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Abstract

Background: The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive
damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis)
with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont
molecular interactions.

Results: We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the
best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of
transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE
families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state.
S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-
symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S.
pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and
essential amino acids required for insect development and cuticle biosynthesis.
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Conclusions: Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest
control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation,
along with the impact of TEs on eukaryotic genomes.

Keywords: Coleoptera, Weevil, Sitophilus oryzae, Genome, Transposable elements, Endosymbiosis, Immunity,
Evolution

Background
Beetles account for approximately 25% of known ani-
mals, with an estimated number of 400,000 described
species [1–3]. Among them, Curculionidae (true weevils)
is the largest animal family described, comprising about
70,000 species [1, 4, 5]. Despite being often associated
with ecological invasion and ecosystem degradation, only
three Curculionidae genomes are publicly available to
date [6–8]. Among the cereal weevils, the rice weevil
Sitophilus oryzae is one of the most important pests of
crops of high agronomic and economic importance
(wheat, maize, rice, sorghum, and barley), causing exten-
sive quantitative and qualitative losses in field, stored
grains, and grain products throughout the world [9–11].
Moreover, this insect pest is of increasing concern due
to its ability to rapidly evolve resistance to insecticides
such as phosphine, a fumigant used to protect stored
grains from insect pests [12–14].
Like other holometabolous insects, the life cycle of S.

oryzae can be divided into four stages: egg, larva, pupa,

and adult (Fig. 1). Females drill a small hole in the grain,
deposit a single egg, and seal it with secretions from
their ovipositor. Up to six eggs can be laid daily by each
female, totaling around 400 eggs over its entire lifespan
[15]. Larvae develop and pupate within the grain kernel,
metamorphose, and exit the grain as adults. The whole
process takes on average 30 days [10]. Like many insects
living on nutritionally poor diets, cereal weevils perman-
ently associate with nutritional intracellular bacteria (en-
dosymbionts) that supply them with nutrients that are
not readily available in the grains, thereby increasing
their fitness and invasive power. The endosymbiont of S.
oryzae, the gamma-proteobacterium Sodalis pierantonius
[16, 17], is housed within specialized host cells, named
bacteriocytes, that group together into an organ, the bac-
teriome [18]. Contrasting with most studied symbiotic
insects, the association between Sitophilus spp. and S.
pierantonius was established recently (less than 30,000
years ago), probably following the replacement of the an-
cestor endosymbiont, Candidatus Nardonella, in the

Fig. 1. Sitophilus oryzae overview. A Life cycle of cereal weevil Sitophilus oryzae. The embryo develops into a larva and pupa, and metamorphoses
into a young adult, exiting the grain around 3 days after metamorphosis completion. The developmental times indicated are from a rearing
condition at 27 °C and 70% relative humidity. B Photos of adult S. oryzae. Lower panel shows an adult exiting the grain
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Dryophthorinae subfamily [19, 20]. As a result, contrary
to long-lasting endosymbiotic associations, the genome
of S. pierantonius is GC rich (56.06%), and its size is
similar to that of free-living bacteria (4.5 Mbp) [16].
Moreover, it encodes genes involved in bacterial infec-
tion, including type three secretion systems (TTSS), as
well as genes encoding microbial associated molecular
patterns (MAMPs) that trigger Pattern Recognition Re-
ceptors (PRR) and are usually absent or reduced in bac-
teria involved in long-lasting associations [16, 21, 22].
Nevertheless, many features indicate that the genome of
S. pierantonius is in a process of degradation, as it con-
tains many pseudogenes (43% of the predicted protein-
coding sequences) and a large number of mobile ele-
ments (18% of the genome size) [16, 23]. Finally, it is im-
portant to note that no other symbionts, with the
exception of the familiar Wolbachia endosymbiont in
some strains, have been described in S. oryzae.
In order to help unravel potential adaptive functions

and features that could become the basis for identifying
novel control strategies for weevils and other major in-
sect pests, we have undertaken the sequencing, assembly,
and annotation of the genome of S. oryzae. Strikingly,
the repeated fraction of S. oryzae’s genome (repeatome),
composed mostly of transposable elements (TEs), is
among the largest found to date in insects. TEs, the
most versatile DNA units described to date, are se-
quences present in multiple copies and capable of re-
locating or replicating within a genome. While most
observed TE insertions evolve neutrally or are slightly
deleterious, there are a number of documented cases
where TEs may facilitate host adaptation (for reviews,
see [24–26]). For instance, gene families involved in
xenobiotic detoxification are enriched in TEs in Dros-
ophila melanogaster [27], Plutella xylostella [28], a
major crop pest, and Myzus persicae, another phyt-
ophagous insect causing significant agronomic losses
[29]. TEs have also been frequently associated with
insecticide resistance in Drosophila species [30–32].
In addition, population genetics studies suggested that
more than 84 TE copies in D. melanogaster may play
a positive role in fitness-related traits [33], including
xenobiotic resistance [32] and immune response to
Gram-negative bacteria [34].
In eukaryotes, TE content varies drastically and con-

tributes significantly to the size and organization of the
genome. From TE-rich genomes as maize (85% [35]),
humans (≈45% [36]), and the recently sequenced lung-
fish (≈90% [37]) for instance, to TE-poor genomes, as D.
melanogaster (12–15% [38]), or Arabidopsis thaliana
(≈10% [39]), repeatomes thrive on a high level of diver-
sity. These drastic variations are also observed within
animal clades, such as insects, where the proportion of
TE ranges from 2% in the Antarctic midge (Belgica

antarctica) to 65% in the migratory locust (Locusta
migratoria) [40–42] and up to 75% in morabine grass-
hoppers (Vandiemenella viatica species) [43]. In
addition to the overall TE content, the number of differ-
ent TE families (homogeneous groups of phylogenetic-
ally related TE sequences), their size (number of copies
per family), and sequence diversity are also very high
among insect species [44]. For instance, SINEs (short in-
terspersed elements) are almost absent from most insect
genomes, but many lepidopterans harbor these elements
[44]. In flies, long terminal repeat retrotransposons
(LTRs) are a staple of the Drosophila genus, but such
TEs are nearly absent from other dipteran genomes (e.g.,
Glossina brevipalpis and Megaselia scalaris) [44]. Recent
advances in sequencing have dramatically increased the
level to which TEs can be studied across species and re-
veal that such variations can persist even within recently
diverged groups, as observed within Drosophila species
[45], or among Heliconius butterflies [46]. An increasing
number of insect genomes are reported with large repea-
tomes (e.g. Aedes aegypti and Ae. albopictus 40–50%
[47, 48], L. migratoria 60–65% [40, 41], Dendrolimus
punctatus 56% [49], Vandiemenella viatica species 66–
75% [43]).
Here we present the genome of S. oryzae, with a

strong focus on the repeatome, its largest genomic com-
partment, spanning over ≈74% of the assembly. S. oryzae
represents a model system for stored grain pests, host-
TE evolutionary biology, and the study of the molecular
mechanisms acting at the early steps of symbiogenesis.
Moreover, the features uncovered suggest that S. oryzae
and its relatives have the potential to become a platform
to study the interplay between TEs, host genomes, and
endosymbionts.

Results and discussion
Genome assembly and annotation
We have sequenced and assembled the genome of the
rice weevil S. oryzae at a base coverage depth of 142×
using a combination of short- and long-read strategies
(see “Methods” and Additional file 1). The assembly
pipeline was defined to optimize multiple criteria includ-
ing gene completeness (BUSCO scores [50]) and
reference-free metrics (number of contigs, total length,
N50, number of N’s per 100 kbp and the proportion of
shared 100-mers between the assembly and short reads).
The karyotype of S. oryzae comprises 22 chromosomes
[51], and the genome assembly consists of 2025 scaffolds
spanning 770 Mbp with a N50 of 2.86 Mbp, demonstrat-
ing a high contiguity compared to other Coleopteran ge-
nomes (Table 1). The assembly size is consistent with
the genome size measured through flow cytometry (769
Mbp in females and 768 Mbp in males [51]). Haploid
genome size estimations based on k-mer distributions of
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the short reads ranged from 785 Mbp (GenomeScope
[58]) over 814 Mbp (gce [59]) to 818 Mbp (findGSE
[60]), in agreement with the assembly size. BUSCO
scores show the assembly is complete (97.9% complete
and 0.7% fragmented), with a low duplication rate
(1.9%). Consistent with the low duplication rate at the
gene level, no significant haplotig contamination was ob-
served. Finally, to confirm the completeness and consen-
sus quality of S. oryzae’s assembly, we have firstly
performed a K-mer analysis (100-mers), revealing that
around 92% of the 100-mers of our assembly are covered
by the 100-mers from the short reads, and secondly, 98%
of the short reads were able to map to the assembly.
Hence, thanks to the aforementioned statistics, S. oryzae
is the best assembled Curculionidae genome to date [7,
52, 61] (Table 1). The complete analysis of gene content
and function can be found in Additional files 2 and 3.

Annotation of the Sitophilus oryzae genome
Among the different pathways we were able to decipher
in the genome of S. oryzae, we present here highlights of
the main annotation efforts, followed by a detailed ana-
lysis of the TE content and impact on the host genome.
A comprehensive analysis for each highlight is presented
as Supplemental Notes in Additional file 2.

Phylome and horizontal gene transfer
Sitophilus oryzae has a high gene expansion rate when
compared to other beetles. Some of the families with the
largest expansions include genes coding for proteins

with DNA binding motifs, potentially regulating func-
tions specific to this clade. Olfactory receptors, anti-
microbial peptides (AMPs), and P450 cytochromes were
expanded as well, probably in response to their eco-
logical niche and lifestyle. Additionally, we noticed an
expansion of plant cell wall-degrading enzymes that
originated from horizontal gene transfer (HGT) events
from both bacteria and fungi. Given the intimate rela-
tionship between S. oryzae and its endosymbiont, includ-
ing the permanent infection of the female germline, we
searched for evidence for HGT in the weevil genome
possibly coming from S. pierantonius. Contrary to the
genome of the tsetse fly Glossina, where at least three
HGT events from Wolbachia have been reported [62],
we were unable to pinpoint any HGT event from either
the ancient endosymbiont Nardonella, Wolbachia, or the
recently acquired S. pierantonius. A detailed description is
reported in Additional file 2: Supplemental Note 1 [19,
63–86], and Note 3 for digestive enzymes [52, 87–107].

Global analysis of metabolic pathways
Using the CycADS [108] pipeline and Pathway Tools
[109], we have generated BioCyc metabolism reconstruc-
tion databases for S. oryzae and its endosymbiont S. pier-
antonius. We compared S. oryzae metabolism to that of
other arthropods available in the ArthropodaCyc [110]
collection and we explored the metabolic exchanges be-
tween weevils and their endosymbionts. The metabolic
reconstruction reveals that, despite its large genome for
an endosymbiotic bacterium, S. pierantonius relies on its

Table 1 Assembly statistics of S. oryzae’s genome in comparison to Curculionidae genomes and T. castaneum [6, 7, 51–57]

*All genes, no NCBI RefSeq annotation report available
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host for several central compounds, including alanine
and proline, but also isocitrate, inosine monophosphate
(IMP), and uridine monophosphate (UMP), to produce
essential molecules to weevils, including the essential
amino acids tryptophan, phenylalanine, lysine, and argin-
ine, the vitamins pantothenate, riboflavin, and dihydrop-
teroate as a folate precursor, and nicotinamide adenine
dinucleotide (NAD) (Additional file 2: Supplemental
Note 2). Among the amino acids listed above, phenyl-
alanine, in particular, is an essential precursor for the
cuticle synthesis in emerging adults [111]. In addition,
several studies have shown that S. pierantonius improves
host fitness, including fertility, developmental time, and
flight capacity, in part by supplying the host with vita-
mins and improving its mitochondrial energy metabol-
ism [112–114]. See Additional file 2: Supplemental Note
2 [19, 20, 108–110, 112, 113, 115–120] for more
information.

Development
Developmental gene regulatory networks of D. melano-
gaster and Tribolium castaneum were used to annotate
S. oryzae genes with roles in signaling, embryonic pat-
terning, oogenesis, segmentation and segment identity,
organogenesis, appendage and eye development, and in-
sect size and developmental transitions. Overall, we ob-
served a high level of conservation in comparison to the
red flour beetle Tribolium castaneum, a model coleop-
teran. When compared to D. melanogaster, several key
coordinate group genes are absent in T. castaneum and
S. oryzae, most notably the anterior group genes bicoid
and swallow and the posterior group gene oskar. More-
over, seven developmental genes with two homologs in
the Drosophila genome are represented by a single
ortholog in T. castaneum and S. oryzae. We also ob-
served that homologs for signaling pathway ligands
could not always be identified, which, given the presence
of conserved receptors, is probably due to divergent pri-
mary sequence of the ligands. A detailed description is
reported in Additional file 2: Supplemental Note 4 [52,
121–138].

Cuticle protein genes
Among the distinctive biological features of coleopterans
is the ability to generate a hard and thick cuticle that
protects them against dehydration and represents the
first physical barrier from infections and topical insecti-
cide penetration. The analysis of cuticle proteins (CPs)
showed that S. oryzae has an average number of CPs,
but with an enrichment of members of the CPAP1 fam-
ily. While some members of this family are known to be
involved in molting and maintaining the integrity of the
cuticle in T. castaneum, most are still uncharacterized
[139, 140]. Thus, these proteins might be involved in the

development of specific cuticular tissues in S. oryzae or
other weevils. The total number of CPs did not follow
the taxonomy of beetles, suggesting instead that it might
be an adaptation to their diverse lifestyles. For details,
see Additional file 2: Supplemental Note 5 [139–143].

Innate immune system
The analysis of immunity-related genes revealed that the
genome of S. oryzae encodes the canonical genes in-
volved in the three main antimicrobial pathways Toll,
Imd, and JAK-STAT, suggesting functional conservation
of these pathways in cereal weevils. The conservation of
the Imd pathway in the S. oryzae genome is of particular
interest as its degradation in other symbiotic insects
(Acyrthosiphon pisum [144], B. tabaci [145], or Rhodnius
prolixus [146]) was initially correlated to their symbiotic
status. The Imd pathway is not only present in S. oryzae,
but it is also functional [147, 148], and has evolved mo-
lecular features necessary for endosymbiont control
[147] and host immune homeostasis [148]. Thus, not
only is the Imd pathway conserved in cereal weevils,
contrary to aphids and some other hemimetabolous in-
sects, but it seems to have been evolutionary “rewired”
toward additional functions in symbiotic homeostasis
[147]. A detailed description can be seen in Additional
file 2: Supplemental Note 6 [41, 62, 144–193].

Detoxification and insecticide resistance
Fumigation using phosphine, hydrogen phosphide gas
(PH3), is by far the most widely used treatment for the
protection of stored grains against insect pests due to its
ease of use, low cost, and universal acceptance as a
residue-free treatment [194, 195]. However, high-level
resistance to this fumigant has been reported in S. ory-
zae from different countries [13, 196–203]. Hence, we
searched for genes associated with detoxification and re-
sistance to insecticide and more generally to toxins, in-
cluding plant allelochemicals. The S. oryzae repertoire of
detoxification and insecticide resistance genes includes
more than 300 candidates, similar to what is seen in
other coleopteran genomes. For more details, see Add-
itional file 2: Supplemental Note 7 [12–14, 110, 194–
212].

Odorant receptors
One promising pest management strategy relies on
modifying insect behavior through the use of volatile or-
ganic compounds that act on odorant receptors (ORs)
[213, 214]. ORs play a significant role in many crucial
behaviors in insects by mediating host-seeking behavior,
mating, oviposition, and predator avoidance [215]. Inter-
fering with the behavior of pest insects and modulating
their ability to find suitable hosts and mates has been
shown to reduce population numbers, notably using
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plants that are capable of producing attractants and re-
pellents [216, 217]. Sitophilus spp. are known to use
kairomones for host detection [218, 219], as well as ag-
gregation pheromones [220, 221]. We annotated 100
candidate OR genes in S. oryzae (named SoryORs), in-
cluding the gene encoding the co-receptor Orco. Of
these genes, 46 were predicted to encode a full-length
sequence. The global size of the SoryOR gene repertoire
is in the range of what has been described in other spe-
cies of the coleopteran suborder Polyphaga (between 46
in Agrilus planipennis and more than 300 in T. casta-
neum) and close to the number of OR genes annotated
in the closely related species Dendroctonus ponderosae
(85 genes, [222]) (Additional file 2: Supplemental Note 8
[204, 218–242]).

Massive expansion of TE copies in the genome of S.
oryzae
Detection and annotation of the repeatome
The repeatome represents the fraction of the genome
categorized as repetitive. It encompasses TEs, satellites,
tandem, and simple repeats. Eukaryotic TEs can be sepa-
rated into two classes, depending on their replication
mode [243]. DNA (Class II)-based elements are able to
directly move within a genome and include terminal
inverted repeat (TIR), Crypton, rolling circle (RC/Heli-
tron), and large composite elements (Maverick). Con-
versely, retrotransposons (Class I) have an RNA
intermediate and replicate through RNA retrotranscrip-
tion. Retrotransposons can be further divided into long
terminal repeat (LTR), and non-LTR elements, including
long and short interspersed nuclear repeat elements
(LINEs and SINEs). Other retrotransposons include
Penelope-like (PLEs) and DIRS-like elements. Each one
of these TE orders can be further classified into specific
superfamilies (as for instance Copia or Gypsy LTR ele-
ments, and hAT or Tc1/Mariner TIR elements) that
may encompass hundreds of TE families, each contain-
ing thousands of copies. The intrinsic diversity of TEs
complicates their identification and annotation, espe-
cially in understudied species genera.
We used multiple state-of-the-art TE detection tools,

including RepeatModeler2 and EDTA [244, 245], to gen-
erate consensus sequences of the TE families in S. ory-
zae. After an initial discovery step, more than 10,000
likely redundant TE families were identified by the dedi-
cated programs; we combined their results using mul-
tiple sequence alignments and clustering (see “Methods”
and Additional file 2: Figure S1) to reduce this number
to 3399. After quality filtering (see “Methods”), the final
library includes a total of 3361 sequences. Due to the
evolutionary distance between S. oryzae and other
known coleopterans, the consensus sequences obtained
were further classified using a thorough combination of

sequence homology and structure (see “Methods”). The
S. oryzae genome is among the most TE-rich insect ge-
nomes to date. Comparison of TE genomic content as
given by RepeatMasker using TE libraries from Repeat-
Modeler 2.0.1, EDTA v1.7.8 or our custom pipeline
shows that traditional methods miss ~ 5% of TEs in spite
of harboring more complexity (more total TE consensus,
Table S1). Thus, we conclude that our method is likely
to improve the overall quality of the TE annotation.
We uncovered 570 Mbp of repeat sequences, corre-

sponding to ≈74% of the S. oryzae genome: ≈2% of satel-
lite sequences, simple or low-complexity repeats, and
≈72% of other mobile elements, including TEs (Fig. 2A,
Additional file 4). Given the limitation of the sequencing
technologies, the proportion of satellites and TEs usually
abundant in the heterochromatin is likely underesti-
mated. We took advantage of a recent comparative ana-
lysis of TE content in 62 insect species [40] to contrast
with the S. oryzae TE compartment. The S. oryzae gen-
ome ranks among those with the highest TE fraction ob-
served in insects (Fig. 2B, C). Within the largest insect
order, Coleoptera, very little is known regarding TE dis-
tribution and evolution. T. castaneum harbors only 6%
of TEs [52] and Hypothenemus hampei contains 8.2% of
TEs [6, 247], while Dichotomius schiffleri harbors 21%
[248]. The species closest to S. oryzae, Rhynchophorus
ferrugineus, has a TE content of 45% [8]. Therefore,
while TE content has been described to follow phylogen-
etic relationships in most insects [44, 45], there is a large
variation among the few Coleoptera species with avail-
able genomes. It is important to note that the pipeline
we used to detect and annotate TEs in S. oryzae differs
from the method implemented by Petersen and col-
leagues [40], as we incorporated 31 manually curated TE
references for S. oryzae, and specifically annotated DNA/
TIR elements based on their sequence structure (see
“Methods”), increasing the annotation sensitivity.

Class II (DNA) elements dominate S. oryzae’s genome
The most striking feature of the genome of S. oryzae is
the high abundance of Class II (DNA) elements (≈32%
of the genome, ≈43% of the TE content) (Fig. 2A), which
is the highest observed among all 62 insect species in-
cluded in this analysis [40–42]. The most DNA
transposon-rich genomes include mosquito Culex quin-
quefasciatus and Ae. aegypti, harboring 25% and 20% of
DNA transposon content in their genome, amounting to
54% and 36% of the total TE compartment, respectively
[6]. The TE-rich grasshopper L. migratoria repeatome
comprises only 14% of DNA transposons, while LINE
retroelements (Class I) amount to 25%. Morabine grass-
hoppers, with up to 75% of TE content, show equivalent
amounts of DNA, LINE, and Helitrons [43]. Finally,
among Coleoptera, a large diversity of repeatomes is
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Fig. 2. (See legend on next page.)
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observed (Fig. 2C) with A. planipennis, Leptinotarsa
decemlineata, and Onthophagus taurus carrying an
abundant LINE content, while S. oryzae, T. castaneum,
and Anoplophora glabripennis show larger DNA trans-
poson content.
Among the Class II elements present in S. oryzae, the

majority belongs to the TIR subclass but has not been
assigned a known superfamily (Fig. 2D), while Tc Mari-
ners make up ≈6% of DNA elements. Among the con-
sensus sequences, we were able to assemble from 5′TIR
to 3′TIR (highest confidence, see “Methods”), the length
distribution shows a continuum starting at a couple of
hundred bases to a maximum of ≈ 5 kbp (see Fig. 2E).
We hypothesize that most of the smaller TIR families
observed are miniature inverted repeat elements
(MITEs). MITEs are non-autonomous elements, deriving
from autonomous Class II/TIR copies, comprising two
TIRs flanking a unique, non-coding, region (sometimes
absent) of variable length. While the TE detection pipe-
line used was able to detect and annotate most Class II/
TIR elements based on transposase homologies, we also
specifically searched for non-autonomous TIR se-
quences, allowing the detection of putative MITEs that
lack protein-coding regions (Additional file 2: Figure S1).
Among all Class II/TIR superfamilies, TIR length varies
between tens of base pairs to ≈1 kbp (Fig. 2E). We iden-
tified short elements, composed mostly of their TIR se-
quences (Fig. 2E), typical of MITEs. Interestingly, the
unknown TIR families show an average size smaller than
1 kbp, while TIRs with an annotated superfamily, show
larger sizes (Additional file 2: Figure S3), suggesting that
most unknown families could be indeed non-
autonomous MITEs. MITE size ranges were previously
described from around 100 bp to copies reaching more
than 1 kbp [249]. Finally, the distribution of the propor-
tions of TIR relative to the consensus length appears
superfamily-specific (Fig. 2E and Additional file 2: Figure
S3), and unknown families recapitulate these patterns. In
conclusion, while most unknown TIR families seem to
be composed of MITEs, we cannot exclude that our
homology database is limited, likely missing some

unknown protein domains. The most abundant TE fam-
ily detected in the S. oryzae genome is indeed a MITE
element (TE2641_SO2_FAM0704), with 10,486 genomic
hits (or the equivalent of ≈4117 copies based on the con-
sensus size), corresponding to 1.3% of the genome. Large
fractions of MITEs were also reported in Class II-rich
genomes, such as the aforementioned mosquitoes [48,
250] and the invasive Ae. albopictus [47], but also in
many plant species such as the rice Oryza sativa [251–
253]. Among Class II elements, we have also detected
Crypton (0.9% of the genome), RC/Helitrons (0.4% of
the genome). and Mavericks (0.3% of the genome).
LINE elements are the second most abundant TE sub-

class, representing ≈11% of the S. oryzae genome, among
which ≈35% are assigned to RTE elements and ≈22% to
I elements (Fig. 2D). No SINE families have been de-
tected. LTRs are rather scarce, representing only ≈3% of
the genome (Fig. 2D), and the vast majority belong to
the Gypsy superfamily (≈30%). Another retrotransposon
order detected are Penelope (PLEs), reaching nearly 2%
of S. oryzae’s genome, and DIRS (tyrosine recombinase
retrotransposons, 0.14% of the genome).
Finally, around 22% of the genome is composed of re-

peats for which our pipeline could not assign a known TE
class (Fig. 2D). CDD search on peptides greater than 100
aa extracted from “Unknown” consensus found a total of
74 distinct hits (P ≤ 0.01), for a total of 50 consensus. We
identified 14 unknown consensus with hits against known
TE domains or viral sequences. The other 36 sequences
had significant hits against Eukaryotic or Prokaryotic do-
mains, traditionally not associated with TEs. Therefore,
potential non-TE sequences within the unknown fraction
represent an estimated total of 0.35% of the genome and
were removed from the TE library. These unknown fam-
ilies highlight the wealth and diversity of TEs among in-
sects and Coleopteran genomes in particular.

TE copies make up most of non-coding sequences of S.
oryzae’s genome
TE copies are interspersed around the S. oryzae genome.
TEs are less frequently found close to gene transcription

(See figure on previous page.)
Fig. 2. A Proportion of repeat content in S. oryzae’s genome. The majority of repeats detected in S. oryzae are represented by Class II (TIR)
elements, LINEs (Class I), and unclassified repeats (unknown). NR: non repetitive. B Variation of genome size and TE content in 62 insect species
from [40] and S. oryzae. Coleopteran species are depicted in dark blue, and S. oryzae in light blue. S. oryzae is clearly a TE-rich genome. C TE
proportion across 11 insect species, including six coleoptera. In agreement with the data used for comparison [40], PLEs are included in the LINE
superfamilies, DIRS in LTRs, and RC, CRY, MAV and TIR in the DNA superfamilies. NR: non repetitive. S. oryzae harbors the largest TE content
among Coleopterans and most insect species studied to date. Within Coleoptera, there is a large variation in TE content and type, with A.
planipennis, L. decemlineata, and O. taurus carrying an abundant LINE content, while S. oryzae, T. castaneum, and A. glabripennis show larger DNA
content. Cladogram based on [246]. D Classification of the 570 Mbs of TEs present in the S. oryzae genome. Most TIR families detected were not
classified into known superfamilies. RTE LINE and Gypsy LTR elements are the most abundant superfamilies among retrotransposons. Around 21%
of repeats in S. oryzae’s genome were not classified by our pipeline, and remain unknown (gray). E Distribution of TIR length sequences (right)
detected by einverted and the internal region present between both TIRs (left) for complete consensus of TIR superfamilies (color) and unknown
TIR families (gray)
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start sites (TSS), 5′ and 3′ untranslated regions (5′ and
3′ UTRs) and exons (Fig. 3A), as expected. On the con-
trary, introns and intergenic sequences harbor the high-
est TE content (Fig. 3A), amounting to around 50% of
TE density, close to the general TE proportion in the

genome (72%), suggesting that most non-coding DNA
sequences in the S. oryzae genome are virtually made of
TEs. To grasp the impact of TEs on intron size, we com-
pared intron length in S. oryzae with two very well as-
sembled genomes: D. melanogaster with a very compact

Fig. 3. TE distribution in S. oryzae’s genome. A Density of TE copies within gene regions. TE copies are the least abundant within TSSs, 5′ and 3′
UTRs and exons, while introns and intergenic regions are riddled with TEs. TSS: transcription start site, UTR: untranslated regions. B Relationship
between intron length and TE per intron in D. melanogaster (red), H. sapiens (blue), and S. oryzae (yellow). S. oryzae shares characteristics of both
Drosophila with short and TE-poor introns and Humans with a significant number of large, TE-packed introns
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and small genome, and the large, TE-rich human gen-
ome (Fig. 3B). In D. melanogaster, introns are small and
harbor few TEs, while in humans, introns are much lar-
ger potentially due to high TE accumulation [254]. S.
oryzae intron sizes also seem to be due, at least partly, to
TE accumulation. Interestingly, the S. oryzae genome
presents a bimodal distribution, with a large proportion
of small introns, as found in D. melanogaster, but also a
noticeable amount of larger, TE-packed and more
human-like introns. This could suggest that specific re-
gions of the genome could be more prone to TE elimin-
ation, and be associated with high rates of
recombination and/or signature of purifying selection.

TE activity inferred by evolutionary history
Within reconstructed TE families, nucleotide substitu-
tion levels (Kimura 2 parameters, K2P) between copies
and their consensus sequences allowed estimation of
their relative ages and identified potentially active ones
(Fig. 4A). Such “TE landscapes” are extremely helpful to
pinpoint potential TE amplifications (modes in the dis-
tribution) and extinctions (valleys) within the 0–30%
K2P range (beyond, the increased divergence between
copies affects negatively the sensitivity of the alignments,
such that TE-derived sequences are no longer
recognizable). The landscape analysis revealed a hetero-
geneous distribution of the TE copy divergence to their
consensus within and between the main TE subclasses
(Fig. 4A). Most identified TE copies have a K2P diver-
gence under 10, which is often observed in insects, and
strikingly distinguishes itself from TE-rich mammalian
genomes (RepeatMasker.org, [40]). While S. oryzae’s TE
density and distribution evokes the architecture of mam-
malian genomes, this relatively younger TE landscape
suggests higher deletion rates, and possibly a higher TE
turnover rate, as observed in Drosophila [255, 256].
LINEs and DNA transposons have the wider spectrum
of divergence levels, suggesting an aggregation of distinct
dynamics for the TE families present in S. oryzae. By
contrast, the rare LTR copies identified appear to be the
most homogeneous within families, with only a few sub-
stitutions between copies and their consensuses, suggest-
ing a very recent amplification in this subclass. Finally,
unknown TEs share a large part of their K2P distribution
with TIR elements, though relatively less divergent from
their consensus sequences as a whole. A breakdown of
the K2P distributions at the superfamily level reveals
specific evolutionary dynamics (Fig. 4B). Diverse super-
families, such as Tc-Mar and hAT (TIR) or RTE (LINE),
show more uniform distributions, suggesting sustained
activity of some of its members throughout S. oryzae’s
genome evolution, though this could also indicate that
these subfamilies could be subdivided further. As ob-
served at the class level, all three identified LTR

superfamilies (Pao, Gypsy, and Copia) show families
within the lowest K2P range.

TEs are transcriptionally active in somatic and germline
tissues
The TE K2P landscape suggests that LTR elements as
well as some LINE families and several Class II sub-
classes are among the youngest, and thus potentially ac-
tive. In order to estimate the transcriptional activity of S.
oryzae’s TE families, we have produced somatic (midgut)
and germline (ovary) transcriptomic data. While germ-
line tissues allow identification of potential TE families
capable of producing vertically transmitted new copies,
TE derepression in somatic tissues represents the poten-
tial mutational burden due to TEs. The expression of TE
families varied extensively within a class and the propor-
tion of transcriptionally active/inactive TE families be-
tween classes was also distinct (Fig. 5A). In total, 1594
TE families were differentially expressed between ovary
and midgut tissues (Fig. 5B, Additional file 5); of which
329 have an absolute log2 fold change higher than 2 (71
downregulated and 258 upregulated in midgut). In total,
we detected 360 TE families downregulated in midgut
when compared to ovaries: A much larger set of upregu-
lated TE families was detected in midgut when com-
pared to ovaries (1 236), illustrating the tighter
regulation of TE copies in germline tissues. Moreover,
the distribution of log2 fold changes were similar be-
tween TE subclasses but different for LTRs, which had a
higher proportion of upregulated TE families in ovaries
compared to other classes (Fig. 5C. Kruskall and Wallis
rank-sum test: H = 36.18, P < 0.01; LTR vs. LINE, Class
II or Unknown: Dunn’s test: P-adj < 0.01). In conclusion,
the large TE compartment in S. oryzae shows abun-
dantly expressed TE families, and tissue-specific expres-
sion patterns.
To estimate the TE transcriptional load imposed on S.

oryzae, we computed the percentage of total RNAseq
poly-A enriched reads mapping to TE consensus se-
quences in gut and ovaries (Additional file 2: Figure S4).
Around 5% of the midgut transcriptome corresponds to
TE sequences, while such reads represent only ~ 2% of
ovarian transcriptomes, reinforcing the tighter regulation
of TEs in germ tissues. We compared such transcrip-
tional burden to a TE-poor (D. melanogaster, ≈12%) and
a TE-rich (Ae. albopictus ≈50%) genome, using similar
technology in equivalent tissues (adult midgut, see
“Methods”). It is important to note that, despite being a
TE-poor genome, D. melanogaster harbors many young
LTR elements that have been recurrently shown to
transpose [257]. We did not detect a direct correlation
between genomic TE content and TE expression (Add-
itional file 2: Figure S4). S. oryzae bears the highest pro-
portion of RNAseq reads mapped against TE consensus
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sequences (≈5%), followed by D. melanogaster (≈1%) and
Ae. albopictus (≈0.01%). Henceforth, not only is S. oryzae
a TE-rich genome, but the transcriptional load from TEs
is higher than in other TE-rich genomes (Ae. albopictus),
and in genomes harboring young and active TE copies
(D. melanogaster, [38, 258]).

Finally, it is important to note that while transcrip-
tional activation of TE copies may have an impact on
the host genome, it does not indicate high transposition
and therefore higher mutation rates. The high transcrip-
tional load of S. oryzae compared to other species might
stem from differences in TE regulation. In insects, TEs

Fig. 4. A TE divergence landscape. Distribution of the divergence (Kimura two parameters, K2P) between TE copies and their consensus,
aggregated by TE class reported in percent of the genome. The less divergent superfamilies are distributed to the left and suggest recent activity.
Strikingly, most of the TE copies have less than 10% divergence to their consensus, with a large number of copies under 5% (dotted line). The
distribution of the “unknown” class overlaps with the leftmost mode of the TIR distribution, suggesting that many more TIR families are yet to be
described in S. oryzae. Strikingly, LTR elements are the least diverged altogether with the mode of the distribution on the 0–1% divergence bin. B
Mean K2P distributions within TE superfamilies. Left panel depicts Class II families, and all Class I (retrotransposons) and unknown families are on
the right panel. LTR superfamilies harbor some of the least divergent TE families, suggesting that this class may host some of the youngest TE
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are mainly silenced by small RNAs and repressive chro-
matin marks [259]. More specifically, piwi-interacting
RNAs (piRNAs) are able to target post-transcriptional
repression of TEs, and guide chromatin silencing com-
plexes to TE copies [259–261]. Therefore, we have an-
notated genes implicated in small RNA biogenesis and
found that all three pathways (piRNAs but also micro-
RNAs and small interfering RNAs biogenesis pathways)
are complete (Additional file 2: Supplemental Note 9).
Genes involved in piRNA biosynthesis are expressed

mainly in ovaries and testes, while somatic tissues
(midgut) show smaller steady-state levels (Additional file
2: Supplemental Note 9 [41, 94, 259, 260, 262–284]),
suggesting the piRNA pathway is potentially functional
in S. oryzae ovaries, and could efficiently reduce
transposition.

TE content is variable among Sitophilus species
Cereal weevils are part of the Dryophthoridae family that
includes more than 500 species. Very little is known

Fig. 5. TE family expression in midguts and ovaries from S. oryzae. A Log10 normalized counts in midguts and ovaries triplicates. Normalized
counts show different proportions of transcriptionally active TE families in different TE classes. B Log10 of base mean average expression of TE
families in ovaries and midguts from three biological replicates. Depicted in color only TE families which had differential expression between
ovary and gut tissues (padj< 0.05, |log2FC| > 2). Most TE families are upregulated in midguts compared to ovaries. C Distribution of all significant
(padj< 0.05). Log2FC depicts specifically deregulated TE classes in each tissue. LTR elements are predominantly upregulated in ovaries
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about genome dynamics in this massive phylogenetic
group, and Sitophilus species divergence is estimated to
the Neogene (2.5–25Ma) [285] . Because of the unusual
high TE copy number and landscape observed in S. ory-
zae, we analyzed three other closely related species
namely Sitophilus zeamais, Sitophilus granarius, and
Sitophilus linearis. We produced low-coverage sequen-
cing and estimated the TE content from raw reads using
our annotated S. oryzae TE library with dnaPipeTE [47].
Remarkably, among Sitophilus species, repeat content is
variable (Fig. 6A), with S. linearis harboring the smaller
repeat load (≈54%) compared to S. oryzae (≈80%), S. zea-
mais (≈79%), and S. granarius (≈65%). Most importantly,
Class II (DNA) elements of S. oryzae are nearly absent
from S. linearis, and no recent burst of LTR elements is
observed, contrary to the other Sitophilus species, sug-
gesting alternative TE evolutionary histories (Fig. 6B). It
is important to note that our analysis is biased toward S.
oryzae, as the library used to annotate the TEs in the
other Sitophilus species stems from automatic and man-
ual annotation of the S. oryzae genome.
Overall, the comparison of TE content in closely re-

lated species highlights the influence of phylogenetic in-
ertia, but reveals a possible TE turnover in the S. linearis
lineage. In addition to the regulation mechanisms that
strongly contribute to TE amount and variation, TE ac-
cumulation is conditioned by the drift/selection balance
in populations. Indeed, effective population size has been
suggested to be a major variable influencing TE content,
as small, inbred, or expanding populations suffer drift,
allowing detrimental insertions to stay in the gene pool
and thus favor TE fixation [286]. Such hypotheses
should be addressed in the future, especially on recently
sequenced TE-rich but rather small (< 1 Gbp) genomes
such as S. oryzae.

Endosymbionts might impact TE transcriptional regulation
The four Sitophilus species studied have different ecol-
ogies. S. oryzae and S. zeamais infest field cereals and
silos, while S. granarius is mainly observed in cereal-
containing silos. S. linearis, however, lives in a richer en-
vironment, i.e., tamarind seeds. In association with their
diets, the interaction of Sitophilus species with endosym-
biotic bacteria differs: the cereal weevils (S. oryzae, S.
zeamais, and S. granarius) harbor the intracellular gram-
negative bacteria S. pierantonius, albeit at very different
loads. While S. oryzae and S. zeamais show high bacter-
ial load, S. granarius has a smaller bacterial population
[111]. In contrast, S. linearis has no nutritional endo-
symbionts, in correlation with its richer diet. We won-
dered whether the presence of intracellular bacteria
impacts TE regulation, and took advantage of artificially
obtained aposymbiotic S. oryzae animals to search for
TE families differentially expressed in symbiotic versus

aposymbiotic ovaries. There were 50 TE families upregu-
lated in symbiotic ovaries compared to artificially ob-
tained aposymbiotic ones, while 15 families were
downregulated (Fig. 7 and Additional file 5). Only three
families presented an absolute log2 fold change higher
than 2: one LINE and two LTR/Gypsy elements. The
three of them were upregulated both in symbiotic versus
aposymbiotic ovaries, and in ovaries versus midgut (Add-
itional file 5), suggesting that such elements have tissue
specificity, and their expression is modulated by the
presence of intracellular bacteria. Such TE families
would be ideal candidates to further study the crosstalk
between host genes, intracellular bacteria and TE tran-
scriptional regulation. It is important to note that the
process used to obtain aposymbiotic insects relies in
heat treatments that could impact overall transcriptional
regulation, and henceforth, the TEs differentially
expressed between symbiotic and aposymbiotic ovaries
could stem from such treatment and not from the lack
of endosymbionts. In order to confirm the link between
intracellular bacteria and TE regulation, it is mandatory
to deplete insects of their endosymbionts using other
methods, as antibiotic treatment, and reassess TE ex-
pression in aposymbiotic individuals.

Conclusion
The success of obtaining a TE-rich genome assembly
complete enough to understand genome architecture
and regulatory networks relies on the use of multiple se-
quencing platforms [287]. Here, we describe the first as-
sembly of the repeat-rich (74%) S. oryzae genome, based
on a combination of long- and short-read sequencing,
and a new assembly method, WENGAN [288]. While
this first assembly reaches quality standards similar to
other coleopteran species (Table 1), it is important to
stress that new sequencing methods have emerged in
order to improve genome assemblies, including linked
reads and optical mapping [287].
We uncovered around 74% of repeated sequences in

the S. oryzae genome, mostly TE families. While the TE
landscape is marked by a wealth of Class II elements, es-
pecially non-autonomous MITE elements, ~ 21% of the
genome is composed of unknown repeats. Large dupli-
cated gene families can be present in such a category,
but it is tempting to speculate that the majority is com-
posed of novel Class II elements. Indeed, unknown and
TIR elements share the same K2P landscapes, and many
Class II elements have only been detected through an
inverted repeat search for TIRs, and not proteins, ex-
cluding therefore TE copies old enough that TIRs are
too divergent to be recognized. Moreover, we have
shown that many TE families in S. oryzae are present in
the transcriptome, suggesting that several families can
be transcriptionally active. How such TE families are
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Fig. 6. (See legend on next page.)
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able to escape host silencing remains unknown. It seems
obvious today that insect models such as D. melanoga-
ster only represent a small window on the complex biol-
ogy and evolution of TEs, and the sequencing and
annotation of species with high TE content—while chal-
lenging [289]—is key to understanding how genomes,
their size, their structure, and their function evolve. In
conclusion, S. oryzae constitutes an excellent model to
understand TE dynamics and regulation and the impact
on genome function.
Sitophilus species not only differ in their TE landscape,

but also in their ecology and as a consequence, their as-
sociation with intracellular bacteria. Comparison of TE
content within the Sitophilus genus shows variable TE
amount and diversity. In addition, intracellular bacter-
ium impacts transcription of specific TE families in

ovaries. The molecular mechanisms behind the co-
evolution between an insect, its endosymbiotic bacter-
ium, and TEs remain unexplored. The impact of intra-
cellular bacteria on host genomes is poorly studied, and
the Sitophilus genus offers a simpler experimental set-
ting, with a single intracellular bacterium present within
specific host cells [19, 112], and a well-established know-
ledge of host-bacteria interaction [111, 147, 148, 193,
290].

Methods
DNA extraction and high-throughput sequencing
Individuals of both sexes of S. oryzae were reared on
wheat grains at 27.5 °C with 70% relative humidity. The
aposymbiotic strain was obtained by treating the symbi-
otic strain during one month at 35 °C and 90% relative

(See figure on previous page.)
Fig. 6. TE landscape across Sitophilus species. A Proportion of TE per species estimated from short reads with dnaPipeTE and a custom TE library
including Repbase (release 2017) and annotated TE consensus discovered in S. oryzae. S. oryzae, S. zeamais, and S. granarius harbor similar TE
content, while S. granarius presents a smaller TE load, and S. linearis harbors the smallest TE content and the higher proportion of unknown
repeats. The proportion of unknown repeats only found by dnaPipeTE (black) increases from S. oryzae to S. linearis with the phylogenetic
distance. B Distribution of divergence values between raw reads and repeats contig assembled with dnaPipeTE (blastn) across four Sitophilus
species. S. oryzae appears to share its TE landscape with S. zeamais and S. granarius, but the three species display a distinct repeatome than S.
linearis, in spite of their phylogenetic proximity. SO2: S. oryzae’s TE library produced in this analysis, DPTE: DNApipeTE TE annotation (repeats only
found by dnaPipeTE)

Fig. 7. Differentially expressed TE families between symbiotic and aposymbiotic S. oryzae ovaries. Log10 of base mean average expression of TE
families in symbiotic vs aposymbiotic ovaries from two biological replicates. Depicted in color only TE families which had differential expression
between both ovary types (padj< 0.05, |log2FC| > 2). Two LTR elements and one LINE element are upregulated (log2FC > 2) in symbiotic ovaries
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humidity as previously described [291]. This strain is vi-
able, is fertile, and was raised in the same conditions as
the symbiotic strain. The aposymbiotic status was con-
firmed by PCR and histology. Male and female adults of
S. oryzae were used for DNA extraction. Only the go-
nads were used to minimize DNA contamination from
its diet, which could be still present in the gut. The re-
productive organs were obtained from aposymbiotic
adults and a DNA extraction protocol specific for Sito-
philus weevils was performed. DNA extractions were
performed using a STE buffer (100 mM NaCl, 1 mM
Na2EDTA pH 8, 10 mM Tris HCl pH 8). Tissues were
homogenized in STE buffer, then treated successively by
SDS 10%, proteinase K, and RNase. Briefly, genomic
DNA was purified by two successive extractions with
phenol:chloroform:isoamyl alcohol (25/24/1) followed by
extraction with 1 vol of chloroform:isoamyl alcohol (24/
1). Genomic DNA was then precipitated by 0.7 vol iso-
propanol. After washing the pellet with 70% ethanol,
genomic DNA was recovered in TE (1 mM EDTA, 10
mM Tris HCl pH 8) buffer. Using this protocol, we ob-
tained six different DNA samples: four from males and
two from females. Each sample corresponds to the gen-
omic DNA from 20 individuals. Five additional DNA
samples were obtained using a high molecular weight
DNA extraction protocol consisting of a single phenol:
chloroform:isoamyl alcohol (25/24/1) extraction step
from the genomic DNA of 100 males. The DNA concen-
tration in each of these samples was quantified using a
NanoDrop spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA).
Sequencing was performed using a combination of

Illumina, PacBio, and Nanopore technologies (Additional
file 1). For each sex, two Illumina libraries were gener-
ated: one paired-end library with an average fragment
size of 500 bp and one mate pair library with an average
fragment size of 5 kbp. The libraries were sequenced
using an Illumina HiSeq 2000 platform with the V3
chemistry and a read size of 101 bp; the paired-end (PE)
libraries were sequenced at the “Génomique & Microgé-
nomique” service from ProfileXpert (Lyon, France) while
the mate paired (MP) were sequenced at Macrogen
(Seoul, South Korea). Two male samples were used to
build (i) an Illumina library with an average fragment
size of 200 bp which was sequenced on a HiSeq 2500 in-
strument using the V4 chemistry and a read size of 125
bp, and (ii) a PacBio library sequenced on seven SMRT
cells using the P6-C4 chemistry. These two libraries
were sequenced at KeyGene (Wageningen, The
Netherlands). Finally, five male samples were used to
build Nanopore libraries with the SQK-LSK109 kit and
without DNA fragmentation step. The libraries were in-
dependently sequenced on five MinION R9.4 flow cells.
These libraries were built and sequenced at the

sequencing platform of the IGFL (Institut de Génomique
Fonctionnelle de Lyon, Ecole Normale Supérieure de
Lyon, France). Statistics and accession numbers from all
the sequencing runs are listed in the Additional file 1.

Genome assembly and annotation
First, the Illumina reads were error-corrected using BFC
release 181 [292]. The PacBio and Nanopore reads were
error-corrected using LORDEC v0.9 [293] with the
error-corrected Illumina overlapping PE reads, a k-mer
size of 19 and solidity threshold of 3. Overlapping reads
were then merged using FLASH2 v2.2 [294]. Based on
the merged Illumina reads, a first short-read assembly
was produced using a modified version of MINIA v3.2.1
[295] with a k-mer length of 211. A hybrid assembly was
then performed using WENGAN v0.1 [288] on the
MINIA short-read assembly and the raw Nanopore
reads. The resulting assembly was polished using two
rounds of PILON v1.23 [296] using the error-corrected
Illumina overlapping PE reads and the --diploid option.
A first scaffolding was then performed with two rounds
of FAST-SG v06/2019 [297] and SCAFFMATCH v0.9
[298] with the error-corrected Illumina MP, Illumina PE,
PacBio, and Nanopore libraries. The LR_GAPCLOSER
algorithm v06/2019 [299] was used for the gap-filling
step using the error-corrected PacBio and Nanopore li-
braries. An additional scaffolding step was performed
using RASCAF v1.0.2 [300] with the available RNAseq
libraries from the Sequence Read Archive (SRX1034967-
SRX1034972 and SRX3721133-SRX3721138). The
resulting scaffolds were then gap-filled using a new
round of LR_GAPCLOSER as previously described
followed by two rounds of SEALER v2.1.5 [301] using
the error-corrected Illumina overlapping PE reads and
k-mer sizes of 64 and 96. Two rounds of PILON, as pre-
viously described, were performed to produce the final
assembly. During the assembly process, we assessed hap-
lotig contamination by using purge_haplotigs [302] and
purge_dups [303]. No diploid peak nor significant haplo-
tig contamination was observed. Quality of the assembly
was assessed by computing several metrics using (i)
QUAST v5.0.2 [304] with a minimal contig size of 100
bp and the --large and -k options, (ii) BUSCO v4.0.5
[50] using the Insecta ODB10 database and the -geno
option, and (iii) KMC v3.0.0 [305] to evaluate the per-
centage of shared 100-mers between the assembly and
the merged Illumina reads. Genome size prediction was
performed with GenomeScope v2.0 [58], findGSE
v1.94.R [60], and gce v1.0.2 [59] based on 21-mer histo-
grams generated by JellyFish v2.2.10 [306] on the R1
reads from error-corrected Illumina overlapping PE
library.
Three contaminant scaffolds corresponding to the

mitochondrial genome and an artifact were removed
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from the assembly prior to the annotation step. The
“NCBI Sitophilus oryzae Annotation Release 100” was
produced using the NCBI Eukaryotic Genome Annota-
tion Pipeline v8.2.

Low-coverage genome sequencing of other Sitophilus
species
Twenty pairs of ovaries were dissected from S. oryzae, S.
zeamais, S. granarius, and S. linearis females. Ovaries
were homogenized in 100mM NaCl, 1 mM EDTA pH 8,
and 10mM Tris-HCl pH 8 using a small piston. Protein-
ase K digestion followed in the presence of SDS for 2 h
at 55 °C with shaking and for 1 h at 37 °C with RNAse A.
A typical phenol chloroform extraction was then per-
formed and genomic DNA was isopropanol precipitated.
Eight whole genome sequencing libraries with a median
insert size of 550 bp were constructed using the Illumina
TruSeq DNA PCR-free sample preparation kit (Illumina,
San Diego, CA, USA), according to the manufacturer’s
protocols. Briefly, 2 μg of each gDNA was sheared using
a Covaris M220 Focused-ultrasonicator (Covaris, Inc.
Woburn, MA, USA), end-repaired, A-tailed, and adapter
ligated. Library quality control was performed using the
2100 Bioanalyzer System with the Agilent High Sensitiv-
ity DNA Kit (Agilent Technologies, Santa Clara, CA,
USA). The libraries were individually quantified via
qPCR using a KAPA Library Quantification Kits (Kapa
Biosystems, Wilmington, MA, USA) for Illumina plat-
forms, then they were pooled together in equimolar
quantities and sequenced in a MiSeq sequencing system.
2 × 300 paired-end reads were obtained using a MiSeq
Reagent Kits (600-cycles).

TE library construction
In order to annotate the S. oryzae repeatome, we col-
lected and combined cutting-edge bioinformatic tools to
(i) create and (ii) classify a non-redundant library of re-
peated elements (Additional file 2: Figure S1). First, we
separately ran RepeatModeler2 (v2.0.1) [244] and EDTA
v1.7.8 [245] on the assembled genome. Together, these
programs include most of the recent and long-trusted
tools used to detect generic repeats, but also include
specific modules, such as for LTR and TIR elements.
Preliminary analyses of the S. oryzae genome with
RepeatModeler1 [307] and dnaPipeTE (v1.3) [47] sug-
gested a rather large fraction of Class II DNA elements
with terminal inverted repeats (TIRs). Thus, MITE-
Tracker [308] was incorporated in our pipeline and ran
independently on the genome assembly using 1- and 2-
kbp size cutoffs to detect Class II elements harboring
TIRs with high sensitivity. Following this initial step,
15,510 consensus sequences obtained from RM2, EDTA,
and the two runs of MITE-tracker were successively
clustered using MAFFT (v6.864b) [65], Mothur (v.1.45.2)

[309], and Refiner [307] to reduce redundancy in the re-
peat library to a total of 2754 consensus sequences
(Additional file 2: Figure S1A, https://github.com/
clemgoub/So2). Then, we inspected the quality of the
raw library by calculating the genomic coverage of each
consensus. We ran the library against the genome using
RepeatMasker (v4.1.1) (52) and implemented a simple
algorithm “TE-trimmer.sh” to trim or split a consensus
sequence wherever the genomic support drops below 5%
of the average consensus coverage (Additional file 2: Fig-
ure S1A, https://github.com/clemgoub/So2). To mitigate
any redundancy generated by the splitting, the newly
trimmed library was clustered before being re-quantified
using RepeatMasker (v4.1.1) [307]. At this step, we re-
moved any consensus under 200 bp and represented by
less than the equivalent of two full-length copies (in total
bp). In addition, TAREAN (RepeatExplorer2 v0.3.6)
[310] was used to detect and quantify candidate satellite
repeats. We obtained an ab initio repeat library of 3950
consensus sequences automatically generated (Add-
itional file 2: Figure S1A).
To refine and improve the quality of the TE consensus

sequences, we then turned it over to DFAM [311] who
processed the ab initio library following their recent
guidelines [312]. First, any sequences mostly composed
of tandem repeats were removed using a custom script
to remove any sequences that were greater than 80%
masked and/or had a sequence less than 100 bp. To gen-
erate seed alignments for each consensus, the consensus
sequences were used as a search library for RepeatMas-
ker (v4.1.1) to collect interspersed repeats. Seed align-
ments in the form of Stockholm files were generated
using the RepeatMasker output. To extend potentially
truncated elements, the instances in the Stockholm file
for each model were extended into neighboring flanking
sequences until the alignment was below a threshold
equivalent to ~ 3 sequences in agreement. More specific-
ally, all sequences are extended using full dynamic pro-
gramming matrices using an improved affine gap penalty
(default: − 28 open, − 6 extension) and a full substitution
matrix (default: 20% divergence, 43% GC background).
The termination of extension occurs when the improve-
ment by adding a further column to the multiple align-
ment does not exceed 27 (with default scoring system).
This is equivalent to a net gain of ~ 3 sequences in
agreement. Following extension, the new consensus were
collected and consensus sequences greater than 80%
similar for 80% of their length were considered dupli-
cates and only one consensus was kept.
Upon completion, we used RepeatMasker to quantify

the improved library. We selected the top 50 elements
(by abundance in the genome) represented in each of
the “LTR,” “LINE,” “Class II,” and “Unknown” classes for
manual inspection (these categories represent the 4 most
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abundant classes of repeats in the S. oryzae genome).
While most consensus sequences were correctly ex-
tended and annotated (200), we noticed some cases of
over-extension with LTR (consensus doubled in size)
and flagged others with non-supported fragments for
further trimming (Additional file 4 | tab 1). Once our
quality check completed and the sequences curated, we
removed fragments with 100% identity against a previ-
ously established consensus (Additional file 4 | tab 2).
The final TE library contains 3399 sequences to classify.
The classification of the final repeat library was done

in successive rounds combining homology and structure
methods (Additional file 2: Figure S1B). Before the final
TE library was completed, we manually curated and an-
notated the sequences of 31 transposable elements and
satellites among the most represented in S. oryzae. These
31 high-confidence consensus sequences are added to
the libraries used by the annotation programs described
below and Repbase v.2017 [313]. We searched for nu-
cleotide homology using RepeatMasker (v4.1.1 [307])
with -s “-slow” search settings. Best hits were chosen
based on the highest score at the superfamily level allow-
ing non-overlapping hits of related families to contribute
to the same hit. In addition, we used blastx [94] to query
each consensus against a curated collection of TE pro-
teins (available with RepeatMasker), as well as those
identified in the 31 manual consensus sequences. We
kept the best protein hit based on the blastx score. Based
on the 200 consensus sequences manually inspected (see
above), we set a hit length / consensus size threshold of
0.08 (RepeatMasker) and 0.03 (blastx) to keep a hit. In
our hands, these thresholds were conservative to auto-
mate the classification. As an alternate homology-based
method, we also ran RepeatClassifier (RepeatModeler2,
v2.0.1). Finally, because DNA elements are often repre-
sented by non-autonomous copies (unidentifiable or ab-
sent transposase), we further used einverted to flag
terminal inverted repeats located less than 100 bp of the
ends of each sequence. The complete library of 3399
consensus sequences was first annotated at the subclass
l eve l ( see DFAM taxonomy: ht tps : / /d fam.org/
classification/tree) if two out of RepeatMasker, Repeat-
Classifier, and blastx annotations agreed. Further, the
same rule was applied for the superfamilies if pos-
sible. At this stage, consensus sequences without an-
notation by homology but with TIRs as flagged by
einverted were classified as TIR and all other se-
quences classified as Unknown. We further divided
the subclass “DNA” into “MAV” (Mavericks), “RC”
(Rolling circle/Helitron), “CRY” (Crypton), and “TIR”
(terminal inverted repeats). Finally, the classifications
automatically given as “Unknown” to 16/274 manually
inspected consensus sequences were replaced to
match the manually reported classification.

In order to remove potential multi-copy gene families
which would have made their way to the TE library, we
searched for non-TE conserved protein domains using
NCBI’s CDD search with all peptides ≥ 100 AA ex-
tracted from the unknown repeats [314]. Significant hits
(P ≤ 0.01) against known TEs and viruses were removed
and all other left consensus were removed from the TE
library. In conclusion, there are 21% unknown repeats,
and the number of total TE consensus sequences in S.
oryzae is 3361. The data can be obtained from https://
doi.org/10.5281/zenodo.5128603.
In order to assess the relevance of our custom TE ana-

lysis pipeline, we ran and compared the unfiltered out-
puts (out.tbl file) of RepeatMasker v4.1.1 using either
the TE library produced by RepeatModeler 2.0.1, EDTA
v1.7.8, or our final library. An optimized TE library
should minimize the total number of consensus while
being able to capture as much TE in the genome as pos-
sible. Thus, we compared the total number of consensus
built in each library as well as the total percent of the
genome masked by each respective library.

Estimation of the repeat content
The total repeat content of the S. oryzae genome was
analyzed using RepeatMasker (v.4.1.1) and our classified
library of 3361 consensus sequences and the following
parameters: -s -gccalc -no_is -cutoff 200. The subse-
quent alignments were parsed with the script “par-
seRM.pl” [315] https://github.com/4ureliek/Parsing-
RepeatMasker-Outputs) to remove hits overlap and sta-
tistically analyzed with R version 4.0.2.

Genomic distribution of TE copies
The distribution of TE copies across the S. oryzae gen-
ome was assessed using two different approaches over
six different genomic regions namely TSS ± 3 kbp, 5′
UTRs, exons, introns, 3′ UTRs, and intergenic regions.
Briefly, the coverage of all TE copies was computed over
a sliding window of 100 bp across the whole genome se-
quence using the makewindows and coverage tools from
the bedtools package [280] and the bedGraphToBigWig
UCSC gtfToGenePred tool. Then the different genomic
regions were retrieved from the S. oryzae annotation file
(GFF format) using the gencode_regions script (https://
github.com/saketkc/gencode_regions) and the UCSC
gtfToGenePred tool (https://github.com/ENCODE-
DCC/kentUtils). A matrix containing the TE coverage
per genomic region was generated using the compute-
Matrix tool from deepTools [279] and used to generate
metaplots using the plotProfile tool.

TE landscapes
The relative age of the different TE families identified in
the genome assembly was drawn performing a “TE
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landscape” analysis on the RepeatMasker outputs.
Briefly, the different copies of one TE family identified
by RepeatMasker are compared to their consensus se-
quence, and the divergence (Kimura substitution level,
CpG adjusted, see RepeatMasker webpage: http://
repeatmasker.org/webrepeatmaskerhelp.html) is calcu-
lated. The TE landscape consists of the distribution of
these divergence levels. In the end, the relative age of a
TE family can be seen as its distribution within the land-
scape graph: “older” TE families tend to have wider and
flatter distribution spreading to the right (higher substi-
tution levels) than the “recent” TE families, which are
found on the left of the graph and have a narrower dis-
tribution. TE landscapes were drawn from the Repeat-
Masker output parsed with the options -l of
“parseRM.pl.” We report here the TE landscape at the
level of the TE subclass (LINE, LTR, TIR, CRY, MAV,
DIRS, PLE, RC, and Unknown).

dnaPipeTE comparative analysis in Sitophilus species
To compare the TE content of S. oryzae to four related
species of Sitophilus (S. granarius, S. zeamais, S. line-
aris), we used dnaPipeTE v.1.3 [47]. dnaPipeTE allows
unbiased estimation and comparison of the total repeat
content across different species by assembling and quan-
tifying TE from unassembled reads instead of a linear
genome assembly. Reads for Sitophilus species were pro-
duced as described above. Using our new classified li-
brary (3 390 consensus) as TE database in dnaPipeTE,
we were further able to identify the phylogenetic depth
of the repeat identified in S. oryzae.

RNA sequencing and TE expression analysis
Individuals of both sexes of S. oryzae were reared on
wheat grains at 27.5 °C with 70% relative humidity. Ten
midguts and ovaries from 10-day-old adults were dis-
sected in diethylpyrocarbonate-treated Buffer A (25 mM
KCl, 10 mM MgCl2, 250 mM Sucrose, 35 mM Tris/HCl,
pH 7.5). RNA was extracted in triplicates with
RNAqueous-Micro (Qiagen), following the manufacturer
recommendations. Single-indexed libraries were built
using the SENSE mRNA-Seq Library Prep Kit V2 (Lexo-
gen), following the manufacturer recommendations. Li-
braries were then pooled in an equimolar range and
sequenced using high-throughput reagents on an Illu-
mina NextSeq 500 (86 bp in single end). Raw sequencing
reads were deposited at SRA archive BioProject
PRJNA746240. Adapter sequences and low-quality reads
were filtered out with Trimmomatic (v0.36) [316] and
clean reads were aligned to the S. oryzae genome with
STAR aligner (v2.5.4b, [317]) and featureCounts from
subread package [318] to obtain gene counts. We also
used the STAR aligner in single-end mode to map the
clean reads against all TE copies extracted from the

genome with the following options: --outFilterMulti-
mapNmax 100 --winAnchorMultimapNmax 100 --out-
MultimapperOrder Random --outSAMmultNmax 1. The
mapped bam files were used as input to TEtools soft-
ware [319] to determine TE family expression. Genes
and TE family counts were used as input for DESEq2
package (v1.30) [320] to determine differential TE ex-
pression between ovary vs gut tissues as well as ovaries
from symbiotic and aposymbiotic weevils. Differentially
expressed TEs were defined whenever the adjusted p
value was smaller than 0.05 and log2 fold change was
higher than 1 or smaller than − 1. We used the afore-
mentioned STAR alignment parameters to map tran-
scriptomic sequencing reads from midgut and ovaries of
S. oryzae (Accession: SRX1034971, SRX1034972, and
reads from this study deposited under the BioProject ID
PRJNA746240), D. melanogaster (Accession:
SRX029389, and SRX045361), and Ae. albopictus (Ac-
cession: SRX1512976, SRX1898481, SRX1898483,
SRX1898487, SRX3939061, and SRX3939054) against
the TE consensus sequences for each species.
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