phylogroup B2 
and sporadically exists in other phylogroups (Cluster 
2). The bacterial T4SS is a very diverse and versatile 
system, which serves a variety of purposes by secreting 
macromolecules (either DNA or proteins or protein-
DNA complexes) into prokaryotic or eukaryotic cells 
to facilitate their proliferation and survival [88, 89]. It 
also plays an important role in bacterial evolution as 
conjugation system [90]. There are three subfamilies of 
T4SS in prokaryotes, i.e., (i) conjugation systems; (ii) 
effector translocator systems; and (iii) DNA release or 
update systems [91]. While different types of T4SS exist 
in our E. coli genomes, we have noticed that a variant 
of T4SS (Type IV conjugative transfer proteins, from 
the tra gene clusters as shown in Supplementary file 4 
(part of zip package Additional file  3)) is common in 
phylogroup B2. It has been suggested that the T4SS 
conjugative system represents a selective advantage in 
disseminating antibiotic resistance genes [89]. Coinci-
dentally, we have observed a wide spread of antibiotic 
resistance genes present in the phylogroup B2, particu-
larly in E. coli ST131; yet, the presence of antibiotic 
resistance genes in the ST11 E. coli is limited (Supple-
mentary files 5 and 6 as part of the zip package Addi-
tional file 3).

There is sequence type and phylogroup variation with 
regard to T6SS among the E. coli genomes. Three variants 
of T6SS have been reported in E. coli (T6SS-1, T6SS-2, 
and T6SS-3 [92]). T6SS-1 and T6SS-3 are known to play 
a role in antibacterial activity whereas T6SS-2 is impor-
tant for pathogenesis. Interestingly, we have observed 
that T6SS-1 is common in the phylogroup B2 (cluster 2), 
particularly in ST131 but it is very rare in the ST11 E. coli. 
In contrast, the T6SS-2 (highlighted in blue box in the 
heatmap of Fig. 6) is very common in ST11, in B1 shiga, 
it also appears sporadically in other groups. The toxins or 
effectors secreted by T6SS are very diverse reflecting the 
T6SS activity and the complexity of the T6SS roles in E. 
coli [92, 93].

We have also noticed a manganese catalase family 
protein (RefSeq ECs_1652, GeneID 913226, UniProtKB 
Q8XDQ1) that exists in almost all of the ST11 genomes. 
A novel effector katN, which is a Mn-containing catalase, 
has been reported by Wan et  al. [94] to be secreted by 

T6SS in EHEC and to be important for surviving mac-
rophage phagocytosis.

Differences in iron acquisition system have also been 
detected by heatmap analysis (Fig.  6). Particularly for 
the GF cluster that is common in phylogroup B2 (Clus-
ter 2), we have seen an enrichment of yersiniabactin 
siderophore, aerobactin siderophore, and iron/manga-
nese ABC transporter genes. Yet, these genes are miss-
ing in the E. coli ST11. As an alternative, the chu operon 
for heme uptake is present. The chu operon is not specific 
to ST11, it exists in phylogroup B2 as well. This suggests 
that, while the phylogroup B2 has a wide variety of iron 
acquisition systems (with implications for its improved 
survival capability), the iron acquisition system in ST11 
E. coli seems to be limited or narrow (in agreement with 
[34]).

Synteny cluster analysis of common gene families in ST11 
E. coli reveals a potential pathogenicity island
With the same approach as with the ST131 E. coli 
sequences, we have also performed synteny analysis on 
the ST11 E. coli genomes. We identified two synteny 
clusters (s1-ST11 with 16 genes and 19 kbp length and 
s2-ST11 with 18 genes and 15 kbp length; see Additional 
file 2: Tab. S6).

Similarly, we investigated the DNA sequences of the 
two clusters according to their (i) specificity among E. 
coli strains and (ii) sequence homology to other species 
(excluding E. coli). Additional file 1: Fig. S11 (Additional 
file  1) shows that the two clusters are highly conserved 
and prevalent across ST11 E. coli genomes. However, 
34 non-ST11 genomes contain an s1-ST11 cluster and 
64 non-ST11 genomes comprise an s2-ST11 synteny 
region. Most of them belong to other sequence types of 
phylogroup E. But a substantial fraction of the non-ST11 
genomes are members of phylogroup D. All these non-
ST11 sequence types have few genome representatives 
(i.e., < 10 genomes) and, therefore, were not included in 
our exploratory analysis of the 674 E. coli genomes.

Next, we use NCBI blastn to query these two synteny 
clusters against the non-redundant database excluding 
E. coli genomes. The top 20 hits are shown separately 
for s1-ST11 (Additional file 1: Fig. S12) and for s2-ST11 
(Additional file 1: Fig. S13). The synteny cluster s1-ST11 
hits best to sequences from Enterobacter mori, Entero-
bacter cloacae, and Enterobacter hormaechei. The hits, 
however, only cover 40% of the sequence with ~77% iden-
tity. While Enterobacter mori has been commonly associ-
ated with plant pathogens [95], the other two bacteria are 
known from nosocomial infections [96–99].

The second cluster s2-ST11 has more than 95% iden-
tity to a chromosomal segment of Escherichia fergusonii 
with 100% coverage. E. fergusonii is closely related to E. 
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coli and has been reported to cause hemolytic urine syn-
drome [100]. E. fergusonii has been isolated from the 
feces of animals [101] as well as wounds and urinary 
tracts of human [102].

The synteny cluster s1-ST11 has been predicted to 
be involved in bacterial pathogenesis and lipoprotein 
metabolism. The presence of lipid metabolism genes 
in this cluster (subset of genes ECs_1284 to ECs_1289; 
actually part of a biosynthetic gene cluster—see below) 
suggests the ability of E. coli ST11 to produce fatty-acid 
containing molecules [103]. ECs_1282 gene (hemaggluti-
nin/hemolysin-related protein) in the s1-ST11 cluster has 
also been suggested to be a virulence factor in multiple 
studies [104–106].

The s2-ST11 synteny cluster ranges from ECs_4324 to 
ECs_4341 and contains lipoprotein and fatty-acid biosyn-
thesis systems. Both genomic regions called here s1-ST11 
and s2-ST11 have been reported to be part of S-loop #71 
and S-loop #225, respectively [107]. They are induced 
in the E. coli O157 Sakai strain during the spinach root 
interaction [86], which suggests their importance during 
early interaction of E. coli ST11 (O157) with the fresh-
produce plant.

Biosynthetic cluster analysis (with antiSMASH 6.0 
[108]) reveals that an aryl polyene (APE) biosynthetic 
gene is part of s1-ST11 (Additional file  1: Fig. S14) 
and the APE gene cluster (BCG0000836) is present in 
s2-ST11 (Additional file 1: Fig. S15). A recent study [109] 
has shown that APE increases the fitness of bacteria pop-
ulations by protecting them from oxidative stress and 
contributing towards biofilm formation. Apparently, the 
two clusters are important for the survival of E. coli ST11 
as a foodborne pathogen.

Escherichia coli phylogroup B1 can be differentiated 
into groups with regard to the pathogenicity mechanism
Based on the heatmap profile, we observe that E. coli phy-
logroup B1 is split into two groups, i.e., one is together 
with phylogroups A and C and the other clusters with 
phylogroup E. Notably, the latter group of strains (1) car-
ries the shiga toxin genes suggesting their potential path-
ogenicity (“shiga B1” and “non-shiga B1” strains).

In our large genome collection, we find that three fur-
ther gene groups are characteristic for shiga B1 strains 
(Shiga toxin-producing E. coli (STEC)), namely (2) the 
T3SS LEE cluster of genes [110], (3) the cluster of ter 
(tellurium resistance) genes [111], and (4) the cluster of 
ure (urease) genes [112] in agreement with the literature 
based on much smaller genome collections. LEE-positive 
Shiga toxin E. coli strains are known to cause bloody 
diarrhea with possibly life threatening hemolytic uremic 
syndrome (HUS) [113]. We find that majority of these 

strains belong to the O111:H8 and O26:H11 serotypes 
(non-O157 EHEC genomes).

GF coincidence analysis provides insight into pathogenic 
effects of GFs significantly associated with the s1‑ST11 
and s2‑ST131 clusters
The accessory genome matrix with 6244 GFs from 674 
genomes (as described above) was used for coincidence 
analysis with CoinFinder [114]. The program excluded 
2299 GFs due to low frequency as they are presented in 
less than 5% of the 674 genomes. The remaining 3945 
GFs are evaluated for pairwise association. Additional 
file  1: Figure S16 shows the distribution of all potential 
pairwise association P-values. If we assume the ad hoc 
selected P-value ≤ 10−20 as significance threshold, we 
still have 233,483 significant pairwise associations for 
3338 GFs (Supplementary file 8 in the zip package Addi-
tional file 3). Most of the GFs have fewer than 50 associ-
ated GFs (through pairwise association); however, quite a 
substantial number of the GFs have more than 300 asso-
ciated GFs (Additional file 1: Fig. S17).

The comprehensive analysis of this GF coincidence 
data will be presented elsewhere. Here, we focus on the 
GFs associated to s2-ST131 and s1-ST11. As expected, 
we find the GFs in s2-ST131 being associated to those in 
s1-ST131 and vice versa. There are about 360 GFs associ-
ated to GFs in s2-ST131 and approximately 590 GFs asso-
ciated to GFs in s1-ST11 as shown in Additional file  2: 
Tab. S7 and Additional file  2: Tab. S8 respectively. We 
performed synteny cluster analysis of the associated GFs 
to investigate if there is any potential operon or cluster 
of genes that is associated to s2-ST131 and/or s1-ST11. 
Interestingly, we observed that there is a cluster of flagel-
lar genes (closely related to type III secretion system or 
T3SS) as well as another, type VI secretion system (T6SS) 
gene cluster associated to s2-ST131 (Additional file  2: 
Tab. S9). Similarly, we have also observed that T3SS, a 
tellurium resistance gene cluster as well as prophage 
clusters are associated to s1-ST11 (Additional file 2: Tab. 
S10). To note, T3SS [115] and T6SS [92, 93] are known to 
be associated with pathogenicity.

Likelihood of pathogenicity is correlated to number 
of prophages instead of the antibiogram
Next, we investigated if there is any correlation between 
the virulence category (“likely nonpathogenic,” “likely 
virulent,” “highly virulent,” and “extremely virulent”) with 
the number of prophages contained in the genome as 
well as the likelihood of antibiotic resistance as defined 
by antibiogram. The antibiograms of 24 AMR targets for 
the 1324 genomes are provided in Supplementary file 6, 
whereas the virulence factor matrix is given in Supple-
mentary file 7 (both in the zip package Additional file 3).
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Figure 7 shows the relationship between virulence cat-
egory to the number of antibiotic resistance genes as well 
as the number of incorporated intact prophages. It can 
be clearly seen that there is no relationship between the 
likelihood of multiple drug resistance with the virulence 
category. Even the genomes with very high virulence 
category do not necessarily have a high number of anti-
biotic resistance genes. In contrast, the number of intact 
prophages is correlated to the virulence category. There 
is a tendency that genomes with higher number of intact 
prophages have a higher number of virulence genes and 
are more likely to be virulent. This is expected because 
it is common for prophages to carry virulence factors in 
their DNA.

Discussion
First studied in 1844, E. coli has become one of the most 
intensively analyzed model organisms. However, its 
diversity and versatility in different environments and 
ecological niches, its usage as laboratory and biotechnol-
ogy work horse, and its relevance in animal and human 

pathogenicity suggest that research on E. coli has value 
far beyond its role as a model organism [1].

Both significance of the E. coli system as well as the 
wide and growing availability of relevant sequence data 
enabled a plethora of previous work in this field [34, 
39–46]. As the computational load for the gene fam-
ily computation and genome comparison becomes eas-
ily overwhelming with larger genome numbers, various 
shortcuts have been explored. Methodical restrictions 
(such as ad hoc selected values for SeqLC and SeqID 
for gene/protein homology criteria instead of scanning 
a range and finding optimized numbers, ad hoc thresh-
olds for definitions of softcore and accessory genomes, 
etc. [116, 117]) or approximations (such as genomic dis-
tances based on k-mer patterns [118–120]) were regu-
larly applied. Clearly, incompleteness of many genomes 
in the dataset will affect size of the pangenome and its 
computed constituent subsets.

Despite the limitations, several of those literature 
reports arrived at notable conclusions. An approximated, 
k-mer pattern-based genomic distance was sufficient 
to recreate the known phylogroup classification with 

Fig. 7  Virulence as function of the antibiogram and of the number of prophages. The relationship of virulence category to A antibiogram (number 
of antibiotic genes’ presence in the genome) and B number of prophages. The relationship is shown as a heatmap profile with the brightness of 
the yellow color representing the proportion of genomes with that criteria. Black color indicates absence of genomes, whereas the brightest yellow 
represents the highest proportion of genomes in that category
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a set of 10,667 mostly incomplete genomes and to sug-
gest an evolutionary path of E. coli subtype differentia-
tion [120]. Decano et al. [57] studied genomes from 4071 
ST131 isolates (most of them incompletely sequenced) 
and classified them into three genetically distinct clades 
A, B, and C (with three subclades). A GWAS study based 
on a pangenome matrix derived from E. coli genomes 
(extracted from 309 diseased and 234 asymptomatic car-
rier chicken) identified disease-associated variations in 
143 E. coli genes [117]. Interestingly, it was proposed to 
use the pangenome matrix for assessing the coincidence 
rate of GF presence in genomes and to explore potential 
biologically significant interactions between genes [114].

In this work, we have analyzed 1324 E. coli complete 
genomes from the NCBI Refseq database. This work is 
aimed at exploring this genome set from three perspec-
tives. First, we wanted to study the pangenome profile 
and to derive optimal parameters for its development. 
Second, we wished to find biomolecular characteristics 
for sequence types and phylogroups. Third, we wanted to 
explore their relevance for pathogenicity. Subsequently, 
this study provides us with a better understanding of E. 
coli as a bacterial species and what are the still missing, 
unknown elements.

We have built the E. coli pangenome according to Fig. 2. 
Using the optimized parameters of SeqID=60% and 
SeqLC=60%, we estimated the pangenome, core genome, 
and softcore (95%) genome size to be ~25,000, ~400, and 
~3000 gene families (GF), respectively. As pangenome 
size and core genome size are highly dependent on the 
number of genomes used, the softcore genome (defined 
as the GF presence in at least 95% of the genomes) is 
shown to be the desired representation of the species-
critical genes in E. coli. The softcore genome is dem-
onstrated to be stable and consistent when at least 100 
sufficiently diverse genomes are included in the analysis 
(Fig. 5). Mapping of the softcore genomes onto the COG 
database reference shows that the distributions of func-
tional COG categories are similar (Additional file 1: Fig. 
S5), which suggests that the softcore genome is indeed 
a good representation of essential genes in a bacterial 
species.

Notably, the pangenome size is under environmen-
tal and phylogenetic constraints [45]. With ever more E. 
coli strains from new habitats and host organisms getting 
sequenced, the pangenome is poised to grow further. The 
complete pangenome data (including the classification of 
gene families from all genomes studied) has been made 
available in the public domain for further study by the 
scientific community.

The pangenome matrix provides an avenue for biomo-
lecular characterization of different E. coli subtypes. We 
focus on the most common E. coli sequence types with 

at least 10 genomes (consequently, 674 E. coli genomes 
distributed across 21 sequence types and 8 phylogroups; 
see Additional file  1: Fig. S1). The accessory genome 
(defined as the GFs present in at least 10 and at most 640 
of the common E. coli sequence types) is used for this 
purpose. We identified six distinct clusters from the heat-
map profile of these accessory genomes (named Cluster 
1 to Cluster 6, accordingly). These six gene sets distinctly 
characterize three groups of strains, i.e., phylogroups B1, 
B2 (particularly ST131), and E (ST11), which have been 
described in the “Results” section. We suggest that the 
specific gene lists (Supplementary file 4 as part of Addi-
tional file 3) can be used as a guideline for further under-
standing of the specific phylogroup of interest.

Coupled with the information regarding virulence fac-
tors, antibiotic resistance genes, and prophages, bacte-
rial pathogenicity can be understood from two different 
angles: virulence and survival capability (including self-
defense mechanisms). Observing a virulence factor in 
an E. coli genome does not necessarily define the path-
ogenicity of this bacterial strain. However, it is rather 
the combination of multiple virulence factors and other 
functions that determines the pathogenicity of E. coli 
[32]. We would expect that having a larger number of 
virulence factors implied higher likelihood of the species 
being pathogenic.

Figure 2 and Additional file 1: Fig. S4 show clearly that 
different phylogroups or sequence types of E. coli have 
different distributions of virulence factor counts. Tradi-
tionally, it has been suggested that the phylogroups A and 
B1 are more prevalent among nonpathogenic E. coli [55, 
121, 122]. However, it has also been demonstrated that 
the phylogroups A and B1 have very diverse pathotypes 
[40]. In fact, all the phylogroups manifest high diversity 
in the distribution of virulence factors in their strains’ 
genomes.

For example, we see two sub-lineages of E. coli in phy-
logroup B1 (with Shiga toxin and the other one with-
out Shiga toxin). The number of virulence factors in the 
B1-shiga subgroup is much higher than in the B1-nonsh-
iga one. This suggests that it is important not to general-
ize pathogenicity based on phylogroup identity alone.

On the other hand, the phylogroups B2, D, and E are 
enriched with genomes with generally higher number 
of virulence factors (Fig.  2). The phylogroups B2 and D 
are commonly associated with ExPEC [31, 123, 124], 
while phylogroup E involves the foodborne pathogen 
O157-serotype EHEC strain [34]. The E. coli strains in 
these phylogroups have commonly being reported to be 
virulent [31, 55, 125]. Concordantly, we have observed 
distinct variations of bacterial secretion systems (T2SS, 
T4SS and T6SS) among phylogroups. Bacterial secre-
tion systems are involved in transferring toxins to host 
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cells or for antimicrobial activity, and they are important 
for colonization and also for bacterial conjugation [126]. 
Since different pathotypes have been suggested to harbor 
different toxins, effectors, and infection mechanisms [16, 
32, 127], the variation of these secretion systems among 
strains suggests different mechanisms of infection, toxin, 
and other effector secretion.

From the survival point of view, the bacteria’s capability 
to acquire nutrition, to adapt to its living environment, 
and to respond to external stimuli or danger [128–131] 
is important. Iron serves as an essential nutrient for bac-
teria [132, 133]. Interestingly, some infected hosts have a 
mechanism called nutritional immunity to limit the iron 
availability to the pathogen [133]. Accordingly, bacteria 
with multiple pathways for acquiring nutrition from their 
living environment have a selective advantage for their 
survival. The phylogroup B2 E. coli has multiple iron 
acquisition genes, such as chu iron heme uptake genes 
together with yersiniabactin as well as aerobactin sidero-
phore genes. In contrast, the phylogroup E, particularly 
ST11 E. coli, has limited iron acquisition genes, i.e., lack-
ing the yersiniabactin and aerobactin siderophore. This 
is also confirmed by a publication [34], which shows that 
EHEC/STEC is only enriched with chu iron heme uptake 
genes. This observation suggests that phylogroup B2 E. 
coli has a better survival capability as compared to the 
rest of the E. coli strains with the presence of multiple 
iron acquisition pathways. On the other hand, the path-
ogenicity of ST11 E. coli strains seems to be enhanced 
by the presence of aryl polyene (APE) biosynthetic gene 
clusters in the s1-ST11 and s2-ST11 segments as shown 
by antiSMASH analysis. A recent study has suggested 
that the APE biosynthetic gene cluster increases the sur-
vival fitness of the bacteria populations through biofilm 
formation [109].

In this investigation, we found that ST131 E. coli, a 
major sequence type of phylogroup B2, shows several 
important features that might explain why it persists in 
the population and it has been so successful as a pan-
demic E. coli. First, the enrichment of iron acquisition 
genes provides survival benefit. Second, the lack of sev-
eral metabolic gene clusters (frv, hca, pao, puu, and lsr) 
leads to a leaner network. Though bacterial adaption 
could be achieved through loss of function [128], the full 
implications of this gene loss require further in-depth 
analysis.

Third, we have observed an enrichment of mobilome-
related genes among the common genes in ST131 strains, 
which are missing in all other strains. These mobilome-
related genes are not located in the plasmid sequence 
but in the chromosomes. These potentially critical genes 
for additional functions are most likely acquired through 
horizontal gene transfer [57, 134]. Synteny analysis of 

the common genes in ST131 reveals that some of these 
mobilome genes seem to form operon-like sequential 
stretches of DNA sequences. We identified two synteny 
clusters, named as s1-ST131 and s2-ST131, which are 
highly conserved across but distinct for ST131 E. coli 
strains (Additional file 1: Fig. S7). Prophage analysis sug-
gested that s1-ST131 is an incomplete prophage, whereas 
s2-ST131 is an intact, potentially functional prophage if 
we apply arguments provided in the literature [135].

s2-ST131 has 100% identity to a region in BK037528.1, 
a recently reported bacteriophage partial genome [74]. 
This provides some experimental evidence that s2-ST131 
appears of phage origin. Sequence analysis of proteins 
encoded by s2-ST131 (Additional file  2: Tab. S5) sug-
gests that the region s2-ST131 codes for all elements of a 
complete bacteriophage structure (Additional file 1: Fig. 
S10). Thus, sequence similarity arguments suggest that 
the phage-tail structure resembles a complete homolog 
of pyocin R2 of Pseudomonas aeruginosa PAO1 [76] 
together with the presence of endolysin and holin pro-
teins (Additional file  2: Tab. S5). It is known as tailocin 
[77], a phage-tail particle that is capable of killing bacte-
ria. The similarity of pyocin R2 to the P2-like prophage 
suggests a close relationship of s2-ST131 to the P2 
prophage [136].

The presence of prophages in bacteria has long been 
known in bacterial biology including its relevance to 
evolution, infection, and bacterial fitness [137–141]. 
Prophages can be induced by an SOS signal [75], which 
is known as spontaneous prophage induction (SPI), and 
it causes the lysis of host cells. The induced prophage can 
then function as bacteriophage infecting closely related 
but competitive bacteria by going through either lytic or 
lysogenic cycle [138, 140, 142]. In the event of lysogenic 
cycle, the phage DNA or potentially the host DNA can 
be transferred to the surrounding bacterial species [138, 
142]. On the other hand, in the lytic cycle, prophage can 
act as a self-replicating weapon enhancing the fitness of 
the bacterial host population [143, 144].

Thus, the tailocin complex kills closely related bacterial 
strains with high specificity when the population of the 
producing strain is usually protected due to self-immu-
nity [145, 146]. We think that the presence of s2-ST131 in 
the ST131 E. coli provides an advantage for these strains 
in the inter-bacterial competition. Therefore, in a pool 
of E. coli strains, ST131 E. coli may prevail over other 
(closely related) bacteria.

Next, we asked the question whether there is any gene 
family associated to the s2-ST131 and/or s1-ST11 clus-
ters, which could allow a deepened biological interpreta-
tion of ST131 pathogenicity. The associated GFs are then 
investigated if they form an operon or a synteny cluster 
of GFs. We have observed that the s2-ST131 cluster is 
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significantly associated with a syntenic group of flagellar 
genes (closely related to T3SS) and with a T6SS cluster. 
Similarly, s1-ST11 is jointly present with a T3SS syntenic 
group, a cluster of tellurium resistance genes as well as 
prophage clusters. All these clusters (T3SS [115], T6SS 
[92, 93], tellurium resistance [147], and prophages [137–
141]) are known to be relevant for bacterial pathogenicity.

Finally, we investigated if the number of intact 
prophages has any relationship to the potential patho-
genicity of the E. coli strain. Figure  7B shows that the 
number of prophages correlates with the likelihood of 
virulence. As prophages have the potential to carry anti-
biotic resistance genes and toxins [140]; therefore, E. coli 
strains with the higher number of prophages tend to be 
of higher virulence.

How could this competition in the human gut micro-
biome work? In a healthy individual, it is expected that 
the gut microbiome is largely colonized by commensal 
bacteria, which live in symbiotic relationship with the 
host. The symbiotic bacteria provide not only metabolic 
benefit, but also regulate the immune response, promote 
immune homeostasis, and prevent pathogen coloniza-
tion in the host environment [148, 149]. As a result, the 
perturbation of hosts’ microbiota structure increases the 
risk of pathogen infection and undermines colonization 
resistance due to direct or indirect mechanisms [149].

Several studies have shown that, in critically ill patients, 
dysbiosis (disruption of the microbiota homeostasis due 
to an imbalance in the microflora) involves the loss of 
health benefits from disappearing commensal bacteria 
and the overgrowth by pathogenic strains [150–154]. 
Pathogenic E. coli can cause diarrhea and has also been 
observed in critically ill patients requiring ICU support 
[155, 156]. Dysbiosis observed in fecal samples from 
ICU patients is reflected by phylum-level composition 
changes with decreasing relative abundance of Firmi-
cutes and Bacteroidetes but increasing share of Proteo-
bacteria [151]. In the view of results shown in Fig. 7 and 
Additional file  1: Fig. S4 (Additional file  1), we hypoth-
esize that, in the presence of both commensal and path-
ogenic E. coli strains found in critically ill patients, the 
pathogenic strains, especially those of ST131, could easily 
outcompete the commensal ones.

Conclusions
This study provides the first report of applying pange-
nome analysis to systematically interrogate the different 
subtypes of E. coli. (1) We have built the E. coli pange-
nome from 1324 complete genomes by optimizing the 
parametrization with regard to the gene/protein fam-
ily (GF) classification (sequence identity and sequence 
length coverage). This approach can be used not only for 
E. coli, but is also applicable to other bacteria. Whereas 

the pangenome size expands and the core genome dimin-
ishes with every new genome added, we find the softcore 
genome (≥95% of strains) being stable with ~3000 GFs 
regardless of the total number of genomes. We think that 
this softcore genome lists the critically relevant, evolu-
tionarily most conserved or important classes of GFs and 
defines the bacterial species. (2) We have determined 
sequence type, serotype, phylogroup, virulence factors, 
antibiogram, and prophages for all genomes and stud-
ied their relationship to the strain’s pathogenicity. (3) All 
information collected about the pangenome GF’s and 
the genome properties are provided in supplementary 
files. Thus, this E. coli pangenome can serve as a refer-
ence point in future studies. (4) Our analysis reveals dis-
tinct molecular characteristics of E. coli strains from the 
phylogroups B1 (shiga vs nonshiga), B2 (ST131 vs non-
ST131), and E (ST11). We identified potential biological 
particles (a prophage, s2-ST131) that can serve as bio-
logical weapon for ST131 E. coli in bacterial competition. 
Several syntenic gene clusters found significantly coinci-
dent with s1-ST11 and/or s2-ST131 appear important for 
the respective strains’ pathogenicity.

Methods
All methodical details and the datasets used are 
described in this section. In addition, a supplementary 
methods file with scripting support is available as Addi-
tional file 4 with this article.

Dataset
The assembled genome sequences and NCBI Refseq 
annotations for prokaryotic data were searched for at 
the NCBI website (10 June 2021) [157, 158]. A total 
of 23,547 assembled genome sequences were associ-
ated with E. coli, out of which 1624 were of “complete 
genome” assembly level. To ensure that all the 1624 E. 
coli genomes followed the same annotation pipeline, we 
have downloaded the DNA and the protein sequences as 
well as the GFF (genome feature format) annotation files 
for all these genomes.

In order to streamline our analysis, we further evalu-
ated the 1624 complete genomes of E. coli to guaran-
tee that the selected genomes are of (1) high quality 
and (2) limited redundancy. Two genomes (Assembly 
IDs: GCF_000184185.1 and GCF_002925525.1) were 
excluded due to the difference between the Refseq and 
Genbank sequences as identified by the column “paired_
asm_comp” in the NCBI Refseq summary file. This gives 
a total of 1622 genomes that remained to be analyzed. To 
remove highly similar genome sequences from the analy-
sis, which in turn reduces redundancy in our dataset, we 
used fastANI version 1.32 [53] with default parameters to 
calculate the pairwise average nucleotide identity (ANI) 
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of all the 1622 genomes. If the pairwise ANI is greater 
than 99.99%, then the genome with larger size was kept 
and the smaller genome was excluded from analysis. This 
step left us with 1324 genomes. The details of all 1624 
genomes are provided in Supplementary file 1 (Addi-
tional file 3).

Escherichia coli sequence typing, serotyping, 
and phylotyping
Given the complete genome sequences of E. coli, we per-
formed in silico sequence typing using the stand-alone 
version of MLST version 2.0.4 [159] based on the Acht-
man criteria [160]. Seven housekeeping genes are pro-
filed for MLST typing (i.e., adk, fumC, gyrB, icd, mdh, 
purA, and recA). The MLST database version 2.0.0 was 
downloaded on 2 August 2021. Eighteen sequences that 
have ambiguous sequence type or are unable to be typed 
were labelled “ST-unknown”.

For in silico serotyping, we used the stand-alone ver-
sion of SerotypeFinder [161] version 2.0.1 together with 
the database version 1.0.0. SerotypeFinder is applied for 
O and H typing of bacterial sequences. O typing is based 
on genes wzx, wzy, wzm, and wzt. For H typing, the flagel-
lin genes (i.e., fliC, flkA, fllA, flmA, and flnA) are analyzed. 
If there is no hit for O or H typing, we assigned the strain 
as “O-” or “H-”, respectively. If there is ambiguity, then we 
labelled the genomes as “O-unknown” or “H-unknown”, 
respectively.

Escherichia coli species can be divided into eight phylo-
groups, notably A, B1, B2, C, D, E, F, and G [51, 162]. We 
have used the software ClermonTyping [51] version 1.4.0 
to perform in silico phylotyping of the E. coli genome 
sequences. ClermonTyping was performed on 11 August 
2021. Phylogroups were assigned according to the output 
file phylogroups.txt from the software ClermonTyping.

Prediction of E. coli antibiogram from the DNA sequences
We used ResFinder [163] v4.1 (27 May 2021) and Res-
Finder database (16 August 2021) to obtain the in silico 
antibiogram of the E. coli genomes. We ran the analysis 
using blastn for alignment. The gene matching was based 
on default parameters (i.e., sequence coverage of 60% and 
sequence identity of 80%). ResFinder associates 9 classes 
of antibiotics with 24 potential antimicrobial-resistant 
(AMR) targets (i.e., for aminoglycoside (3), beta-lactam 
(11), fluoroquinolone (2), folate pathway antagonist (2), 
fosfomycin (1), macrolide (1), phenicol (1), polymyxin 
(1), and tetracycline (2)). The antibiogram is provided as 
a matrix with genomes in rows and the 24 AMR targets 
in columns. The entries will be 0 for absence of the AMR 
target and 1 for its presence, respectively. For presence, 
we require the mapping to be with 100% sequence iden-
tity and 100% sequence coverage as we have noticed that 

there is little difference comparing to 60% sequence cov-
erage and 80% sequence identity (see Supplementary file 
S6 in the zip package Additional file 3).

Mapping of virulence factors in E. coli genome 
and assignment of pathogenicity likelihood
We used virulencefinder v2.0.3 (21 May 2020) [164] and 
its virulence database (from 29 May 2020) to obtain the 
in silico virulence factor mapping of the E. coli genomes. 
All parameters are the same as the in silico antibiogram 
mapping. There are a total of 177 virulence factors for E. 
coli available in the database. We calculated the virulence 
factor presence/absence matrix (PAM) with genomes in 
rows and the 177 virulence factors in columns. Similarly, 
the entries are 0 for absence and 1 for presence, respec-
tively (see Supplementary file S7 in the zip package Addi-
tional file 3).

Given the virulence factor PAM, the number of viru-
lence factors presence (VF count) for each genome is cal-
culated and the quantile distribution is determined. The 
VF count ranges from 0 to 37 with the 25%, 50%, and 75% 
quantile threshold as 6, 14, and 22. Regarding their path-
ogenicity, E. coli strains can be classified into four cat-
egories (i.e., likely nonpathogenic (VF count < 6), likely 
virulent (VF count ranges from 6 to 14), highly virulent 
(VF count ranges from 14 to 22), and extremely virulent 
(VF count ≥ 22)).

Finding clusters of homologous genes or gene families
Two publicly available software suites are used to inves-
tigate clusters of homologous genes or gene families 
(GF): CD-HIT [165] and ProteinOrtho [166]. We evalu-
ated the clusters of GFs across different sequence identity 
(SeqID) [range 40 to 80%] and sequence length coverage 
(SeqLC) [range 50 to 90%]; subsequently, we compared 
the GFs identified from both CD-HIT and ProteinOrtho. 
The similarity between the GFs from both CD-HIT and 
ProteinOrtho is evaluated using Jaccard similarity index, 
which is defined as the ratio of common GFs between 
both methods divided by the union of GFs across both 
methods. Higher Jaccard similarity index (Eq. 1) indicates 
higher concordance between the two methods. Based 
on the Jaccard similarity index, we identify the optimal 
parameters (i.e., SeqID and SeqLC) to find GFs.

Pangenome development
Figure  2 shows the sequential steps in the pangenome 
development in accordance with our previously validated 
protocol [49]. Briefly, each protein sequence is tagged 

(1)Jaccard (A,B) =
| A ∩ B |

| A ∪ B |
• 100%
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with its corresponding genome ID. Subsequently to 
streamline our analysis, three steps of filtering are used to 
significantly reduce the total number of 6,201,720 protein 
sequences from all genomes:

(1)	 Proteins within a given genome are clustered at 
98% SeqID with CD-HIT; the longest sequence is 
selected as representative (6,169,700 in total).

(2)	 Clustering the set of representative sequences from 
step (1) with iterative application of CD-HIT with 
decreasing SeqID from 100 to 98% in 0.5% steps 
(essentially, this is a computation of the 98% SeqID 
core genome) results in 188 GFs with 248,921 
sequence members.

(3)	 The remaining 5,920,779 sequences from across all 
genomes are clustered with CD-HIT at 90% SeqID 
and 90% SeqLC. The longest sequences from each 
of the 52,798 clusters (including singletons) are 
extracted as cluster representatives.

(4)	 Then, this reduced sequence set is processed with 
either CD-HIT or ProteinOrtho with given SeqID 
[range 40 to 80%] and SeqLC [range 50 to 90%] 
thresholds.

The resulting GFs from this step are then re-inflated 
with the protein sequences from clusters generated dur-
ing sequence reduction steps (1) and (3), if they contain a 
sequence from the respective GF. The clusters from step 
(2) are added to set of clusters. Finally, if sequences of 
two resulting GFs contain the same PFAM domain, the 
two GFs are merged into one if their sequences can be 
clustered with CD-HIT or ProteinOrtho, respectively, 
using SeqID 40% and SeqLC 50%. This step leads to final 
set of gene families (GF) that will form the pangenome. 
The latter is represented as a presence/absence matrix 
(PAM) of size n × m where n is the number of GFs and 
m is the index of genomes. The entry for each cell in the 
matrix is either 1 or 0, which corresponds to presence or 
absence of the gene families in the genome, respectively.

Correlating sequence type and phylogroup 
to the accessory genome presence/absence matrix (PAM)
To evaluate whether the sequence types or phylogroups 
of the E. coli genomes are correlated with the PAM, we 
focused on the sequence types with at least 10 genomes. 
There are only 21 sequence types with at least 10 
genomes, which corresponds to 674 genomes altogether. 
The distribution of the sequence types and phylogroups 
of these 674 genomes are shown in Additional file  1: 
Fig. S1. The pangenome matrix based on ProteinOrtho 
method was filtered to include only these 674 genomes 
and their related GFs. This is to ensure that we include 
only the informative gene families for the correlation 

analysis. We found the resulting PAM matrix (sized 6244 
× 674) to include only 6244 GFs with at least 10 genomes 
and at most 640 genomes, respectively. A heatmap pro-
file of the PAM matrix is generated by applying unsuper-
vised hierarchical clustering for both genomes and gene 
families accordingly (using Euclidean distance as distance 
metric and an agglomerative strategy).

Identifying synteny clusters in E. coli subtype‑specific gene 
family clusters
Among the clusters of GFs identified from the E. coli 
PAM of the accessories genome (i.e., 6244 × 674 PAM as 
described previously) that are clearly distinctive between 
strain groups, we found some that consist of genes 
closely localized in the respective genomes in the cases 
of ST11 and ST131. In order to identify synteny clusters, 
we performed several steps, i.e., (1) we re-annotate the 
NCBI GFF files for each ST131 and ST11 genomes based 
upon the cluster of homologous genes ID; (2) we filtered 
the modified annotation file to include only the specific 
GF clusters; (3) we walked through the filtered annota-
tion file to identify operon or synteny cluster where the 
distance from one gene to another gene is at most 200 bp 
and there are at least 10 genes on the same strand; (4) we 
compared this synteny cluster across all the genomes in 
ST131 or ST11, respectively; and, finally, (5) we evaluated 
how common this cluster is in the specific E. coli ST131 
or ST11 genomes. For step (3), if there is a skip gene in 
between two adjacent regions due to its common pres-
ence in all other E. coli genomes, then the synteny cluster 
will be extended to include this gene.

In order to avoid any potential bias in the analysis, we 
evaluated the ST131 or ST11 genomes according to the 
country, host species, and isolation source (collected 
from the NCBI Biosample annotation). We further evalu-
ated the DNA length and GC content distribution. This is 
important to ensure that any observed conserved synteny 
cluster is not due to bias or contamination from the same 
source. We find that the genomes come from multiple 
sources with variable DNA length and GC content. This 
suggests that there is no confounding bias in the genomes 
analyzed.

DNA and protein sequence analysis of synteny clusters
The DNA and protein sequences of the synteny clusters 
identified in specific E. coli subtypes (i.e., ST131 and 
ST11) were investigated with in-depth sequence analy-
sis methods. The DNA sequences were evaluated at two 
levels, i.e., (1) how specific it is in the E. coli subtype of 
interest; and (2) whether there are hits to the NCBI non-
redundant database excluding E. coli genomes. Briefly, 
the extracted DNA sequence of the synteny cluster 
from ST131 E. coli was searched against the ST131 and 
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non-ST131 genome collections (with blastn v2.11.0+), 
respectively. Subsequently, the percentage of mapping 
hits are compared between the ST131 and non-ST131 
genomes. This will give the specificity of the DNA 
sequences in our collection of genomes. On the other 
hand, the same DNA sequence is searched against the 
NCBI non-redundant database excluding E. coli genomes 
with blastn using default parameters. Similarly, the analy-
sis is performed on ST11 specific synteny cluster.

The annotated protein sequences of the synteny clus-
ters are investigated using (1) homology detection using 
HHPRED [167, 168] and (2) blastp (v2.11.0+) [169]. 
We applied the (3) in-house software suite ANNOTA-
TOR [170, 171] to gain a quick overview of the proteins’ 
sequence domain architecture (globular domain func-
tions and non-globular segments) and the potentially 
amino acid sequence-encoded biological functions.

Finding prophages in E. coli genome
We use PHASTER [80, 172] to search for prophage 
genomes in the E. coli genomes. PHASTER categorizes 
the identified prophage into three categories, i.e., intact, 
questionable, and incomplete. It has been suggested that 
“questionable” and “incomplete” predicted prophages 
are often lacking some of the essential phage functions. 
Therefore, in this analysis, we will focus on the “intact” 
prophage signatures identified in the genomes.

Analysis of GF associations in the accessory genome
CoinFinder v1.1 [114] was used to detect statistically 
significant associations and dissociations of GFs in the 
accessory genome of well-represented phylogenetic 
groups of E. coli strains. The program was applied to the 
set of 674 genomes from the most commonly observed 
E. coli sequence types as described above. We generated 
their phylogenetic tree based on the seven housekeeping 
genes used for MLST typing by following procedure:

	(i)	 The nucleotide sequences of the seven housekeep-
ing genes for each of the 674 genomes were concat-
enated.

	(ii)	 The multiple sequence alignment (MSA) of the 674 
concatenated sequences created with MUSCLE 
[173].

	(iii)	 We identified the SNPs from the MSA file using the 
program SNP sites [174].

	(iv)	 Finally, the phylogenetic tree was constructed with 
the help of raxML v8.2.11 [175].

The pangenome matrix was reformatted to suit the 
input needs for CoinFinder. We used the default thresh-
old for filtering of gene families and applied the ad hoc 
P-value ≤ 1 × 10−20 as the threshold for picking up sig-
nificant association.

PFAM domain and COG annotation
HMMER3 v3.1b2 [176] is used to find known protein 
domains based on the PFAM release 33.1 [177]. For each 
of the protein sequences, the PFAM HMM profile is que-
ried against the target sequences with E-value threshold 
of 0.001. The domain hits are compared across the differ-
ent protein sequences for coherence.

For COG domain occurrence analysis, we anno-
tate the softcore genome clusters/GFs (≥95% of all the 
genomes in this study, totally 3056 GFs). For each of 
the clusters, we extracted the protein fasta sequences. 
Subsequently, we performed multiple sequence align-
ment (MSA) of each cluster using MUSCLE [173]. Then, 
a Hidden Markov model (HMM) is built from each of 
the clusters’ MSA using hmmbuild from HMMER3 
v3.1b2. The softcore HMM profile is queried against the 
COG database [61] (downloaded on 7 January 2021). 
The significant COG hits (with at least E-value of less 
than 0.001) were assigned to the softcore genome clus-
ter accordingly. The functional code of the COG cate-
gory is assigned based on the “cog-20.def.tab” from the 
COG database. COGs with multiple functional catego-
ries were assigned their first functional code assuming 
it as its most important functional category. Softcore 
genome clusters with no HMMER3 hits were labelled 
as “Unknown.” In addition, we also extracted the COGs 
from the COG database that are annotated as belonging 
to E. coli to serve as comparison and control. There are 
two E. coli strains being represented in the COG data-
base, i.e., E. coli O157:H7 str. Sakai and E. coli str. K-12 
substr. MG1655.

There are 20 functional codes available in the COG 
database following the general categorization by Satti 
et  al. [47]. Briefly, functional codes D, M, N, O, T, U, 
V, W, and Y are categorized as “cellular processes and 
signaling,” functional codes A, B, J, K, and L are summa-
rized as “information storage and processing,” functional 
codes C, E, F, G, H, I, P, and Q are grouped as “metabo-
lism,” functional code X is categorized as “mobilome,” 
and functional codes R and S are seen as “poorly 
characterized”.

Abbreviations
AIEC: Adherent invasive E. coli; AMR: Anti-microbial resistance; APEC: Avian 
pathogenic E. coli; COG: Cluster of orthologous genes; DAEC: Diffusely 
adherent E. coli; DNA: Deoxyribonucleic acid; E. coli: Escherichia coli; EAEC: 
Enteroaggregative E. coli; EHEC: Enterohemorrhagic E. coli; EPEC: Enter-
opathogenic E. coli; ETEC: Enterotoxigenic E. coli; ExPEC: Extraintestinal 
pathogenic E. coli; GF: Gene/protein family (family of sequentially similar 
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InPEC: Intestinal pathogenic E. coli; NCBI: National Center of Biological 
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tion; VF: Virulence factor.
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Additional file 1: Figures S1-S17. This Additional file 1 provides 17 sup-
plementary figures supporting the conclusions in the main text. Fig. S1. 
Genome distribution among the most common sequence types and phy-
logroups. Only common sequence types and phylogroups with at least 
10 E. coli genomes are shown. The distribution of sequence types (A) and 
phylogroups (B) for the selected 674 E. coli genomes is illustrated. Fig. S2. 
Genome size and proteome size distribution among E. coli genomes. Box-
plot illustration of the distribution of genome size (A) and proteome size 
(B) across different phylogroups of E. coli genomes. The OTH phylogroup 
represents 4 genomes in clade I (1), E or clade I (2) and unknown (1). Fig. 
S3. Genome distribution among sequence types and phylogroups. Barplot 
illustration of the distribution of sequence type (A) and phylogroups (B) 
among the 1,324 E. coli genomes. The y-axis represents the number of 
genomes. The horizontal line in (A) represents the threshold at number 
of genomes equal to 10. Fig. S4. The distribution of virulence categories 
across the 21 most common sequence types of E. coli. The distribution 
of virulence categories across the 21 common sequence types of E. coli 
ordered according to its phylogroups. Based on the total number of viru-
lence factors (VFs) present in the genome, we categorized the genome 
into four virulence categories, i.e. (1) likely nonpathogenic (#VFs <6); (2) 
likely virulence (6 <= #VFs <14); (3) high virulence (14 <= #VFs < 22) 
and (4) very high virulence (#VFs >= 22). The phylogroup B1* represents 
phylogroup B1 with shiga toxin. Fig. S5. Distribution of COG categories in 
GFs of the reference genome and in the softcore genome. The distribu-
tion of COG categories for the gene families in (A) E. coli reference in the 
COG database; and (B) the softcore genome. Fig. S6. Distribution of COG 
categories in GFs in ST 131. The distribution of COG categories for the 
gene families that are (A) common in E. coli ST131; and (B) rare in E. coli 
ST131. Fig. S7. The presence of s1-ST131or s2-ST131 in ST131 and other 
E. coli genomes. The distribution of BLASTN coverage for (A) s1-ST131 and 
(B) s2-ST131 clusters in ST131 genomes; and non-ST131 genomes. The 
presence of s1-ST131or s2-ST131 cluster is shown by BLASTN coverage 
of 95% -100% whereas the absence of these clusters are shown in the 
BLASTN coverage 0% - 5%. The partial presence of these clusters is shown 
in between 5% to 95%. Fig. S8. Sequences similar to s1-ST131 among 
non-E. coli genomes. The top 20 hits of NCBI BLASTN to the nr-database 
excluding E. coli genomes for the s1-ST131 cluster. Fig. S9. Sequences 
similar to s2-ST131 among non-E. coli genomes. The top 20 hits of NCBI 
BLASTN to the nr-database excluding E. coli genomes for the s2-ST131 
cluster. Fig. S10. Genome browser results of the s2-ST131 cluster. Genome 
browser results of the s2-ST131 cluster based upon GCF_000931565.1 as 
the representative E. coli ST131. The shown region is on chromosome NZ_
CP010876.1 (2,042,977 – 2,066,794). The highlighted regions represent the 
nanomachine (tailocin), the capsid and the lysis-related genes. Fig. S11. 
The presence of s1-ST11or s2-ST11 in ST11 and other E. coli genomes. The 
distribution of BLASTN coverage for (A) s1-ST11 and (B) s2-ST11 clusters 
in the ST11 genomes; and non-ST11 genomes. The presence of s1-ST11 
or s2-ST11 cluster is shown by BLASTN coverage of 95% -100% whereas 
the absence of these clusters are shown in the BLASTN coverage 0% - 5%. 
The partial presence of these clusters is shown in between 5% to 95%. Fig. 
S12. Sequences similar to s1-ST11 among non-E. coli genomes. The top 20 
hits of NCBI BLASTN to the nr-database excluding E. coli genomes for the 
s1-ST11 cluster. Fig. S13. Sequences similar to s2-ST11 among non-E. coli 
genomes. The top 20 hits of NCBI BLASTN to the nr-database excluding 
E. coli genomes for the s2-ST11 cluster. Fig. S14. Analyzing s1-ST11 with 
antiSMASH. antiSMASH result from analyzing s1-ST11. It is observed that 
the aryl polyene biosynthetic gene is observed in the cluster. Also, there 
are other additional biosynthetic genes as shown in the genes’ cluster. 
Fig. S15. Analyzing s2-ST11 with antiSMASH. antiSMASH result from 
analyzing s2-ST11. It is observed that the aryl polyene biosynthetic gene 
cluster is observed with 94% similarity. BGC0000836 is the biosynthetic 
cluster in the UPEC strain CFT073. Fig. S16. Histogram of the -log10 
P-value generated with CoinFinder. Histogram of the -log10 P-value of the 
pairwise GF association generated from the CoinFinder output for the all 
pairwise comparisons. The figure on the right is the enlarged section of 

the distribution with the y-axis truncated at 106. The P-value 1 x 10-20 is 
selected as the ad hoc cut-off criterion for significant pairwise compari-
sons in this study. Fig. S17. Distribution of significantly associated GFs 
(associated GF cluster sizes). The distribution of number of associated GFs 
for each significant GF (P-value <= 1 x 10-20). The number of associated 
GFs for each significant GF ranges from 1 to 607. Though there are over-
whelmingly high number of GFs with fewer than 50 associated GFs, there 
are quite a substantial number of GFs with many associated GFs as well, 
especially those with more than 300 associated GFs.

Additional file 2: Tables S1-S10. This Additional file 2 provides 10 sup-
plementary tables supporting the conclusions in the main text. Tab. S1. 
Performance evaluation of the pangenome development. We list the 
numbers of clusters of homologous genes/proteins across different range 
of SeqID and SeqLC. Tab. S2. Effect of SeqID and SeqLC on the number of 
clusters. To evaluate the effect of SeqLC, we evaluate the number of clus-
ters across different seqID at each SeqLC threshold using linear regression. 
The slope represents the amount of change with respect to every increase 
in SeqLC. Similarly, to evaluate the effect of SeqID, the number of clusters 
across different SeqLC threshold is evaluated and the slope is calculated. 
The evaluation is done on both methods, i.e., CD-HIT and ProteinOrtho. 
Tab. S3. Synteny clusters among the common genes specific to ST131 
Escherichia coli. Tab. S4. Annotating the s1-ST131 cluster. Pseudomonas 
aeruginosa genes are represented with prefix PA. Tab. S5. Annotating the 
s2-ST131 cluster. Pseudomonas aeruginosa genes are represented with 
prefix PA. Tab. S6. Synteny clusters among the common genes specific 
to ST11 Escherichia coli. Tab. S7. The number of gene families (GFs) 
associated to s2-ST131 gene families. The identification of significantly 
associated gene families was carried out using CoinFinder based on a 
p-value <= 1-20 cutoff. Tab. S8. Supplementary Table S8: The number of 
gene families (GFs) associated to s1-ST11 gene families. The identification 
of significantly associated gene families was carried out using CoinFinder 
based on a p-value <= 1-20 cutoff. Tab. S9. Synteny cluster analysis of 
the GFs associated with s2-ST131. The inter-gene distance is kept at the 
maximum 1000 bp with at least 10 members per cluster. The s1-ST131 is 
excluded in this table. Tab. S10. Supplementary Table S10: Synteny cluster 
analysis of the GFs associated with s1-ST11. The inter-gene distance is kept 
at the maximum of 1000 bp with at least 10 members per cluster. The 
s2-ST11 cluster is excluded in this table.

Additional file 3. The Additional file 3 is a compressed file library (zip 
package) containing 11 files. File 1 genome list with serotypes, sequence 
types, phylogroups, etc. File 2A pangenome matrix determined with 
CD-HIT. File 2B softcore genome GF list determined with CD-HIT. File 
3A pangenome matrix determined with ProteinOrtho. File 3B softcore 
genome GF list determined with ProteinOrtho. File 4 the GFs of the six 
distinctive clusters. File 5 summary of the strains’ virulence and antibiotics 
resistance. File 6 antibiogram data. File 7 virulence factor PAM. File 8 
coincident pairwise association results from CoinFinder. README.

Additional file 4: Supplementary Methods. The Supplementary Meth-
ods file is available both at GitHub https://​github.​com/​biier​wint/​ecoli_​
pange​nome [180] as well as Additional file 4 with this article.
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