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Single-cell spatial transcriptomic analysis
reveals common and divergent features of
developing postnatal granule cerebellar
cells and medulloblastoma
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Abstract

Background: Cerebellar neurogenesis involves the generation of large numbers of cerebellar granule neurons
(GNs) throughout development of the cerebellum, a process that involves tight regulation of proliferation and
differentiation of granule neuron progenitors (GNPs). A number of transcriptional regulators, including Math1, and
the signaling molecules Wnt and Shh have been shown to have important roles in GNP proliferation and
differentiation, and deregulation of granule cell development has been reported to be associated with the
pathogenesis of medulloblastoma. While the progenitor/differentiation states of cerebellar granule cells have been
broadly investigated, a more detailed association between developmental differentiation programs and spatial gene
expression patterns, and how these lead to differential generation of distinct types of medulloblastoma remains
poorly understood. Here, we provide a comparative single-cell spatial transcriptomics analysis to better understand
the similarities and differences between developing granule and medulloblastoma cells.

Results: To acquire an enhanced understanding of the precise cellular states of developing cerebellar granule cells,
we performed single-cell RNA sequencing of 24,919 murine cerebellar cells from granule neuron-specific reporter
mice (Math1-GFP; Dcx-DsRed mice). Our single-cell analysis revealed that there are four major states of developing
cerebellar granule cells, including two subsets of granule progenitors and two subsets of differentiating/
differentiated granule neurons. Further spatial transcriptomics technology enabled visualization of their spatial
locations in cerebellum. In addition, we performed single-cell RNA sequencing of 18,372 cells from Patched+/−

mutant mice and found that the transformed granule cells in medulloblastoma closely resembled developing
granule neurons of varying differentiation states. However, transformed granule neuron progenitors in
medulloblastoma exhibit noticeably less tendency to differentiate compared with cells in normal development.
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Conclusion: In sum, our study revealed the cellular and spatial organization of the detailed states of cerebellar
granule cells and provided direct evidence for the similarities and discrepancies between normal cerebellar
development and tumorigenesis.

Keywords: Cerebellum, Development of granule cells, Granule neuron progenitors, Differentiated granule neurons,
SHH medulloblastoma, Single-cell RNA sequencing, Spatial transcriptomics

Background
Cerebellar granule neuron progenitors (GNPs) are an ex-
cellent model to study neuronal proliferation and differ-
entiation regulation in brain development. GNPs
proliferate extensively during the first two postnatal
weeks in the external granule layer (EGL), a transient
secondary germinal zone [1–4]. The cells then exit the
cell cycle and migrate inward to the internal granule
layer (IGL), where they differentiate into mature granule
neurons (GNs). Numerous studies have reported many
regulatory factors, including transcription factors (TFs)
and environmental cues, that are involved in GN prolif-
eration, migration, and differentiation [2, 5, 6]. For ex-
ample, Math1 is the most well-known TF that is
expressed transiently in the EGL at early developing
stages and is required for the transit amplification of
GNPs [7, 8].
Control of neuronal progenitor cell proliferation is es-

sential for healthy brain development, and deregulation
of this fundamental developmental event contributes to
brain cancer [9]. Medulloblastoma (MB) is one of the
most common pediatric brain tumors, and it arises from
deregulated cerebellar development [10, 11]. The current
knowledge based on gene expression analysis has identi-
fied four major molecular subgroups of MB, namely
WNT-MB, Sonic hedgehog (SHH)-MB, group 3MB,
and group 4MB [12, 13]. The cellular origins of MB
have been investigated for many years through cell
lineage-tracing strategies [14, 15]. Recently, several
groups used single-cell genomics approaches to correlate
the diverse MB phenotypes with the putative cells of ori-
gin. These reports demonstrated that each subtype of
MB is derived from a specific cell of origin [16, 17],
which thereby determines the clinical and molecular be-
havior of the disease. For instance, the SHH-MB group,
comprising about 30% of all MBs, is demonstrated to
originate from granule progenitors [18].
Single-cell RNA sequencing (scRNA-seq) has facili-

tated the transcriptional cataloging of cell types in both
developing cerebellum [19, 20] and MB [16, 17]. How-
ever, these single-cell studies did not examine the de-
tailed cellular states associated with the progenitor/
differentiation programs of GNs. In addition, single-cell
sequencing involves a preprocessing step of tissue dis-
sociation, which leads to the loss of spatial information.
Recent advances in spatial transcriptomics (ST) have

overcome this challenge, although this approach is still
limited in providing single-cell resolution [21].
Here, our study focused on developing GNs, with the

aim to elucidate their cellular states and lineage trajec-
tories. We applied both scRNA-seq and ST techniques
(Fig. 1a) to profile the cellular subpopulation and associ-
ated spatial locations in early postnatal mouse cerebel-
lum. Additionally, we performed scRNA-seq for three
MB tumors developed in Patched+/− mutant mice and
acquired the single-cell transcriptome of tumor cells.
We then performed the comparative analyses to assess
the similarity and differences between normal develop-
ing GNs and tumor cells. These findings will facilitate a
broader functional understanding of the progenitor/dif-
ferentiation balance as well as relevance to MB
tumorigenesis.

Results
Single-cell transcriptome profiling of postnatal cerebellar
cells
We have previously used the Math1-GFP and Dcx-
DsRed reporter mouse lines to study the cell division
modes of developing GNs [22]. As shown in Fig. 1b, the
GFP+ high cells represented Math1-expressing GNPs,
while red fluorescent-labeled cells corresponded to the
Dcx-expressing differentiating GNs. In this study, to
focus on GN development, we performed scRNA-seq for
both Math1-GFP+ and Dcx-DsRed+ cells isolated from
postnatal cerebellum tissues of transgenic mice.
Fluorescent-labeled cells were isolated using fluorescent-
activated cell sorting (FACS) from the early postnatal
cerebellum at postnatal day 7 and 11 (P7 and P11), as
GN cells undergo massive proliferation and differenti-
ation during the first 2 weeks after birth [1, 3].
After quality control including doublet removal, we

obtained a total of 24,919 FACS-purified cells. Unsuper-
vised clustering using t-distributed stochastic neighbor
embedding (t-SNE) revealed thirteen clusters (Fig. 1c).
Based on the known annotations of marker genes from
the literature [16, 19, 23], we divided these cell popula-
tions into eight cell lineages, including GNP/GN cells
(expressing Math1, Barhl1 and Pax6), GABAergic pro-
genitors (GABAergic pro) (expressing Ptf1a, Ascl1, and
Lhx5), GABAergic interneurons (GABAergic int) (ex-
pressing Pax2 and Lbx1), astrocytes (expressing Fabp7,
Slc1a3, Aldh1l1, and Aqp4), oligodendrocytes
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(expressing Olig1, Olig2, and Pdgfra), fibroblasts (ex-
pressing Col1a1), microglia (expressing Aif1, Cd68, and
Tmem119), and ciliated cells (expressing Dynlrb2 and
Meig1) (Fig. 1d). We found that the proportion of
GNPs/GNs in Math1-GFP+ sorted cells was significantly
larger than in Dcx-DsRed+ sorted cells (92% in Math1-
GFP+ cells, 77% in Dcx-DsRed+ cells, P < 0.0001, Pear-
son’s chi-square test; Fig. 1e, f), in line with the fact that
Dcx is broadly expressed in both GNs and other migrat-
ing neurons [24].
Considering that the biased FACS-based sorting strat-

egy may result in the loss of some cell populations/states
of developing GN cells, we also collected whole cerebel-
lar cells from wild-type (WT) mice for scRNA-seq (Add-
itional file 1: Figure S1a). We obtained 20,367 cells from
two WT samples, which were then integrated with cells
isolated from Math1-GFP+ and Dcx-DsRed+ reporter
mice (45,286 cells) (Additional file 1: Figure S1b). This
analysis showed two additional cell types, Purkinje cells
(PCs, expressing Calb1 and Car8) and unipolar brush
cells (UBCs, expressing Eomes) in WT cerebellar cells
(Additional file 1: Figure S1f). Additionally, astrocytes
(expressing Fabp7, Slc1a3, Aldh1l1, and Aqp4) were also
mainly derived from unsorted samples (Additional file 1:
Figure S1d and S1e). Notably, there was no unique gran-
ule neuron assigned to WT samples, suggesting that our
FACS strategy did not result in the loss of any GN sub-
sets (Additional file 1: Figure S1d and S1e). Nevertheless,
probably due to a high proportion of granule neurons in
developing cerebella, the lineage-tracing strategy in our
study did not show an obvious advantage over WT sam-
ples in enriching granule neurons for single-cell
sequencing.

Identifying distinct states associated with postnatal GN
development
The progenitor/differentiation states of GNs have been
characterized by many previous studies, which suggested
that there are at least two major cell subsets of GN cells
referred as GNPs and GNs that differ in cell cycle activ-
ities and spatial locations [25]. To obtain a better under-
standing of the cellular states associated with developing
postnatal GN cells, we computationally isolated and re-
clustered GNPs/GNs of Math1-GFP+ and Dcx-DsRed+

cells, which revealed nine sub-clusters (Fig. 2a). Five
clusters (cluster 2, 3, 4, 5, and 6) highly expressed the
progenitor cell marker Math1 (Fig. 2c), while the
remaining clusters (cluster 0, 1, 7, and 8) showed upreg-
ulated expression of Dcx (Fig. 2c), which corresponds to
differentiating/differentiated cell states. GNPs have been
shown to possess high proliferation potential. In keeping
with this notion, most Math1-expressing cells showed
markedly unregulated cell cycle activities (Fig. 2d). In
contrast, Dcx-expressing cells showed downregulated
cell cycle activities and an upregulated gene set that was
previously used to highlight the differentiating/differenti-
ated GNs (Rbfox3, Grin2b, and Neurod1) [23, 26] (Fig.
2d). As expected, Dcx-expressing cells were largely de-
rived from Dcx-DsRed+ sorted samples (Fig. 2b). In con-
trast, Math1-GFP+ sorted strategy seems not to be able
to enrich GNPs. We speculate that this is due to our
FACS threshold that was set for collecting all Math1-ex-
pressing cells but not for Math1high GNPs (Additional
file 1: Figure S1c).
To gain a global understanding of the undifferenti-

ated/differentiated states of GNs, we next applied Mor-
an’s I test implemented in Monocle 3 [27, 28] to dissect
the underlying transcriptional modules. This analysis
identified seven modules differentially expressed within
and among Louvain component clusters in Monocle 3
(Fig. 2e, Y-axis). All GNPs/GNs were then scored with
representative genes of each module (Fig. 2e, X-axis). By
hierarchical clustering and subsequent gene ontology
(GO) enrichment analysis, these seven modules were
further grouped into four main modules (Additional file
4: Table S3) that may correspond to four distinct states
of GN cells (Fig. 2e, Additional file 1: Figure S2a). Mod-
ule A contained many genes correlated with nuclear div-
ision and cell cycle (Additional file 4: Table S3),
corresponding to the dividing Math1-expressing GNPs
(Fig. 2e). Module B was highly expressed in a small
population of Math1-expressing GNPs with downregu-
lated cell cycle activities, likely corresponding to the
non-dividing GNPs (Fig. 2e). In contrast, modules C and
D characterized by gene ontology as associated with
neurogenesis and neuron differentiation were highly up-
regulated in Dcx-expressing non-cycling cells, indicating
that there were likely two subsets of differentiated GNs

(See figure on previous page.)
Fig. 1 Single-cell transcriptome profiling of postnatal cerebellar cells. a Workflow (top panel) for cerebellum collection by FACS-sorted, single-cell
sequencing, and analysis of two samples [one at postnatal days 7 (P7) and the other at P11] from Math1-GFP mice and two samples [one at P7
and the other at P11] from Dcx-DsRed mice. Workflow (bottom panel) for cerebellum section, spatial transcriptomes, and analysis of two samples
from WT mice (both at P7). b Strains were established from transgenic Math1-GFP and transgenic Dcx-DsRed mice. Scale bar: 100 μm. c t-SNE
visualization of 24,919 cells from FACS-sorted samples (n = 4; Math1-GFP mice at P7 and P11; Dcx-DsRed mice at P7 and P11). Cells are colored
according to clusters with annotation of cell types. d Dot plot for the expression of marker genes in each cell type. Color represents the mean
expression in each cell cluster, and size indicates the fraction of cells expressing marker genes. e t-SNE visualization of 24,919 cells from FACS-
sorted samples: Math1-GFP+ and Dcx-DsRed+ samples. f Bar plot showing the proportion of cell types in Math1-GFP+ and Dcx-DsRed+ samples. P <
0.0001. P values were determined using Pearson’s chi-square test

Luo et al. BMC Biology          (2021) 19:135 Page 4 of 23



Fig. 2 (See legend on next page.)

Luo et al. BMC Biology          (2021) 19:135 Page 5 of 23



(Fig. 2e). We next scored individual cells according to
these four modules, which assigned GNPs/GNs into div-
iding GNPs (corresponding to module A), non-dividing
GNPs (corresponding to module B), GNs I (correspond-
ing to module C), and GNs II (corresponding to module
D) (Fig. 2f, g).
We next assessed the transcriptional signature of these

four states of GNs. As shown in Fig. 2 h, both dividing
and non-dividing GNPs highly expressed progenitor-
associated signature genes (such as Math1, Barhl1,
Hey1, and Hes6), but differed in cell cycle-related gene
expression. In addition to the well-known marker genes,
some novel marker genes were associated with the GNP
state. For example, Srebf1 and Tead2, which were both
introduced as critical regulators of cerebral neuron de-
velopment [29, 30], were highly expressed in the pro-
genitor state of GN. To validate this finding, we then
checked their expression patterns with in situ
hybridization (ISH) from the Allen Developing Mouse
Brain Atlas [31]. As shown in Fig. 2i, Srebf1 and Tead2
are both expressed in the outer EGL, similar to Math1
expression.
We next turned our attention to the differentiated

GNs and found that GNs I highly expressed Vim, Ebf3,
Apc2, Sox4, Nhlh2, and Nhlh1 (Fig. 2h). Among these
markers, Vim has been widely linked with epithelial-
mesenchymal transition and cell migration [32, 33] and
Nhlh1 is a TF linked to the onset of granule cell differ-
entiation in migrating granule cell precursors [34]. In
addition, Nhlh2 was previously found in the premigra-
tory zone of the EGL where GNPs undergo the initial
stages of neuronal differentiation [35] and Apc2-deficient
neurons could impair the migration of GNs [36]. These
findings indicated that GNs I likely represented a group
of differentiating/migrating GNs. In line with our expec-
tations, ISH analysis revealed that the GNs I marker
Nhlh1 was strongly expressed in the inner EGL (Fig. 2i).
Other markers detected in GNs I, such as Sox4 and
Ebf3, were also expressed in the inner EGL (Fig. 2i).
GNs II highly expressed markers that have been re-
ported to correspond to GN differentiation such as

Grin2b, Calb2, and Cntn1 [23] and a novel marker such
as Car10. The expressions of Grin2b, Calb2, and Car10
were detected within the IGL region (Fig. 2i), suggesting
that GNs II represented a population of more committed
GNs. Together these findings show that the delicate cell
states of developing GNs and associated signature genes
were highlighted at single-cell resolution, revealing four
distinct states of postnatal developing GNs. Whether
some unreported molecules in developing GNs such as
Srebf1, Tead2, Vim, Sox4, Ebf3, and Car10 play a vital
role in regulating the undifferentiated/differentiated
states of GNs should be explored in future studies.

TF regulatory networks underlying cell states of GNs
Cell phenotypes/states are governed by core regulatory
TFs that interact with cis-regulatory elements, namely
regulons, for directing transcriptional programs [37]. We
next utilized SCENIC [37] to identify the master TF net-
works associated with the four cell states in the GN cells.
This result revealed that the four states of GN cells were
constructed by distinct regulons (Fig. 3a). For example,
as expected, the dividing GNPs are driven by many cell
cycle-related regulons, including E2f2 and Ezh2 (Fig. 3b).
Of interest, the non-dividing state of GNPs was orches-
trated by a unique set of regulons, such as Zeb1 and
Hey1 (Fig. 3b). The subsequent ISH examination con-
firmed that Zeb1 and Hey1 were expressed in the outer
EGL (Fig. 3c). GNs I was highlighted by the regulon of
Neurod1, which has been previously demonstrated to
terminate GNP proliferation and thereby promote mi-
gration and differentiation [38]. In addition, we found
that Eomes, the specific marker of UBCs [39], was also
upregulated in GNs I (Fig. 3b). In ISH, Neurod1-positive
cells were enriched in the inner EGL and molecular
layer/Purkinje cell layer (ML/PCL), validating the mi-
grating state of GNs I (Fig. 3c). GNs II showed signifi-
cant upregulation of the En1 regulon, which was
strongly expressed in the inner EGL at E17.5 in the pre-
vious report [40]. In comparison, En1 has dynamic ex-
pression patterns throughout cerebellar development.
Examination of En1 at P4 revealed that most En1-

(See figure on previous page.)
Fig. 2 Identifying distinct states associated with postnatal GN development. a t-SNE visualization of 21,397 granule neuron cells (GNs) from FACS-
sorted samples after re-clustering. n = 4 mice. They are Math1-GFP mice at P7 and P11, as well as Dcx-DsRed mice at P7 and P11. Cells are
colored according to clusters. b t-SNE visualization of FACS-sorted sample sources including Math1-GFP+ and Dcx-DsRed+ samples. c Signature
gene expression of GNPs (Math1) and differentiating/differentiated GNs (Dcx). d t-SNE visualization of cell cycle and differentiation (Rbfox3, Grin2b,
and Neurod1) gene scores. e Scores of GNs (X-axis) for seven modules (Y-axis) derived from Monocle 3 module analysis. Four highly correlated
modules are highlighted (modules A, B, C, and D). Cells and modules are hierarchically clustered. Scores of cell cycle genes, and expression of
Math1 and Dcx are ordered as on the top. f Four cell states are defined corresponding to the four main modules in e. g Scores of the four main
module genes are shown. h Heatmap depicting gene expression levels of markers in the four GN states, with color-coding for the corresponding
FACS-sorted sample, clusters, cell types, and cell cycle scores. i Signature gene expression of GNPs (Math1, Srebf1, and Tead2), GNs I (Nhlh1, Ebf3,
and Sox4), and GNs II (Grin2b, Cntn1, and Car10). In situ hybridization (ISH) data were obtained from the Allen Developing Mouse Brain Atlas (©
2008 Allen Institute for Brain Science. Allen Developing Mouse Brain Atlas http://developingmouse.brain-map.org). Scale bar: 100 μm. Mouse
cerebellum at P4 are shown
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positive cells were located in the IGL (Fig. 3c). Notably,
the GNs II preferentially activated many TF regulons
that have not been characterized in GN development, in-
cluding Bmyc, Bcl3, and Esrrg (Fig. 3b). Taken together,
SCENIC analysis supported that postnatal GNs displayed
four distinct states.

Identifying cell populations in the cerebellum with ST
Although ISH data provided evidence for the spatial lo-
cation of the identified GN subsets, we next used ST to
capture more comprehensive spatial information of

these cell types. ST was performed on brain sections
from two C57BL mice at P7 (Additional file 1: Figure
S3a), which generated a total of 473 individual spots on
the H&E-stained slice of the developing cerebellum at
P7. We then performed the dimensionality reduction
and clustering analysis on the spatial (spot) gene expres-
sion profiles and identified nine sub-clusters (Fig. 4a).
Based on the expression of the cell-type markers, these
clusters primarily represented layer-enriched neuron
populations present across the EGL, ML/PCL, and IGL
to WM areas (Fig. 4b). For example, spots of cluster 2

Fig. 3 TF regulatory networks underlying cell states of GNs. a Network showing the correlation of regulons in four GN states. Nodes are colored
according to cell types. The edge width corresponds to the values of correlation between regulons. b t-SNE visualization on the binary regulon
activity matrix. Cells are colored according to four cell states. t-SNE visualization of regulon activities in four GN states. c Expression of Zeb1, Hey1,
Neurod1, and En1 in the mouse cerebellum. In situ hybridization (ISH) data were obtained from the Allen Developing Mouse Brain Atlas (© 2008
Allen Institute for Brain Science. Allen Developing Mouse Brain Atlas http://developingmouse.brain-map.org). Scale bar: 100 μm. Mouse cerebellum
at P4 are shown
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and 6 highly expressed GNP markers such as Mki67,
Math1, and Barhl1, corresponding to the EGL. Spots of
clusters 5, 7, and 8 with strong expressions of PC marker
genes (such as Calb1, Pcp4, and Car8) mapped to the
ML/PCL. Of note, here we merged ML and PCL to-
gether because of the limited resolution of ST spot (55–
100 μm). Next, we mapped the clustered spots back to
their original coordinates in the cerebellar section and
found that t-SNE clusters were projected into different
histological annotations, supporting the ability to iden-
tify spatial regions based on ST gene expression (Fig.
4c–d, Additional file 1: Figure S3b–S3c).
To further reveal the cell types of mouse cerebellum at

P7 in the spatiotemporal overview, we next applied
intersection analysis [41] to compute the overlap be-
tween each pair of cell-type-specific and region-specific
gene sets and performed a hypergeometric test to assess
whether their overlap is significantly enrichment (P <
0.05) or depletion (P > 0.05) than expected by chance
(for example see Fig. 4f; see “Methods”). The enrichment
of overlap between the cell type and region is shown as
a heatmap in Fig. 4e. We found that GNP and GN-
specific genes in the postnatal cerebellum of our scRNA-
seq data overlapped with the set of genes specific to
EGL and IGL identified by ST, respectively (Fig. 4e; P <
0.001). For GABAergic lineage cells, GABA progenitors
and interneurons were enriched in WM as previously re-
ported [42] (Fig. 4e; P < 0.001), while ML/PCL were in-
deed enriched with PCs (Fig. 4e; P < 10−10). As expected,
the WM region was also enriched with glial lineage cells
[43, 44] like astrocytes and oligodendrocytes (Fig. 4e; P <
10−10). In addition, astrocytes were also enriched in ML/
PCL and IGL (Fig. 4e; P < 0.05). Similar to what has
been reported [44], it might be that there are three types
of astrocytes in the murine cerebellar cortex, Bergmann
glia in the PCL, fibrous astrocytes in WM, and proto-
plasmic astrocytes in IGL, leading to such enrichment.
However, it seems that ST is unable to map the EGL lo-
cation of astrocytes in developing cerebellum, as several
studies have reported that there is a small population of
scattered Nestin-expressing astrocyte progenitors within
the EGL in addition to other locations (ML/PCL, IGL
and WM) [45, 46]. It is possible that the high

enrichment of granule cell in EGL attenuate the pheno-
type of astrocyte progenitor. In addition, the region of
WM was also enriched with microglia, in line with the
previous study [47] (Fig. 4e; P < 10−10). Fibroblasts were
detected in both EGL (Fig. 4e; P < 10−10) and WM (Fig.
4e; P < 0.05), and ciliated cells were enriched in WM
(Fig. 4e; P < 0.001). Taken together, nearly all cell line-
ages of cerebellum could be accurately positioned in ST,
supplying a full characterization of the developing cere-
bellum at P7. By mapping cell types to ST, it makes sure
that we could subset the regions corresponding to GN
cells precisely for further study.

Identification and mapping of GN cell-type
subpopulations across cerebellar regions
The EGL exclusively produces GN progenitors, which
then migrate inward through the ML/PCL into IGL dur-
ing early postnatal life. We further investigated subpopu-
lations within postnatal GNs in the ST data and paid
attention to the regions of EGL, ML/PCL, and IGL and
discarded 60 spots defined as WM, which is mainly
enriched for glial lineage cells (Fig. 5a, c). As each ST
spot contains approximately 30 cells that reflect a mixed
expression signature, we next filtered signature genes as-
sociated with other cell types, especially PCs within PCL
and other cell types including glial cells and GABAergic
lineage that may localize in ML/PCL during develop-
ment (Additional file 1: Figure S4b). This step generated
a total of 127 genes that are specifically associated with
the GN identity (Additional file 1: Figure S4b, Additional
file 6: Table S5). Using this gene set, we scored each spot
(Fig. 5b, e) and found that GNPs including non-dividing
GNPs and dividing GNPs were enriched in the EGL (P <
0.01; two-sided unpaired Wilcoxon test), while GNs I
were enriched in the ML/PCL (P < 0.01), suggesting
their migrating role during development. GNs II that are
thought to be mature GNs were enriched in the IGL (P
< 0.0001). Correlation analysis also supported the corres-
pondence between the four states of GN cells and loca-
tion of the three layers (Fig. 5f).
Next, we checked the expression levels of certain cell-

type markers in the ST H&E image. As shown in Fig. 5g,
markers of GNPs such as Math1 and Mki67 were

(See figure on previous page.)
Fig. 4 Identifying cell populations in the cerebellum with ST. a Dimensionality reduction and clustering of 473 spots from cerebellum section
from WT mice at P7. n = 2 mice. They are sample I and sample II. Each cluster’s annotated anatomical region of sample I is indicated in c. Spots
are colored according to clusters. b Dot plot for the expression of representative marker genes in cerebellar cell types corresponding to the
anatomical region. Color represents the mean expression in each cluster, and size indicates the fraction of cells expressing the marker genes. c–d
Mapping spots to their spatial positions shows that spots defined by marker genes are localized to the expected layers of cerebellum in sample I.
Magnified images of the histological structures are shown in F1–F4. Scale bar: 25 μm. e–f Intersection analysis of all scRNA-seq-identified cell
types and spatial transcriptomics-defined regions. Each value of the heatmap is computed as described in f. All pairs of cell types and cerebellum
region using the same background genes (16,293 genes). The numbers of cell-type-specific and spatial region-specific genes used in the
calculation are shown in f. Red indicates enrichment (significantly high overlap; P value < 0.05) and blue indicates depletion (P value > 0.05). The
bar on the top indicates the regions defined in a
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expressed in the EGL, while Mvd, one of the genes spe-
cifically in GNs I, was expressed in the ML/PCL and the
IGL region expressed Cntn1, which was similar to the
outcome of ISH in Fig. 2h. Collectively, by mapping
across the four cell types of scRNA-seq and the cerebel-
lum tissue of ST data, the cell states of postnatal GN
cells were described spatially and in line with previous
ISH data. However, ISH shows a limitation in its de-
pendency on available in situ probes. Therefore, the
overview of cell states of GNs by ST enabled us to gain a
better understanding of the expression patterns of GN
cell states. Combined ISH and ST analyses confirmed
that GN cells at P7 were described thoroughly as a se-
quential commitment from GNPs in the EGL, migrating
GNs in the ML/PCL to the finally mature granule cells
in the IGL, as the model shows in Fig. 5d.

Developmental trajectories within GN lineage cells
We next sought to illuminate the lineage relationship of
postnatal granule cells by performing cell trajectory ana-
lysis using scVelo [48], a new version of RNA velocity
analysis [49], which applies a likelihood-based dynamical
model to solve the full gene-wise transcriptional dynam-
ics. We performed this analysis for each individual sam-
ple and observed a consistent cell differentiation trend
from GNPs to differentiated GNs (Fig. 6a, Additional file
1: S5a–S5d). For example, in the P7 Math1-positive
sample, RNA velocity predicted non-dividing GNPs as
the root cells that direct cellular differentiation by two
different paths (Fig. 6a, c). A substantial number of non-
dividing GNPs showed differentiation tendency towards
dividing GNP phase (represented by cell #1, Fig. 6a, b)
and subsequently migrating GNs (represented by cell #3,
Fig. 6a, b) as well as the differentiated GNs (represented
by cell #4, Fig. 6a, b) in P7 Math1-positive sample. In
contrast, there were a few non-dividing GNPs that dir-
ectly differentiate into migrating GNs without undergo-
ing the transit-amplifying state in P7 Math1-positive
sample (represented by cell #2, Fig. 6a, b).
Besides modeling cellular dynamics, scVelo analysis

also enabled us to investigate the transcriptional dynam-
ics of variable genes during cellular state progression.
We focused on the TF genes that may act as driver
genes underlying cell state transition. Visualizing the

ratio of unspliced to spliced mRNA abundance showed a
tightly controlled expression of cell state-associated TFs
(Fig. 6d). For example, the expressions of non-dividing
GNP markers Barhl1 and Tead2 (Fig. 6e) were downreg-
ulated when cells enter the cycling progenitor state. In
contrast, Neurod1 and Scrt2 that play a modulatory role
in cortical neurogenesis and neuronal migration [50]
switched at GNs I (Fig. 6e). For GNs II, Neurod2, which
is associated with neural differentiation, started to in-
crease in expression, and Esrrg switched in line with the
SCENIC results (Fig. 3b). Overall, the pseudotime order-
ing identified by RNA velocity revealed a sequential
commitment from non-dividing GNPs to dividing GNPs,
migrating granule cells and the finally mature granule
cells.

Relationship between tumor cell identity and
developmental GN cell origins
Previous studies have indicated that SHH-MB may
mainly originate from early postnatal GN cells [16, 51].
We next asked whether MB tumor cells exhibited simi-
lar states resembling developing GNs. To this end, we
performed scRNA-seq on MB developed after 50 weeks
in Patched+/− mice. After quality control including
doublet removal, we obtained a total of 18,372 cells from
MB that developed in three mice (MB-1, MB-2, and
MB-3) (Fig. 7a). Based on the known annotation of
marker genes from the literature, we grouped cells of
nine clusters into four cell types: GNP-like tumor cells
(expressing Math1 and Grin2b), microglia (expressing
Aif1 and Cd68), T cells (expressing Cd3d and Cd3e), and
endothelial cells (expressing Cldn5 and Cdh5) (Add-
itional file 1: Figure S6a). We next sought to distinguish
malignant cells from non-malignant cells by inferring
copy-number variations (CNVs) from single-cell tran-
scriptome profiles as described by many previous studies
[52–54]. As expected, this analysis showed that GNP-
like tumor cells in all three MB samples had remarkable
CNVs compared with normal granule neurons at P7
(Fig. 7b), confirming their malignant identity.
Previous single-cell analyses have shown that SHH-

MB phenotypically resembles developing GNs [16]. In
line with this finding, k-Nearest Neighbor (kNN) analysis
[55] predicted that the three tumors showed a

(See figure on previous page.)
Fig. 5 Identification and mapping of GN cell-type subpopulations across cerebellar regions. a t-SNE visualization of spots identified as EGL, ML/
PCL, and IGL in Fig. 4a. b Scores of genes specifically associated with four GN states in ST spots. c Spatial locations of anatomical regions
associated with the development of GNs: EGL, ML/PCL, and IGL. Spots are colored according to the layers. d Model at P7 for the cellular
architecture of GNs in different development phases: a. GNPs in EGL, b. migrating GNs in the inner of EGL and ML/PCL, and d. mature GNs in IGL.
c. Purkinje cells are shown in ML/PCL. e Violin plot for scores of selected genes corresponding to four cell states in three layers’ location. Color
represents four cell states. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. P values were determined using two-sided unpaired Wilcoxon test. f
Correlation between four states of GNs and three layers’ location. g Signature gene expression of GNPs (Math1 and Mki67), GNs I (Mvd), and GNs
II (Cntn1) in the ST H&E image
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transcriptional similarity to the lineage of GN cells ra-
ther than other neural cell lineages (Fig. 7c), supporting
the GN origin of the three tumors. Furthermore, we

compared the transcriptional similarity between tumor
cells and developing cell types using Scanorama [56],
which integrated tumor cell and developmental neural

Fig. 6 Developmental trajectories within GN lineage cells. a RNA velocities of GNs for Math1-GFP+ mouse at P7. b UMAP visualization of the
transition probability of particular cells corresponding to four GN states. c The velocity-inferred root/end cells, velocity pseudotime, and cell cycle
scores of P7 Math1-GFP+ mouse are shown. d Gene expression dynamics resolved along velocity pseudotime show a clear cascade of
transcription of top likelihood-ranked TFs (likelihood > 0). e Driver genes are identified by high likelihoods. Expression dynamics along velocity
pseudotime for the driver genes characterize their activity
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Fig. 7 (See legend on next page.)
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lineage cell-type datasets after batch effect correlation.
This analysis also showed that tumor cells were tran-
scriptionally closer to the lineage of GN cells (Additional
file 1: Figure S7). Based on this observation, we next ex-
amined whether tumor cell states recapitulate the prolif-
eration/differentiation states of normal developing GNs.
For this purpose, we scored each tumor cell using the
signatures of the four states of developing cells (Fig. 7d).
The results revealed that the intra-tumoral states of each
tumor highly resembled GN states in normal develop-
ment. Further examination of signature genes associated
with these four cell states supported this observation
(Additional file 1: Figure S6b).
To get an unbiased understanding of intra-tumor cell

states, we next applied non-negative matrix factorization
(NMF) [57] to extract the underlying transcriptional
programs specific to each tumor. This analysis revealed
four meta-programs (A, B, C, and D) that were shared
across tumors (Fig. 7e). Meta-program A was character-
ized by markers of the cell cycle, such as Top2a and
Mki67 (Additional file 7: Table S6), indicating the pres-
ence of proliferating subpopulations of tumor cells in all
tumors. Meta-program B contained GNP-associated
genes as mentioned above, such as Math1 and Zeb1,
likely corresponding to undifferentiated progenitors in
each tumor. Meta-program C was defined by many
markers of differentiated GNs including Neurod1 and
Nhlh1, probably reflecting the differentiation states of
tumor cells. In addition, we identified a cancer
metabolism-related meta-program (meta-program D),
highlighted by Shmt2 [58] and Phgdh [59] (Additional
file 1: Figure S6c). To relate these meta-programs with
cellular states of developing GNs, we compared their
similarity by calculating Jaccard index using associated
signature genes. As expected, the cell cycle meta-
program A was highly similar to the dividing GNPs,
while the progenitor-like meta-program B was similar to
non-dividing GNPs. The differentiation-related meta-
program C showed similarity to both migrating GNs and
mature GNs (Fig. 7f). Moreover, the cancer metabolism
meta-program D did not show a clear similarity with any
states of developing GNs, suggesting that upregulation
of the metabolism-associated signature may be tumor-
specific. Nevertheless, our single-cell analysis demon-
strated that MB has similar states with developing GNs,

which provides a new angle to understand the cellular
states of tumor cells.

Delineating intra-tumoral cellular trajectories
To further understand the intra-tumoral cellular states
in our MB samples, we used scVelo to visualize the cell-
cell transition trends (Fig. 8a). By computing cell-to-cell
transition probabilities between different states, we
found that both non-dividing GNP-like and dividing
GNP-like tumor cells could serve as tumorigenic cells
(root cells) in all three tumors (Fig. 8a). This is different
from the normal states, in which most root cells were
predicated to be non-dividing GNPs (Fig. 8a). Subse-
quent quantification analysis of transition probabilities
supported that dividing GNP-like tumor cells exhibit
higher potential to give rise to non-dividing GNP-like
tumor cells rather than differentiated progeny cells espe-
cially in MB-1 and MB-2, compared with GNPs in nor-
mal developing cerebellum (P < 0.0001, Pearson’s chi-
square test; Fig. 8b). This finding generally supported
the notion that tumor progenitor-like cells displayed
more self-renewal potential that impeded the differenti-
ation process to a certain extent, which is consistent
with a previous study [23].
To understand the discrepancy between normal devel-

opment and tumorigenesis, we next performed gene set
variation analysis (GSVA) [60] on both transformed GN
and normal GN (Additional file 1: Figure S8a). As ex-
pected, we found that the SHH signaling pathway was
overactivated in tumor cells especially in the progenitor-
like tumor cells. In addition, other tumor-related path-
ways such as cell cycle, metabolism, stem cell, hypoxia,
and TGF-β pathways were also upregulated in the tumor
samples compared with Math1-positive mice at P7 and
P11. Of these tumor-specific pathways, some pathways
such as the tRNA aminoacylation pathway, STAT5 path-
way, and ALKBH8 pathway, have been reported to con-
tribute to cancer progression in various cancers [61–63].
We next assessed the prognostic value of these pathways
and found a total of eight pathways that can predict a
significantly worse outcome in the overall survival of hu-
man MB, including cell cycle, hypoxia, stem cell, tRNA
aminoacylation, STAT5, and ALKBH8 pathways (Add-
itional file 1: Figure S8b).

(See figure on previous page.)
Fig. 7 Relationship between tumor cell identity and developmental GN cell origins. a Workflow for the collection of MB developed after 50 weeks
in Patched+/− mice, single-cell sequencing, and clustering analysis. n = 3 Patched+/− mice. They are MB-1, MB-2, and MB-3. t-SNE visualization of
nine clusters in 18,372 cells from three MB tumors. Cells are colored according to clusters with annotation of cell types. b Heatmap showing
inferred large-scale CNVs of normal cells (GNPs/GNs at P7 WT mouse) and tumor cells of three samples. c Heatmap of mean similarity scores
between MB and developmental neural lineage cells of cerebellum. d t-SNE visualization of four GN cell state scores in three MB tumors. e
Relative expression of 150 genes representing SHH-MB meta-programs from combined tumor cells. Cells positive for the cell cycle program are
indicated. f Jaccard similarities of the gene sets between meta-programs of tumor cells (y axis) and four cell states of granule neuron cells (x axis)
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Fig. 8 Delineating intra-tumoral cellular trajectories. a RNA velocities of four GN cell states like in tumor cells. b Heatmap showing the transition
proportion from dividing GNPs and dividing GNP-like to four cell states. P < 0.0001. P values were determined using Pearson’s chi-square test. c
Univariate analysis of overall survival (OS) in SHH-MB patients using GSVA scores of four tumor cell states. P values were determined using the
log-rank test. d Heatmap of differential expressed gene analysis in dividing phase between normal and tumor models. Bar represents the average
expression in each sample. e GO analysis of differential expressed gene in dividing phase between normal and tumor models

Luo et al. BMC Biology          (2021) 19:135 Page 15 of 23



Finally, we considered the clinical implications of the
distinct GN-like tumor populations. We therefore used
signatures of four tumor cell states to score 405 human
SHH-MB bulk samples. We found that patients with
higher dividing GNP-like signals, whose tumors presum-
ably contain more dividing GNP-like tumor cells, had a
significant poor prognosis (P = 0.0205; log-rank test; Fig.
8c). This data suggested that dividing GNP-like tumor
cells plays a direct role in the development of tumori-
genic progression. An unbiased comparison of normal
dividing GNP cells and dividing GNP-like tumor cells
revealed 332 genes (Additional file 8: Table S7) that were
preferentially expressed in dividing GNP-like tumor
cells, including progenitor-related genes (such as Hes1,
Atoh1, Zeb1, and Mycn) and cell cycle genes (such as
Cdkn2a, Cdkn1a, Pou4f1, and Ube2b) (Fig. 8d). In con-
trast, normal dividing GNPs upregulated expression of
genes related to neuron migration (such as Neurod1 and
Dcx) and neuron differentiation (such as Neurod2,
Tubb2b, and Pax6), as confirmed by GO enrichment
analysis (Fig. 8e). Therefore, these detailed analyses of
intra-tumoral states highlighted the disparity between
transformed GNs and normal developing GNs, although
they shared similar undifferentiated/differentiated states.
Dividing GNP-like tumor cells significantly upregulate
cell cycle and progenitor-related gene programs, which
to some extent inhibited the maturation of GNs.

Discussion
Cerebellar GNs account for over half of the neurons in
the brain and are mainly produced during the early post-
natal stages, in which GNPs undergo extensive prolifera-
tion followed by subsequent migration and maturation.
In this study, we aimed to dissect the transcriptional
programs associated with postnatal granule cell develop-
ment. By performing scRNA-seq for cells isolated from
reporter mice (Math1-GFP and Dcx-DsRed reporter
mouse lines), we constructed a single-cell transcriptomic
atlas of postnatal GNs. To get a global understanding of
the differentiation spectrum of granule cell development,
we extracted their underlying transcriptional programs
using module genes derived from Monocle 3. The re-
sults identified four discrete states of postnatal granule
cells, including dividing GNPs (highly expressing cell
cycle genes), non-dividing GNPs (highly expressing
Math1, Barhl1, Tead2, and Srebf1), migrating GNs (ex-
pressing Vim, Ebf3, Apc2, Sox4, Nhlh2, and Nhlh1), and
mature GNs (expressing Grin2b, Cntn1, En1, and
Car10). We also identified several new genes that may
play an important role in the development of GNs, such
as Tead2 and Srebf1 corresponding to GNPs, Vim, Sox4,
and Ebf3 corresponding to migrating GNs and Car10
corresponding to mature GNs. Using RNA velocity ana-
lysis, we examined the differentiation tendency between

these states and found that most GNs follow a differenti-
ation trajectory from non-dividing GNPs to dividing
GNP phase and subsequently into migrating GNs and
then give rise to the well-differentiated GNs. Our study
thus provides more insight into the differentiation states
of postnatal GNs.
However, it should be noted that the development

samples in our current study did not cover the very early
embryonic stages when cerebellar granule neurons are
derived from the upper rhombic lip. Future studies are
required to characterize the whole development process
of cerebellar granule neurons and dissect their disparity
from embryonic stages to postnatal stages.
While high-throughput drop-based scRNA-seq allows

for the capture of distinct transcriptional states of gran-
ule cell differentiation, tissue dissociation before sequen-
cing leads to the loss of spatial information, thus
limiting our understanding of how GNPs differentiate
from the EGL towards IGL. To address this limitation,
we next took advantage of ST to map how GNPs differ-
entiate from the EGL towards IGL. Although ST is still
limited in providing single-cell resolution (55–100 μm
resolution), we were able to visualize the spatial loca-
tions of four distinct states of GNs and confirm that
GNs represent a subpopulation of differentiating/migrat-
ing GNs located between the EGL and IGL. Thus, inte-
grating ST and scRNA-seq analyses facilitates
comprehensive interrogation of GN differentiation with
spatial information.
MB is the most common malignant brain tumor in

children. The cell of origin of MB has recently been elu-
cidated by single-cell transcriptional analysis, which
showed that distinct MB subtypes are linked to discrete
cerebellar cell subtypes in development [16, 17]. Among
the distinct subtypes, SHH-MB has been shown to
mimic the developmental program of GNs, which is
consistent with previous lineage-tracing studies demon-
strating that SHH-MB can be initiated from Math1-posi-
tive GN precursors [14, 15]. Our lab previously observed
delayed differentiation of GNPs in Patched+/− mice as
evidenced by increased Math1 and decreased Dcx and as
evidenced by enhanced symmetrical cell division of
Math1-positive GN precursors in Patched+/− mice [22].
To better understand the cell fate bias between normal
GNs and tumorigenic GNs, we next analyzed three MB
samples from the Patched+/− mice by scRNA-seq. We
used the signatures of the four states of developing GNs
to define the tumor cell states and found that MB that
developed in Patched+/− mice showed a similar compos-
ition resembling the early postnatal GN cells. Notably,
RNA velocity-based analysis of the cellular differenti-
ation trajectories revealed that transformed GNPs adopt
markedly less differentiation potential. Notably, the in-
creased progenitor-progenitor cell state transition was
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remarkably reproducible across the three tumor samples
analyzed, thus providing insightful evidence for tumori-
genesis. We further explored whether there are deter-
ministic programs that influence cell states during
tumor evolution. Our results showed that many path-
ways such as cell cycle, metabolism, stem cell, hypoxia,
TGFB, tRNA aminoacylation, and ALKBH8 displayed
significant upregulation in transformed granule cells.
Further bulk sample analyses demonstrated that the
oncogenic activities of newly identified pathways are
strongly predictive of poor prognosis of SHH-MB pa-
tients. Together these findings suggested that advanced
therapeutic strategies for targeting aggressive SHH-MBs
could include inhibition of signaling pathways that
maintain the undifferentiated/proliferative granule pro-
genitor state.

Conclusion
In conclusion, our study has depicted the detailed tran-
scriptional profiles associated with distinct states of post-
natal GNs at the single-cell level and mapped their
spatial location by ST. These data thus provide an im-
portant resource for future study of cerebellar GN devel-
opment. In addition, our work confirmed the main role
of progenitor-like tumor cells in driving the tumorigen-
esis of SHH-MB, underscoring the importance of target-
ing this cell subpopulation as well as associated signaling
circuitries in cancer therapy.

Methods
Animals
Math1-GFP transgenic mice were provided by Novartis.
Dcx-DsRed mice (strain name: C57BL/6 J-Tg (Dcx-
DsRed) 14Qlu/j, stock number; 009655) and heterozy-
gous Patched (Patched+/−) mice (strain name: STOCK
Ptch1tm1Mps/J, stock number: 003081) were obtained
from the Jackson Laboratory. Math1-GFP mice, Dcx-
DsRed mice, Patched+/− mice, and wild-type (WT)
C57BL mice were maintained in the Specific-Pathogen-
Free Animal Research Centre of Renji Hospital. The ani-
mal experiments were approved by the Animal Research
Ethics Committee of Renji Hospital, School of Medicine,
Shanghai Jiao Tong University.
For developmental cerebellum scRNA-seq, six samples

were collected, including two Math1-GFP + mice, re-
spectively at P7 and P11, two Dcx-DsRed+ mice, respect-
ively at P7 and P11 and two WT mice, respectively at P7
and P11. For developmental cerebellum ST, two WT
mice at P7 were collected on one slice. For MB scRNA-
seq, three samples developed in Patched+/− mice were
collected. The basic information for all samples is shown
in Additional file 2: Table S1.

Single-cell isolation and preparation of suspensions
For transgenic mice, cerebella from P7 or P11 Math1-
GFP or Dcx-DsRed mice were dissected and incubated in
10–12 U/ml of activated papain solution plus 32 mg/ml
of DNase in DMEMF-12 (Gibco) with rocking for 30
min at room temperature. The samples were then tritu-
rated with a fire-polished glass Pasteur pipette to gener-
ate a single-cell suspension. Two independent cell
populations with GFP and DSRED fluorescence were an-
alyzed on a BD FACSAria II cytometer (Becton Dickin-
son) using standard flow cytometry.
For WT and Patched+/− mice, cerebella from P7 or

P11 WT mice and MB developed after 50 weeks by
Patched+/− mice were dissected and enzymatically
digested with collagenase IV (Gibco) and DNase I
(Sigma) for 30 min at 37 °C with agitation. After diges-
tion, samples were sieved through a 70-μm cell strainer
and washed with 1% BSA and 2mM EDTA in PBS. After
centrifugation, single-cell suspensions were run through
Lympholyte-H separation (CL5020; Cedarlane) to re-
move red blood cells and debris according to the manu-
facturer’s specifications. Pelleted cells were then re-
suspended in PBS with 1% BSA and assessed for viability
and size using a Countess instrument (Thermos).

Preparation of cerebellum for ST
Two cerebellar tissues of P7 WT mice were embedded
in Tissue-Tek (OCT) and snap-frozen using an isopen-
tane/dry ice slurry. Cerebellar tissues were cryosectioned
at 10-μm thickness while keeping the samples frozen.
Samples were placed within the frame of capture areas
on the Visium Spatial Gene Expression.

Tissue staining and imaging
Tissue sections were fixed on the capture areas of the
Visium Spatial Gene Expression using methanol. The
nuclei were stained using hematoxylin, followed by eosin
staining for the extracellular matrix and cytoplasm. The
images of stained tissue sections were used to map the
gene expression patterns back to the tissue sections.

Visium Spatial Gene Expression library construction
The section was first permeabilized using a
permeabilization enzyme. The poly-adenylated mRNA
released from the overlying cells is captured by the
primers on the spots. Incubation with the reverse tran-
scription reagents produces spatially barcoded, full-
length cDNA from poly-adenylated mRNA on the slide.
Second Strand Mix is added to the tissue sections on the
slide to initiate second strand synthesis. This is followed
by denaturation and transfer of the cDNA from each
capture area to a corresponding tube for amplification
and library construction. After transfer of cDNA from
the slide, spatially barcoded, full-length cDNA is
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amplified via PCR to generate sufficient mass for library
construction. Enzymatic fragmentation and size selection
are used to optimize the cDNA amplicon size. The final
libraries contain primers used in Illumina amplification.

Droplet-based scRNA-seq
As per the manufacturer’s protocol [64], single cells were
processed through the GemCode Single Cell Platform
using the GemCode Gel Bead, Chip and Library Kits
(10X Genomics). Cell suspensions of each sample were
run in the Chromium Controller with appropriate re-
agents to generate single-cell gel bead-in-emulsions for
sample and cell barcoding, with a target output of ~
5000 cells for each sample. Amplified cDNA and final li-
braries were evaluated on an Agilent BioAnalyzer using
a High Sensitivity DNA Kit (Agilent Technologies). Li-
braries were pooled and sequenced on a NovaSeq 6000
(Illumina) at a depth of approximately 400M reads per
sample.

scRNA-seq data preprocessing and quality control
Raw sequencing data were converted to FASTQ files
with Illumina bcl2fastq, version 2.19.1 and aligned to the
Mus musculus genome reference sequence (mm10). The
CellRanger (10X Genomics, 2.1.1 version) analysis pipe-
line was used for sample demultiplexing, barcode pro-
cessing, and single-cell 3′ gene counting to generate a
digital gene-cell matrix from these data. The gene ex-
pression matrix was then processed and analyzed by
Seurat package [65]. We performed Seurat-based filter-
ing of cells based on the number of detected genes per
cell (> 500) and the percentage of mitochondrial genes
expressed (< 10%). The mitochondrial genes and riboso-
mal genes were also removed from the gene expression
matrix. The basic information for single-cell datasets of
all samples is shown in Additional file 2: Table S1.

Filtering cell doublets
Doublets of scRNA-seq were excluded by first using
Scrublet [66] and then estimating if our dataset included
any clusters enriched for cell doublets based on the ex-
pression patterns of cell-type-specific markers.

ST data preprocessing and quality control
Spots with fewer than 500 genes and genes expressed in
fewer than 15 spots were excluded. Spots with over 10%
mitochondrial gene expression were also discarded.

Dimensionality reduction, clustering, and visualization
We used Seurat’s NormalizeData function with the
method “LogNormalize” to normalize the feature expres-
sion measurements for each cell by the filtered expres-
sion matrix, multiplied this by a scale factor (10,000 by
default) and log-transformed the result. Highly variable

genes were then identified and used for the subsequent
principal component analysis. Clustering was then per-
formed using graph-based clustering and visualized
using t-SNE with Seurat functions RunTSNE.
For the ST dataset, we first ran dimensionality reduc-

tion and clustered on the RNA expression data of ST,
using the same workflow as used for scRNA-seq analysis.
We then visualized the results of the clustering either in
t-SNE space (with DimPlot) or overlaid on the image
with Seurat’s SpatialDimPlot function.

Cell types and anatomical region identification
For the scRNA-seq dataset, we defined sets of well-
established marker genes for cell types and annotated
each cell type based on their gene scores. For the ST
dataset, considering cell-type-specific characteristics of
anatomic layers in the developing cerebellum, we anno-
tated each spot based on the expression of cell-type-
specific genes. The detailed gene list is shown in Add-
itional file 3: Table S2.

Batch correcting and multiple dataset integration
For merging multiple scRNA-seq datasets of develop-
mental samples, we applied Harmony integration [67],
which has been shown to reduce technical batch effects
while preserving biological variation for multiple batch
integration. RunHarmony returns a Seurat object, up-
dated with the corrected Harmony coordinates. The
manifold was subjected to re-clustering use the cor-
rected Harmony embeddings rather than PCs, set reduc-
tion = “harmony,” with parameters of Seurat analysis.
For comparing tumor and developing cell types using

Scanorama, to eliminate batch effects among datasets,
we performed batch effect correction using the “scanora-
ma.integrate” function in the Python package Scanorama
[56] with default parameter.
For ST samples, there was no need to reduce technical

batch effects because of two cerebellar tissues on one
slide.

Defining cell scores
We used the AddModuleScore function in the Seurat R
package to evaluate the degree to which individual cells
express a certain pre-defined expression program as de-
scribed previously [17, 57]. For example, we defined the
states of developing GN cells by scoring for the module
genes derived from Monocle 3. Single cells were
assigned to different cell types/states based on the max-
imum expression score.
Cell cycle scores were calculated using a set of charac-

teristic genes involved in cell cycle including 43 G1/S
and 54 G2/M cell cycle genes [54].
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SCENIC analysis
We employed the python package “pySCENIC” to run
SCENIC and used GRNBoost (SCENIC version 0.1.5) to
run the co-expression modules. The motifs database for
Mus musculus was downloaded from the website
https://pyscenic.readthedocs.io/en/latest/. The input
gene matrix is the normalized gene matrix of Math1-
positive and Dcx-positive granule neurons of reporter
mice at P7.
To obtain a higher confidence set of regulons and pre-

dicted regulon connections, we first identified cell-type
regulons using DEGs and selected the top differential
regulons of each cell type. We then computed Pearson’s
correlation coefficient between regulons based on their
AUCell values. Finally, the correlation of regulons was
selected using a threshold of 0.3 and visualized using
Cytoscape [68].

Finding modules of co-regulated genes
We applied Monocle 3’s function “pr_graph_test_res” that
has Moran’s I test and set neighbor_graph = “knn” to cal-
culate modules differentially expressed within and among
Louvain component clusters of UMAP space. We then
identified genes for each module in Monocle 3 using Mor-
an’s I threshold of 0.1 and qval threshold of 0.05. We fi-
nally used top markers function among clusters in
Monocle 3 to rank the genes by specificity and obtained
the top 50 mean expression genes as representative genes
of each module shown in Additional file 4: Table S3.

RNA velocity
RNA velocities were predicted using velocyto in R pro-
gram [49, 69]. Briefly, spliced/unspliced reads were an-
notated by velocyto.py with CellRanger (version 2.2.0),
generating BAM files and an accompanying GTF; they
were then saved in .loom files. The .loom files were
loaded to the scvelo python pipeline using scv.read func-
tion and they generated count matrices for spliced and
unspliced reads. Next, the count matrices were size-
normalized to the median of total molecules across cells.
The top 3000 highly variable genes were selected out of
those that pass a minimum threshold of 10 expressed
counts commonly for spliced and unspliced mRNA.
Considering that the assumptions of a common splicing
rate and the observation of the full splicing dynamics
with steady-state mRNA levels were often violated, we
used the function recover_dynamics, a likelihood-based
dynamical model, to break these restrictions. Finally, the
directional flow was visualized as single-cell velocities or
streamlines in the UMAP embedding with the cell-type
annotations.
To quantify the cell-state transition probability, we cal-

culated the velocity-based cell transition matrix by the
transition_matrix() function from scvelo, of which the

element was the Pearson correlation coefficient between
the velocity vector and cell-state difference vectors of
the column cell. We then defined the destination of a
cell by identifying the highest correlation value. We cal-
culated the proportion of the cell-state transition of total
dividing GNPs or GNP-like tumor cells towards different
states of cells and presented this results using heatmap
in Fig. 8b. Then Pearson’s chi-square test was performed
on 4 × 4 cluster-by-cluster contingency tables to test the
fate destinations of interested cell clusters.

Determination of cell-type enrichment/depletion by
interaction analysis
We first identified cell-type markers and ST region-
specific markers using DEGs. DEGs in a given cell type
compared with all other cell types were determined with
the FindAllMarkers function from the Seurat package
(one-tailed Wilcoxon rank sum test, P values adjusted
for multiple testing using the Bonferroni correction). For
computing DEGs, all genes were probed, provided they
were expressed in at least 25% of cells or regions in ei-
ther of the two populations compared and the expres-
sion difference on a natural log scale was at least 0.3.
The detailed gene list of developmental cell types and
ST annotated regions is shown in Additional file 5:
Table S4. We then queried the significance of the over-
lap between ST genes and cell-type marker genes using
the hypergeometric cumulative distribution, with all
shared genes of ST and scRNA-seq as the background to
compute P values. If P > 0.05, it was considered as cell-
type depletion and shown in blue color.

Correlation between ST and scRNA-seq
We first computed the DEGs of developing cell types
shown in Figure S4a; all genes were probed provided
they were expressed in at least 25% of cells, in either of
the two populations compared and the expression differ-
ence on a natural log scale was at least 0.5. We then
overlapped the DEGs of the four cell states in GN cells
with the final selected corresponding module genes
shown in Additional file 4: Table S3. Using this strategy,
we can retain the genes specifically expressed in the four
cell states of granule cells compared with other cell
types. The detailed gene list is shown in Additional file
6: Table S5. These genes were used to compute Pear-
son’s correlation coefficient between the averaged cell-
type profiles and ST region profiles.

Defining ST region scores
We used the AddModuleScore function in the Seurat R
package to define ST regions including EGL, ML/PCL,
and IGL using genes shown in Additional file 3: Table
S2 that were specifically expressed in the four cell states
of GN cells.
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kNN analysis
To quantify the cell similarities between tumor cells and
seven developmental neural cell types, including GNPs/
GNs, GABAergic interneurons, PCs, astrocytes,
GABAergic progenitors, UBCs, and oligodendrocytes, we
projected the combined cell-by-gene expression matrix
onto a shared low-dimensional PC space using multi-
BatchPCA function as previously described [70]. Then
each expression matrix was subset to the union of all of
the common genes independently detected in each data-
set. We then applied the kNN regression model to pre-
dict a continuous outcome corresponding to developing
cell types, using the knn.reg function (setting k = 20).
The prediction scores corresponding to each cell type
were then averaged to interpret the similarity between
tumor cell and developing cell types.

Inferred CNV analysis from scRNA-seq
We identified the malignant cells by inferring large-scale
chromosomal CNVs in each single cell based on a mov-
ing averaged expression profiles across chromosomal in-
tervals [52–54]. In particular, we used the GNs
identified in developing cerebellum at P7 WT mice as
the reference “normal” cells, and their average CNV
value was subtracted from all cells. To run inferCNV, we
applied a hidden Markov model (HMM) to predict the
CNV level and implemented inferCNV’s i6 HMM model.
The average CNV signal was estimated by averaging the
CNV modification for autosomes.

Expression programs of intra-tumoral heterogeneity
We applied NMF to extract the transcriptional programs
of malignant cells of each tumor. We set the number of
factors to 10 for each tumor. For each of the resulting
factors, we considered the top 50 genes with the highest
NMF scores as characteristics of that given factor. All
single cells were then scored according to these NMF
programs. Hierarchical clustering of the scores for each
program using Pearson correlation coefficients as the
distance metric and Ward’s linkage revealed four corre-
lated sets of meta-programs. The gene list of the four
meta-programs is shown in Additional file 7: Table S6.

Cell cycle analysis
To identify cell cycle-positive cells, scores for the G1-
S and G2-M phases of the cell cycle were computed.
Data-derived thresholds of 2 MADs above the median
were used to binarize cells into cycling and non-
cycling in Fig. 7e.

Jaccard similarity analysis
The Jaccard similarity coefficient was calculated for
comparing the transcriptional similarity between two cell
types using their signature genes. We evaluated the

transcriptional similarity between the four meta-
programs of malignant cells and signatures of four cell
types/states of GN cells by calculated Jaccard similarity
coefficients using the top 50 marker genes of meta-
programs shown in Additional file 7: Table S6 and cor-
responding module genes in Additional file 3: Table S2
of the four cell states.

Gene set variation analysis (GSVA)
We quantified the gene signatures of single cells by ap-
plying the single-sample GSVA (ssGSVA), which calcu-
lated the signature enrichment scores of individual
single cells independently using a normalized matrix.
We first merged scRNA-seq samples including three
tumor samples and two developmental samples (Math1-
positive at P7 and P11) using RunHarmony. We then
performed analysis on a set of 5690 Mus musculus path-
way signatures (MsigDB, C2 sets). The selected pathways
all have a mean score difference | > = 0.1| between
tumor samples and developmental samples.

Survival analysis
The human MB dataset (GEO: GSE124814) [71] was
used to evaluate the prognostic performance of GSVA
scores of four cell states and pathway signatures. We di-
chotomized the low and high groups by the median of
GSVA scores. For univariable analyses, we used the Cox
proportional hazards model implemented in the R pack-
age of four tumor cell states and Kaplan–Meier survival
curves of pathways were drawn and compared among
subgroups using log-rank test.

Statistical analysis
Statistical analysis was performed using R (version 4.0.0)
and GraphPad Prism (version 7.04). The two-sided un-
paired Wilcoxon test, Pearson’s chi-square test, and log-
rank test were used in this study. Detailed descriptions
of statistical tests are specified in the “Results” section
and in the figure legends.
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GNs: Granule neurons; GNPs: Granule neuron progenitors;
MB: Medulloblastoma; scRNA-seq: Single-cell RNA sequencing; ST: Spatial
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Additional file 1: Figure S1. Single-cell transcriptome profiling of post-
natal cerebellar cells, related to Fig. 1. (a) Workflow for cerebellum collec-
tion, single-cell sequencing and analysis of WT mice (one at P7 and the
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other at P11). (b) t-SNE visualization of 45,286 cells from four FACS-sorted
samples integrated with two WT samples. Cells are colored according to
clusters with annotation of cell types. (c) FACs data of Math1-GFP+, Dcx-
DsRed+ strategies. (d) t-SNE visualization of 45,286 cells from FACS-sorted
and WT samples (Math1-GFP+, Dcx-DsRed+ and WT cerebellum (CB)). (e)
Left panel: Bar plots showing proportion of cell types in Math1-GFP+, Dcx-
DsRed+ and WT samples. P < 0.0001. P values were determined using
Pearson’s chi-square test. Right panel: Bar plot showing proportion of
eight GNPs/GNs sub-clusters in Math1-GFP+, Dcx-DsRed+ and WT samples.
(f) Signature genes scores of UBCs (Eomes) and PCs (Car8 and Calb1) in
FACS-sorted samples. Figure S2. Identifying distinct states associated
with postnatal GN development, related to Fig. 2. (a) Bar plots showing
the results of gene ontology (GO) enrichment analysis for four main mod-
ules derived from Monocle 3. Figure S3. Identifying cell populations in
the cerebellum with ST, related to Fig. 4. (a) Two cerebellar tissues of P7
WT mice were embedded in one slice for ST. (b) Mapping spots to their
spatial positions shows that spots defined by marker genes are localized
to the expected layers of cerebellum of sample II. Magnified images of
the histological structures are shown in F5–F7. Scale bar: 25 μm. Figure
S4. Identification and mapping of GN cell-type subpopulations across
cerebellar regions, related to Fig. 5. (a) A more comprehensive classifica-
tion of cell types in all samples. Cluster 3 is GNs I. (b) Feature plots of
GNs I–specific genes. Figure S5. Developmental trajectories within GN
lineage cells, related to Fig. 6. RNA velocities and the velocity-inferred
root/end cells of Math1-GFP+ sorted samples at P11 (b); Dcx-DsRed+

sorted samples at P7 (a) and P11 (c); and WT CB at P7 (d). Figure S6. Re-
lationship between tumor cell identity and developmental GN cell ori-
gins, related to Fig. 7. (a) Scores of signature genes for GNP-like tumor
cells (Math1 and Grin2b), T cells (Cd3d and Cd3e), endothelial cells (Cldn5
and Cdh5) and microglia (Aif1 and Cd68) in 18,372 MB cells. (b) Scores of
signature genes for non-dividing GNP-like (Math1, Srebf1 and Tead2), div-
iding GNP-like (Mki67 and Top2a), GNs I-like (Vim, Sox4, Nhlh1 and Nhlh2)
and GNs II-like (Grin2b, Cntn1 and Car10) in three MB samples. (c) Bar
plots showing results of gene ontology enrichment (GO) analysis for NMF
meta-program A to D. Figure S7. Comparison between tumor cell and
developmental cell types using Scanorama. t-SNE visualization of integra-
tion of tumor cells with developmental cell types using Scanorama. Cells
are colored according to clusters with annotation of cell types. Figure
S8. GSVA analysis of four cell states between normal and tumor models.
(a) GSVA enrichment scores of pathway signatures in four cell states be-
tween normal and tumor models. (b) Kaplan-Meier survival curve of over-
all survival (OS). P values were determined using the log-rank test. Red
indicates P value < 0.05.

Additional file 2: Supplementary Table S1. Basic information for
single cell and spatial transcriptomics datasets of developmental and
medulloblastoma samples. Related to Figs. 1, 4 and 7.

Additional file 3: Supplementary Table S2. Cell type markers. Related
to Figs. 1, 4 and 7.

Additional file 4: Supplementary Table S3. Monocle 3 module
genes. Related to Fig. 2.

Additional file 5: Supplementary Table S4. DEGs of cell types in
developmental single cell dataset, DEGs of regions in spatial
transcriptomics dataset. Related to Figs. 1 and 4.

Additional file 6: Supplementary Table S5. Genes specifically
associated with four GN states. Related to Fig. 5.

Additional file 7: Supplementary Table S6. NMF program genes.
Related to Fig. 7.

Additional file 8: Supplementary Table S7. DEGs between normal
dividing GNPs and dividing GNP-like tumor cells. Related to Fig. 8.
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