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Abstract

Background: The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide
distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these
flies has been limited to increased sanitary management practices and insecticide application for suppressing larval
stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable
flies.

Results: This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and
RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually
curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe
dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction
and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and
metabolic detoxification pathways.

(Continued on next page)

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021,
corrected publication 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: pia.olafson@usda.gov; joshua.benoit@uc.edu
1Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
8Department of Biological Sciences, University of Cincinnati, Cincinnati, OH,
USA
Full list of author information is available at the end of the article

Olafson et al. BMC Biology           (2021) 19:41 
https://doi.org/10.1186/s12915-021-00975-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12915-021-00975-9&domain=pdf
http://orcid.org/0000-0002-0433-6172
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:pia.olafson@usda.gov
mailto:joshua.benoit@uc.edu


(Continued from previous page)

Conclusions: The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq
and downstream analyses provide insights necessary to understand the biology of this important pest. These resources
and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close
relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies,
medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood
feeding among the Cyclorrhapha.

Keywords: Stable fly genome, Muscid genomics, Insect orthology, Chemoreceptor genes, Opsin gene duplication,
Metabolic detoxification genes, Insect adaptation, Gene regulation, Insect immunity

Background
Livestock ectoparasites are detrimental to cattle industries in
the USA and worldwide, impacting both confined and range-
land operations. Flies from the Muscidae family commonly
occupy these settings, including the nonbiting house fly and
face fly and the blood-feeding (hematophagous) stable fly and
horn fly. These muscid flies exhibit different larval and adult
biologies, including diversity in larval developmental sub-
strates, adult nutrient sources, and feeding frequency [1, 2].
As such, control efforts against these flies are not one size fits
all. The stable fly, Stomoxys calcitrans (L.), in particular, is a
serious hematophagous pest with a cosmopolitan host range,
feeding on bovids, equids, cervids, canines, and occasionally
humans throughout much of the world [2]. The stable fly’s
painful bites disrupt livestock feeding behavior [3–6]; these
bites can be numerous during heavy infestation, leading to re-
ductions of productivity by over $2 billion USD [7].
Stable fly larvae occupy and develop in almost any type

of decomposing vegetative materials that are often con-
taminated with animal wastes [8]. In Australia, Brazil, and
Costa Rica, dramatic increases in stable fly populations
have coincided with the expansion of agricultural produc-
tion where the vast accumulation of post-harvest bypro-
ducts are recognized as nutrient sources for development
of immature stages [9–11]. The active microbial commu-
nities residing in these developmental substrates (e.g.,
spent hay, grass clippings, residues from commercial plant
processing, manure) are required for larval development
and likely provide essential nutrients [12]. Even though
stable flies are consistently exposed to microbes during
feeding and grooming activities, biological transmission
(uptake, development, and subsequent transmission of a
microbial agent by a vector) of pathogens has not been
demonstrated for organisms other than the helminth Hab-
ronema microstoma [13, 14]. Stable flies have been impli-
cated in mechanical (non-biologic) transmission of Equine
infectious anemia, African swine fever, West Nile, and Rift
Valley viruses, Trypanosoma spp., and Besnoitia spp.
(reviewed by [13]). The apparent low vector competence
of stable flies implicates the importance of immune system
pathways not only in regulating larval survival in microbe-
rich environments but also in the inability of pathogens to

survive and replicate in the adult midgut following inges-
tion [15–17].
Stable flies rely on chemosensory input to localize nu-

tritional resources, such as volatiles emitted by cattle
[18–23] and volatiles/tastants produced from plant prod-
ucts [24–26]. Stable fly mate location and recognition
are largely dependent upon visual cues and contact
pheromones [27, 28], and gravid females identify suitable
oviposition sites through a combination of olfactory and
contact chemostimuli along with physical cues [12, 19,
20, 23, 29]. Since stable flies infrequently associate with
their hosts, feeding only 1 to 2 times per day, on-animal
and pesticide applications are less effective control ef-
forts than those that integrate sanitation practices with
fly population suppression by way of traps [30]. Given
the importance of chemosensory and vision pathways,
repellents have been identified that target stable fly che-
mosensory inputs and current trap technologies exploit
stable fly visual attraction [31–33]. However, despite
these efforts, consistent control of stable fly populations
remains challenging and development of novel control
mechanisms is greatly needed.
Although both sexes feed on sugar, adults are reliant

on a bloodmeal for yolk deposition and egg develop-
ment, as well as seminal fluid production [26, 34]. Blood
feeding evolved independently on at least five occasions
within the Diptera, in the Culicimorpha, Psychodomor-
pha, Tabanomorpha, Muscoidea, and Hippoboscoidea
[35]. The Muscinae appear to have a high propensity for
developing blood feeding; which has occurred at least
four times within this subfamily—once in each of the
domestica-, sorbens- and lusoria- groups and again in
the Stomoxini [36]. Unlike other groups of blood-
feeding Diptera where non-blood feeding ancestors are
distantly related and / or difficult to discern, stomoxynes
are imbedded with the subfamily Muscinae of the Mus-
cidae, featuring many non-blood feeding species. Con-
trasting blood-feeding culicimorphs and tabanimorphs,
stable flies exhibit gonotrophic discordance [37, 38], re-
quiring three to four blood meals for females to develop
their first clutch of eggs and an additional two to three
for each subsequent clutch of eggs. These unique aspects
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of stable flies offer opportunities for comparative ana-
lysis of the genomic features underlying these key bio-
logical traits.
Even with the importance of the stable fly as a pest, little

is known about the molecular mechanisms underlying the
biology of S. calcitrans. To further our understanding of
this critical livestock pest, we report a draft genome se-
quence of the stable fly. The quality of this genome is high
and includes in silico annotation that was aided by exten-
sive developmental and tissue-specific RNA-Seq data fo-
cusing on the feeding and reproduction of S. calcitrans.
Manual curation and comparative analyses focused on as-
pects underlying the role of this fly as a pest related to host
interactions, reproduction, control, and regulation of spe-
cific biological processes. Our study significantly advances
the understanding of stable fly biology including the iden-
tification of unique molecular and physiological processes
associated with this blood-feeding fly. These processes can
serve as novel targets which will assist in both developing
and improving control of this important livestock pest.

Results and discussion
Genome assembly and annotation supported by
comparative and functional genomics
Whole genome shotgun sequencing of pooled, teneral
adult males from an S. calcitrans line developed for this
project resulted in the 66x coverage draft assembly of
971MB of total sequence (see Additional file 1: Table
S1). Scaffolds (12,042) and contigs (125,702) had N50
lengths of 504.7 and 11.3 kb, respectively. The sequence
was ~ 20% smaller compared to the genome predicted
by propidium iodide analyses (~ 1150MB, [39]). This
difference is likely the result of heterochromatin and
other repetitive regions that were unassembled, as gen-
ome size is not significantly different between the sexes
[39] and is comparable to differences documented for
other insect genomes [40–42]. There were 16,102 pre-
dicted genes/pseudogenes that included 2003 non-
protein coding genes, and a total of 22,450 mRNA tran-
scripts were predicted with over 94% supported by
RNA-Seq (see Additional file 2). The S. calcitrans mito-
chondrial genome has been previously described [43]. Its
18 kb genome encodes 13 protein-coding, 2 rRNA and
23 tRNA gene sequences. In addition, sequence analysis
revealed an extra copy of the trnI gene, similar to a blow
fly duplication, and partial sequences of the control re-
gion. Manual curation and analyses of the nuclear gen-
ome sequences allowed preliminary chromosome arm
assignment and identification of repeat elements from
the genome (see Additional file 1: Tables S2 and S3 [44–
61];). A select set of protein coding genes (n = 1600)
were manually annotated to identify genes associated
with functional classes including immunity, host sensing,
reproduction, feeding, and metabolic detoxification.

Completeness of the genome assembly was assessed
via comparison of the S. calcitrans genome and pre-
dicted gene set against a database of fly derived bench-
marking universal single-copy ortholog genes (BUSCOs
[62]). Based on the near-universal single-copy orthologs
from dipterans (OrthoDB v8, [63]), 95.1% were found in
the assembly and 92.2% in the final predicted gene set
(see Additional file 1: Figure S1 [63–67];).Comparison of
the Stomoxys gene set against that of Drosophila melano-
gaster revealed approx. 10,000 Stomoxys genes with at
least 75% target coverage, which is a similar number of
genes with significant alignments relative to that of other
published fly genomes (Fig. 1). Lastly, CEGMA genes
and those associated with autophagy were all identified
from the S. calcitrans genome (see Additional file 1:
Table S4 and Additional file 3). These gene set compari-
sons provide an additional metric of genome complete-
ness as these are highly conserved among flies [40, 68].
These metrics indicate that the genome is of sufficient
quality for subsequent comparative analyses with other
insects, specifically in relation to gene content. Compari-
son of protein orthologs revealed 122 Stomoxys species-
specific protein families relative to other higher flies
(Fig. 1). Based on gene ontology, there was enrichment
for zinc finger transcription factors in relation to all
genes (p = 0.02–0.007; see Additional file 2), which has
also been documented in other insect systems [69, 70].
Evaluation of gene expression by RNA-Seq produced a

comprehensive catalog of sex-biased gene expression as
well as genes enriched in different developmental stages
and organs (see Additional file 4). Samples of RNA were
sequenced from the following conditions: whole females
(teneral and mated, reproductive), whole males (teneral),
male reproductive tracts (mated), female reproductive
tracts (mated), male heads (fed, mated), female heads
(fed, mated), a third instar larva, and female/male saliv-
ary glands. Each condition consisted of a single replicate.
These datasets will serve as a valuable resource for fu-
ture studies. A stringent statistical significance cutoff
(FDR, P < 0.01) was used as only a single replicate was
analyzed for each treatment [40, 69, 70]. A significant
correlation (Pearson’s R2 = 0.8643, P < 0.0001; Figure S2)
was observed between log2 fold changes of reverse tran-
scription quantitative real-time PCR (RT-qPCR) versus
normalized expression values of 25 genes (see Additional
file 1; Figure S2, Table S5), validating that we can glean
biological relevance from the RNA-Seq datasets.

Limited evidence for lateral gene transfer and no
evidence of endosymbionts in the Stomoxys genome of a
laboratory-colonized strain
Stable fly larvae are absolutely dependent on bacteria for
survival and development [12, 29, 71], and larval physi-
ology impacts the composition of this microbial
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community irrespective of the substrate in which the lar-
vae are developing [17]. As such, use of bacterial com-
munities to deliver targeted control technologies, e.g.,
gene silencing constructs, is an approach being consid-
ered for use with stable flies [72], which led us to analyze
culturable bacteria from surface-sterilized, adult S. calci-
trans collected from Texas dairies. This revealed a var-
iety of genera representing the adult gut bacterial
community (see Additional file 5). Among those

cultured, the most abundant phyla represented were
Proteobacteria and Firmicutes with only 3% of isolates
classified as Actinobacteria and Bacteroidetes. Similar to
mosquitoes, harbored bacterial communities were likely
ingested while grooming or acquired during ingestion of
nectar or water sources, as strict blood feeders usually
have reduced gut microbiota [73–75]. As such, the most
prevalent genus was Aeromonas sp., which are frequently
found in aquatic and wet environments, such as

Fig. 1 Quality assessment of the Stomoxys calcitrans genome. a Number of genes with alignment to Drosophila melanogaster genome. b Ortholog group
comparison between S. calcitrans (Stomoxys), Musca domestica (Musca), Ceratitis capitata (Ceratitis), Glossina morsitans (Glossina), and D. melanogaster (Drosophila)
based on comparison to the OrthoDB8 database
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irrigation water, fecal matter, and moist organic waste,
and have been cultured from other arthropods [76]. In
addition, the adult S. calcitrans bacterial communities
share similarity with those isolated from other flies asso-
ciated with filth and decomposition (e.g., blow flies and
other related species, [77, 78]), suggesting these bacteria
may also be acquired by S. calcitrans adults when visit-
ing oviposition sites.
Given this association with microbial communities, Sto-

moxys may contain laterally transferred genes for bacteria
that impact on their biology, as in other reported insect
genomes [79]. In addition to identifying potential symbi-
otic associations revealed in the genome assembly, it is
also important to rule out bacterial contaminating scaf-
folds that could mistakenly be attributed as components
of the Stomoxys genome. For these reasons, a DNA based
pipeline was used to screen for potential contaminating
bacteria scaffolds and possible lateral gene transfers
(LGTs) from bacteria into the Stomoxys genome. The
pipeline revealed only trace bacterial contaminants in the
genome assembly (see Additional file 1: Table S6). This
contrasts with some other arthropod genome assemblies,
which contained complete or nearly complete bacterial ge-
nomes, such as the parasitoid Trichogramma pretiosum
[80], amphipod Hyalella azteca [81], and the bedbug
Cimex lectularius [40]. The results suggest that a mater-
nally inherited and/or environmentally acquired micro-
biota does not occur in any abundance in teneral
Stomoxys males. Whether circumstances are different in
adult females would require further study.
The LGT analysis revealed presence of three candidates

(see Additional file 1: Stomoxys lateral gene transfer, Table
S7), all of which were derived from Wolbachia, a common
endosymbiont found in arthropods [82] that infects 40–
60% of insect species [83, 84]. Wolbachia are a common
source of LGTs [85, 86], likely due to their association
with the germline of their insect hosts. The three candi-
dates were examined for sequencing read depth in the
candidate LGT and flanking DNA to determine if there
were large changes in read depth across the junction that
would be indicative of miss-assembly to contaminating
bacterial DNA (see Additional file 1: Figure S3). The re-
sults did not reveal large changes in read depth across the
junctions. Further, there is no evidence that any of the
three LGTs contain functional protein coding genes, and
only one had detectable expression in our RNA-Seq data-
sets that occurred within the 3′ UTR of XM_013245585
(see Additional file 1: Table S7). This gene encodes a tran-
scription factor containing a basic leucine zipper domain,
but whether expression of the LGT is a consequence of its
location in the UTR or is biologically significant is un-
known. While Wolbachia was described from the closely
related horn fly, Haematobia irritans [87], the Stomoxys
strain used for the genome sequencing was not infected

with Wolbachia, no Wolbachia scaffolds were found in
the assembly, and there are no reports of natural occur-
rence of Wolbachia in Stomoxys populations [88]. Pres-
ence of these LGTs, then, likely reflects LGT events from
a past Wolbachia infection in the ancestors of Stomoxys.
Stable flies will consume blood and nectar for nourish-
ment [24, 26, 89], and this is different from the closely-
related tsetse flies, which are obligate blood feeders. Due
to this limited food source, tsetse flies (Glossina morsi-
tans) harbor an obligate symbiont, Wigglesworthia glossi-
nidae, that provides B vitamins that are present at low
levels in blood [41, 90, 91]. Analysis of the assembled S.
calcitrans genome, described above, did not reveal a dis-
tinct microbial symbiont.

The Stomoxys immune system encodes gene family
expansions that may reflect adaptation to larval
development in microbe-rich substrates
The closely related house fly, Musca domestica, occupies
microbe-rich environments that overlap with those of
the stable fly, particularly in livestock production set-
tings. Noted expansions in immune system-related gene
families of the house fly are hypothesized to be a conse-
quence of this ecology [92–94]. Analysis of the S. calci-
trans genome revealed extensive conservation of
immune system signaling pathways coupled with dra-
matic expansions of some gene families involved in both
recognition and effector functions. The insect immune
system—best characterized from work in the model or-
ganism D. melanogaster—includes both cellular defenses
(e.g., macrophage-like cells that phagocytose pathogenic
microorganisms) and a humoral defense system that
results in the production of antimicrobial effector mole-
cules [95]. The humoral immune system can be divided
into recognition proteins, which detect pathogenic bac-
teria and fungi; signaling pathways, which are activated
by recognition proteins and result in the translocation of
transcription factors to the nucleus to induce gene ex-
pression; and effectors, which are (typically) secreted
and ultimately act to clear infections.
Previous comparative work suggests that at least some

parts of the immune system are deeply conserved across
Dipterans and indeed most insects. Genes encoding im-
mune signaling proteins, in particular, are generally pre-
served as single-copy orthologs across a wide range of
insects [41, 93, 94, 96–101], with only rare exceptions
[102]. Despite the strong conservation of the basic struc-
ture of the main signaling pathways in insect immunity,
there is considerable evidence for variation in both the
gene content and protein sequence of the upstream in-
puts (recognition proteins) and downstream outputs (ef-
fector proteins) of the immune system (e.g., [93, 98–100,
103, 104]).
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Major components of the Toll, Imd, JAK/STAT, p38,
and JNK pathways in the S. calcitrans genome (see Add-
itional file 1: Table S8) were found to be largely con-
served as single-copy orthologs [95]. A description and
full lists of putative computationally annotated and
manually curated immune-related genes in S. calcitrans
is provided (see Additional file 1: Table S9, [15, 105–
112]; Additional files 6 and 7). These findings are con-
sistent with previous reports for many other Dipterans
and supports the conclusion that the intracellular signal-
ing mechanisms of innate immunity have been stable
during the evolutionary history of Dipterans [97, 98,
100]. In contrast, the gene families encoding upstream
recognition proteins and downstream effector proteins
tend to be expanded in S. calcitrans and M. domestica
relative to other Dipterans (Table 1).
Hidden Markov Model profiles and manual curation

were used to analyze four canonical recognition families

with well-characterized immune roles and an additional
eight families with less well-defined roles (Table 1). For
three of the four canonical pattern recognition receptor
families (NIM, PGRP, and TEP), and four of the other
families (CTL, FREP, GALE, and SRCB), the S. calcitrans
genome encodes either the most members or second-
most members after M. domestica among the 5 Dipteran
genomes screened (S. calcitrans plus Aedes aegypti, D.
melanogaster, M. domestica, and G. morsitans). A similar
pattern holds for downstream effector proteins: the S.
calcitrans genome encodes either the most or second-
most after M. domestica for attacins (ATT), defensins
(DEF), cecropins (CEC), and lysozymes (LYS). In con-
trast, comparable numbers of non-canonical effector
gene family members were identified across the Dipteran
genomes screened. Not unexpectedly, three additional
classes of antimicrobial peptides (AMP) were originally
characterized in D. melanogaster but are missing from

Table 1 Number of immune-related gene family members from sequenced Dipteran genomes, annotated by hidden Markov
models

Scal Mdom Gmor Aaeg Dmel

Canonical pattern recognition

Nimorod (NIM) 25 23 10 8 17

Peptidoglycan recognition protein (PGRP) 17 17 4 10 13

beta-1,3-glucan-binding proteins (BGBP) 4 3 3 7 7

Thioester containing proteins (TEP) 16 22 4 8 6

Other recognition

C-type lectin (CTL) 78 41 11 43 38

Fibrinogen-related proteins (FREP) 49 38 7 34 14

Galectins (GALE) 15 13 8 12 6

Immunoglobulin superfamily (IGSF) 1 1 1 0 1

MD2-like proteins (MD2L) 8 12 5 26 8

Scavenger receptor class A (SRCA) 3 3 2 2 3

Scavenger receptor class B (SRCB) 15 18 11 13 14

Scavenger receptor class C (SRCC) 7 8 4 5 9

Canonical effectors

Attacin antimicrobial peptides (ATT) 11 (12)* 10 4 1 4

Defensin antimicrobial peptides (DEF) 5 (11)* 5 0 4 1

Diptericin antimicrobial peptides (DIPT) 3 (1)* 4 0 1 3

Cecropin antimicrobial peptides (CEC) 5 (10)* 12 2 9 5

Lysozymes (LYS) 23 32 4 7 13

Non-canonical effectors

Thioredoxin peroxidases (TPX) 5 6 6 5 8

Prophenoloxidases (PPO) 19 23 4 25 10

Glutathione peroxidases (GPX) 1 1 0 3 2

Heme peroxidases (HPX) 12 12 8 19 10

Transferrins (TSF) 4 6 3 5 3

*Numbers in parentheses are those numbers annotated after manual curation of the S. calcitrans genome. Scal: Stomoxys calcitrans, Mdom: Musca domestica,
Gmor: Glossina morsitans, Aaeg: Aedes aegypti, Dmel: Drosophila melanogaster
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the M. domestica genome ([94]; Metchnikowin, Droso-
cin, Drosomycin) and are also not detected in the S. cal-
citrans genome.
Several of the expanded AMP gene families were

found tandemly arranged on individual scaffolds (see
Additional file 1: Table S9). For example, the 11 Sto-
moxys defensin genes are located on a single scaffold
(KQ079966) in two clusters, one of which includes five
defensins present upstream of the other that includes six
defensins (see Additional file 1: Figure S4). Within the
downstream cluster, three genes were detected by RNA-
Seq exclusively in larva and have 84–97% amino acid
identity to each other, while the other three share 81–
87% amino acid identity and were detected in heads of
fed adults and male reproductive tracts but not in ten-
eral adults (see Additional file 1: Table S10). The se-
quence identity and shared expression pattern support
the likelihood that these sub-groups arose separately
from gene duplication events. In contrast, the five defen-
sin genes in the upstream cluster share 30–66% amino
acid identity, and four were detected in teneral adults
with variable detection in tissues of fed adults. This ex-
pression pattern is consistent with that reported for Sto-
moxys midgut defensin 1 (Smd1) and Smd2, both of
which are present in this upstream cluster [109].
In combination with the previously reported expansions of

many effector and recognition immune components in the
house fly [93, 94], our analysis of the S. calcitrans genome
suggests that Muscidae likely have expanded the diversity of
their immune repertoires, sometimes dramatically, despite
differences in adult feeding ecology (blood feeder vs general-
ist). Muscid flies complete their life cycle in animal waste
and other septic environments that are rich in communities
of pathogenic and non-pathogenic bacteria. These communi-
ties and their metabolic products serve as the essential nutri-
ent source for larval development, and larvae are repeatedly
interacting with these bacteria. Further, the communities are
in constant flux within the substrate over the course of this
development. One hypothesis is that the shared diversifica-
tion of immune receptors and effectors is driven by this lar-
val ecology, while additional M. domestica specific
expansions (e.g., in TEPs) are accounted for by the sapro-
phytic adult feeding behavior of that species.

Gustatory and ionotropic receptor gene family
expansions support importance of bitter taste perception
in Stomoxys
Insect ecology and environment impact the size of che-
mosensory gene families with evidence for specialist in-
sects having a smaller number of genes compared with
generalists, with exceptions [113]. These gene families
encode odorant binding proteins (OBP), carrier proteins
for lipid molecules, as well as odorant (OR), gustatory
(GR), and ionotropic (IR) receptors that display different

affinities for ligands that mediate the insect’s response.
Glossina are obligate blood-feeders and have a reduced
number of chemoreceptors relative to more polyphagous
insects that have been sequenced [41], while the Musca
genome harbors an expanded number of chemorecep-
tors relative to Drosophila [94]. Analysis of the S. calci-
trans genome revealed that it shares with Musca the
presence of lineage-specific expansions and signatures of
many pseudogenizations/deletions of chemosensory
pathway genes relative to Drosophila (Figs. 2, 3 and 4,
see Additional file 1: Stomoxys Chemosensory Gene
Families [18–20, 23, 42, 94, 115–187] and Additional file
8), consistent with the birth-and-death model of evolu-
tion proposed for these gene families [188].
More than half of the 90 S. calcitrans OBP gene

models are organized as tandem clusters across three
scaffolds, consistent with OBP gene organization in
other dipteran genomes [189] (Fig. 2, see Additional file
9 and Additional file 1: Figure S8). While this represents
an increase in number of OBPs relative to Drosophila, it
is comparable to the OBP gene family size in M. domes-
tica [94], and it also corresponds with increases in gene
family size for S. calcitrans chemoreceptor gene families
described below. Expansions relative to and losses in
Drosophila were evident in these clustered OBPs (Fig. 2).
For example, an S. calcitrans cluster that resides on scaf-
fold KQ079977 are in a lineage that includes the Dros-
ophila Minus-C OBP subfamily and represent an
apparent expansion of 17 Stomoxys and 16 Musca OBPs
relative to DmelObp99c. Eighteen Stomoxys OBPs (Sca-
lObp24-43) reside on scaffold KQ080743 and form a
clade with nine Musca OBPs and DmelObp56h, depict-
ing an expansion in this muscid lineage. Further, a sep-
arate clade comprised of seven Stomoxys OBPs
(ScalObp79-85) and 11 Musca OBPs (MdomObp77-87)
have no obvious Drosophila ortholog. Future studies to
define functional roles for these OBPs are warranted, es-
pecially given the diverse tissues in which their expres-
sion was detected (see Additional file 1: Figure S8).
Larval expression was detected by RNA-Seq for 35 Obps,
while 63 and 67 Obps were detected in heads of mated
adult males and females. However, 77 Obps were de-
tected in the reproductive tract of mated adult, males
and females (see Additional file 1: Figure S8), and this
expression pattern supports non-chemosensory roles re-
ported for OBPs in other dipteran species [190, 191].
For example, the transfer of OBPs from males to females
in seminal fluid occurs in Drosophila, Glossina, and Ae.
aegypti [192–194], and this may account for detection of
Obp expression in tissues of S. calcitrans male and fe-
male reproductive tracts.
The OR and GR families make up the insect chemo-

receptor superfamily [115, 117–119], with the OR family
arising from a GR lineage at the base of the Insecta [113,
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195]. Olfactory sensory neurons that detect volatile com-
pounds express ORs, while GRs are mostly involved in
taste, but some have an olfactory role [116]. The GR
family is generally divided into three major and diver-
gent subfamilies of sugar or sweet receptors, the carbon
dioxide receptors, and the bitter taste receptors. A
lineage within the bitter taste receptor clade has evolved
into an important receptor for fructose [133], and there

are others involved in courtship [123]. The ionotropic
receptor family is a variant lineage of the ancient iono-
tropic glutamate receptor family [115, 138, 140, 169]
and, like the GRs, they are involved in both olfaction
and gustation, as well as sensing light, temperature, and
humidity [169].
The carbon dioxide, sugar, and fructose receptors are

relatively well conserved in Stomoxys and Musca, as is

Fig. 2 Phylogenetic tree of the Stomoxys calcitrans OBPs with those of Drosophila melanogaster and Musca domestica and locations of OBPs on Stomoxys
scaffolds. a Maximum likelihood phylogeny was constructed using the web server version of IQ-TREE software ([114]; best-fit substitution model, branch
support assessed with 1000 replicates of UFBoot bootstrap approximation). The full phylogenetic tree can be found in Additional file 1: Figure S8. The S.
calcitrans and M. domestica lineages are in green and blue, respectively, while D. melanogaster lineages are in mustard. Clades that are expanded in the
muscids relative to Drosophila or lost in Drosophila are shaded in orange and gray. Purple shading comprises a clade of muscid OBPs with no apparent
ortholog in Drosophila, while blue shading comprises a clade that includes the DrosophilaMinus-C OBP subfamily and represents an apparent muscid
expansion relative to DmelObp99c. b Three Stomoxys scaffolds on which 51 of 90 OBPs are organized. The location of each OBP gene is indicated by a
horizontal line. Transcriptional directions are indicated by (+) for same direction as the scaffold or (−) for the opposite direction. The color of the box
reflects the shaded clades in a
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the case for many other insects. However, the bitter taste
receptors reveal considerable gene family evolution both
with respect to the available relatives of these muscid
flies (Drosophila and the Mediterranean fruit fly, Cerati-
tis capitata) and between these two muscids. For ex-
ample, a major expansion (ScalGr29-57) encoding 49
candidate bitter taste receptors occurs in S. calcitrans,
comparable to a similarly complicated set in M. domes-
tica (MdomGr43-64, encoding 35 proteins). Together,
these form four major expanded clades in the muscids
(Clades A–D, Fig. 3).
In Drosophila and most other insects examined to

date, ionotropic receptors Ir8a and 25a, both of which
function as co-receptors with other IRs [169], are highly
conserved both in sequence and length and in being
phylogenetically most closely related to the ionotropic
glutamate receptors [138, 140]. While Stomoxys has the
expected single conserved ortholog of Ir8a, surprisingly

it has four paralogs of Ir25a (ScalIr25a1-4), the functions
of which are enigmatic, as such duplications of Ir25a
have seldom been observed in other insects (Fig. 4).
The Ir7a-g and 11a genes in Drosophila are expressed

in larval and adult gustatory organs [140], but ligands
for these receptors are unknown. This subfamily is con-
siderably expanded in both S. calcitrans and M. domes-
tica and, given their complexities, they are not named
for their Drosophila relatives. Rather, these are part of
the numbered series from Ir101, in the case of Stomoxys
to Ir121 and in Musca to Ir126 (Fig. 4). These IR gene
family expansions strongly suggest an expanded gusta-
tory capacity. A large clade of “divergent” IRs in Dros-
ophila is involved in gustation and is known as the Ir20a
subfamily of 33 proteins [165, 170, 171]. This clade of
mostly intronless genes is considerably expanded in M.
domestica to 53 members (MdomIr127-179), and even
more so in S. calcitrans to 96 members (ScalIr122-217),

Fig. 3 Phylogenetic tree of the Stomoxys calcitrans GRs with those of Drosophila melanogaster and Musca domestica. Maximum likelihood tree
rooted by divergent carbon dioxide and sugar receptor subfamilies as the outgroup. The S. calcitrans and M. domestica lineages are highlighted
in teal and blue, respectively, while D. melanogaster lineages are in mustard. Support levels from the approximate likelihood-ratio test (aLRT) from
the PhyML v3.0 web server are shown. Subfamilies and individual or clustered Drosophila genes are indicated outside the circle to facilitate
finding them in the tree. Four clades of candidate bitter receptors that are expanded in the muscids are highlighted. Scale bar indicates amino
acid substitutions per site. The full phylogenetic tree can be found in Additional file 1: Figure S11
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labeled clades A-G in the tree (Fig. 4). Putative IR li-
gands in Drosophila are involved in sensing carbonation,
amino acids, and specific carbohydrates [159, 162, 170].
Transcript detection by RNA-Seq provided some

insight into those Stomoxys tissues expressing chemo-
sensory receptor gene family members. Seventeen Or
genes were enriched in the reproductive tract of mated
males, and these may have a role in sperm activation, as
proposed for Anopheles gambiae [196]. Interestingly,
three Ors (ScalOr22, 54, and 55) were highly enriched in
the reproductive tract of mated females relative to all
other tissues examined (see Additional file 1: Figure S10
and Additional file 9), suggesting these Ors may have a
role in female reproduction, possibly perceiving male de-
rived chemicals transferred during copulation. Eleven
Ors were detected in third instar larvae, and pilot evalu-
ation by non-quantitative RT-PCR detected an add-
itional nine Ors expressed in first and second instar but
not in third instar larvae (see Additional file 9). This
suggests that stable flies differentially utilize odorant re-
ceptors throughout immature development. Expression
of all 20 of these Ors was not exclusive to the larval

stages, and the apparent absence of larval-specific recep-
tors in the stable fly may be a result of exposure to re-
lated compounds during the immature and adult stages
(e.g., host dung, detritus).
The expression of 35 Gr transcripts was detected by

RNA-Seq in heads of mated females and males, and 27
Grs were enriched in the reproductive tracts of mated
males (see Additional file 1: Fig. S11 and Additional file 9).
Evidence from Drosophila supports the expression of GRs
in neurons that innervate testes and oviducts [146], sug-
gesting that these S. calcitrans GRs may have a role in me-
diating reproductive system function. Twenty-three Grs
were detected in larvae, all of which clustered as candidate
bitter taste receptors, suggesting they may mediate larval
bitter sensing. Determination of the ligand specificities of
these muscid receptors is required to fully understand the
ecological significance of the differential expansions and
contractions of their bitter taste abilities.
Twenty-three Irs were detected by RNA-Seq in heads

of mated females and males of which two and seven
were enriched in the female and male tissue, respect-
ively. Interestingly, five Irs were detected in the female

Fig. 4 Phylogenetic tree of the Stomoxys calcitrans IRs with those of Drosophila melanogaster and Musca domestica. Maximum likelihood tree rooted
with the Ir8a/25a lineage as the outgroup. The S. calcitrans and M. domestica lineages are in teal and blue, respectively, while D. melanogaster lineages
are in mustard. Support levels from the approximate likelihood-ratio test from the PhyML v3.0 are shown. Subfamilies, clades, and individual Drosophila
genes are indicated outside the circle to facilitate finding them in the tree. Pseudogenic sequences are indicated with the suffix P. Scale bar indicates
amino acid substitutions per site. The full phylogenetic tree can be found in Additional file 1: Figure S12
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reproductive tract while 56 Irs were detected in the male
reproductive tract with 46 highly enriched in this male
tissue (see Additional file 1: Figure S12 and Additional
file 9), suggesting a potential critical role in fly
reproduction or reproductive behaviors. Given the strik-
ing expansions and expression pattern of genes within
this family, functional studies in S. calcitrans are war-
ranted. Further characterization of these chemosensory
gene families will facilitate the design of behavior-based
control technologies that can be employed as part of in-
tegrated pest management strategies.

Expansion of the long wavelength-sensitive Rh1 opsin
subfamily in Stomoxys with evidence of tuning for
diversified wavelength sensitivities via substitution
Visual cues are integral to stable fly mating and host
orientation [35], and stable fly attraction to particular
wavelengths of light and UV reflectance has been manip-
ulated for the development of trapping technologies to
suppress populations [197]. As is typical for the generally
fast flying calyptrate flies, stable fly adults of both sexes
are equipped with large laterally positioned compound
eyes in the head and three ocelli positioned in the dorsal
head cuticle [198, 199]. Both achromatic motion track-
ing and color-specific perception tasks begin with the
harvest of photons by members of the opsin class of G-
protein coupled transmembrane receptors, which differ
in their wavelength absorption optima. The genomic
survey in the stable fly revealed conservation of most
opsin gene subfamilies observed in Drosophila (Fig. 5;
see Additional file 1: Figure S13 and Table S11). This in-
cluded the UV sensitive opsin paralog Rh3, the blue

sensitive opsin Rh5, several homologs of the long wave-
length (LW) sensitive opsin Rh1 and a 1:1 ortholog of
LW opsin Rh6, all of which are expressed in subsets of
photoreceptors in the compound eye retina [204]. In
addition, we found 1:1 orthologs of the ocellus-specific
opsin Rh2 and of the recently characterized UV-
sensitive, deep brain opsin Rh7 [205] (Fig. 5; see Add-
itional file 1: Figure S13 and Table S11). Overall, these
findings are consistent with the electrophysiological and
positive phototactic sensitivity of S. calcitrans to light in
the UV, blue, and green range of visible light [33, 206].
Drosophila and other higher Diptera, including C.

capitata, possess a second UV sensitive opsin gene Rh4
(Fig. 5) [42, 207], which is not detected in the stable fly
genome. The same result was previously obtained in the
tsetse fly [41]. Global BLAST searches of calyptrate ge-
nomes were conducted (i.e. G. morsitans, M. domestica,
the black blowfly (Phormia regina), and the flesh fly
(Sarcophaga bullata)), and they failed to detect Rh4
orthologs. Thus, it can be concluded that the Rh4 opsin
subfamily was lost during early calyptrate evolution.

An Rh1 opsin gene cluster in muscid Diptera
A unique aspect of the S. calcitrans opsin gene reper-
toire is the existence of six homologs of the LW opsin
Rh1 (Fig. 5; see Additional file 1: Figure S14, Table S11).
Most higher Diptera sampled so far, including related
species like the tsetse fly [41] and the black blowfly
[208], possess a singleton Rh1 gene. Three Rh1 homo-
logs, however, were detected in the M. domestica draft
genome [94]. Moreover, in both S. calcitrans and M.
domestica, these Rh1 homologs are closely linked and

Fig. 5 Opsin gene family members detected in Stomoxys calcitrans and other higher Diptera. A phylogenetic tree of dipteran opsin gene
relationships is presented, as is the genomic organization and evolution of the S. calcitrans Rh1 opsin subfamily [200]. Protein sequences of S.
calcitrans Rh1 genes were aligned with MUSCLE [201], and ambiguous alignment regions were filtered with Gblocks [202] using least stringent
settings. Maximum likelihood tree was estimated in MEGA version 6.0 [203] applying the Jones-Taylor-Thornton (JTT) model of amino acid
sequence evolution and assuming Gamma Distributed substitution rates across sites with 3 categories. Rhabdomeric opsins depicted: Rh7, Rh7
gene; UV, UV-sensitive; B, Blue-sensitive; LW, long wavelength-sensitive expressed in BR, compound eye, and OC, ocelli
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anchored as a cluster by homologous flanking genes
(Fig. 5; see Additional file 1: Figure S14). This suggests
that the Rh1 tandem gene clusters of the two species are
homologous and date back to an ancestral cluster in the
last common ancestor of muscid Calyptratae. Consistent
with this, the S. calcitrans and M. domestica Rh1 homo-
logs form a monophyletic unit in maximum likelihood
trees estimated from amino acid or nucleotide sequence
alignments of dipteran Rh1 homologs (see Additional
file 1: Figure S14). Moreover, each of the three Musca
Rh1 homologs grouped with strong support as 1:N
orthologs with different members of the Stomoxys Rh1
gene cluster; however, two of the Stomoxys Rh1 genes
(Rh1.2.1 and Rh1.2.2) lack Musca orthologs (see Add-
itional file 1: Figure S14). Integrating the information on
gene linkage, it is possible to conclude that the six Rh1
paralogs of Stomoxys originated by three early duplica-
tions before separating from the Musca lineage. While
the latter subsequently lost one of the two earliest para-
logs, the Stomoxys Rh1 cluster continued to expand by
minimally one but possibly two subsequent tandem gene
duplications (Fig. 5).
As expected, RNA-Seq results indicated that tran-

scripts for all Stomoxys opsin genes, quantified by tran-
scripts per million (TPM), were more abundant in the
head relative to whole teneral adults of both sexes or
male reproductive tracts (see Additional file 1: Table
S11). The singleton opsin Rh1 from Drosophila is
expressed in six outer photoreceptors (R1-6) that are
found within each ommatidium. These receptors are
specialized for motion detection. Opsins Rh5 and Rh6
are differentially expressed in a single color-vision spe-
cialized photoreceptor (R8) that are also within each
ommatidium [204]. In the Drosophila modENCODE ex-
pression catalog, this is reflected as an up to 200 fold
higher transcript abundance of Rh1 opsin compared to
Rh5 or Rh6 in the adult heads of both sexes [209]. The
S. calcitrans RNA-Seq data derived from head tissue
provided evidence that a single member of the S. calci-
trans Rh1 paralog cluster, named Rh1.1.1.1, likely main-
tains the ancestral function of Rh1 as the major motion
detection specific opsin. This is based on comparison of
its TPM values with that of the other Rh1 paralogs, as
well as with those of the putative S. calcitrans opsins
Rh5 and Rh6 (see Additional file 1: Table S11). The
remaining S. calcitrans Rh1 cluster member genes
showed relatively low to very low expression values (see
Additional file 1: Table S11).

An amino acid modification at a tuning site differentiates
two muscid Rh1 paralog subclusters
While exceptional for other higher Diptera, tandem du-
plicated LW opsin gene clusters have been found in
mosquito and water strider species [210, 211]. In both

cases, evidence of functional paralog diversification has
been detected in the form of amino acid changes that
affect opsin wavelength sensitivity (i.e., at tuning sites).
Integrating data from butterflies and Drosophila, the
water strider study identified one high confidence tuning
site that very likely affects the blue vs green range wave-
length specificity in LW opsins. The site is residue 17
based on the numbering system developed for butter-
flies, which corresponds to residue 57 in Drosophila Rh1
[211–213]. Based on this criterion, the three oldest S.
calcitrans Rh1 gene cluster paralogs preserve the blue-
shifted wavelength specificity (λmax 480 nm in Drosoph-
ila) of the Rh1 singleton homologs of other dipteran
species due to conservation of the ancestral methionine
state at tuning site 17 (see Additional file 1: Figure S15).
In contrast, the three younger S. calcitrans Rh1 paralogs
share a leucine residue at tuning site 17, which is ex-
tremely rare across insect LW opsins. In a survey of over
100 insect LW opsins, it was detected only in the two
corresponding Rh1 orthologs from M. domestica in
addition to one in the distantly related species of thrips
(Thysanoptera) [211]. The physicochemical similarity
of the leucine at tuning site 17 in the three youngest
S. calcitrans Rh1 paralogs relative to the pervasively
conserved isoleucine residue at tuning site 17 in the
green-sensitive Rh6 opsins (λmax 515 nm in Drosoph-
ila) represents compelling evidence that this shared
derived replacement substitution defines a green-
sensitive subcluster in the S. calcitrans Rh1 paralog
group (see Additional file 1: Fig. S15).

Unique duplications in the Stomoxys yolk protein gene
family
Cyclorrhaphan flies such as Stomoxys [214], Drosophila
[215], Musca [216], Calliphora [217], and Glossina [218]
utilize yolk proteins (YPs) as a primary source of nutri-
ents for developing embryos. While many insects utilize
YPs classified as vitellogenins, Cyclorrhaphan flies utilize
an alternative class of proteins derived from lipase en-
zymes [219]. These proteins function as a source of
amino acids and also as transporters of essential nutri-
ents such as lipids and vitamins [220]. The number of
yolk protein genes varies among higher fly species. The
species-specific expansions/contractions observed within
this class of genes may reflect reproductive demand
within those species. Analysis of the Stomoxys genome
identified eight putative S. calcitrans YP homologs rela-
tive to seven YP gene family members in M. domestica
[94]; four of the seven M. domestica genes were anno-
tated as part of this study.
Prediction of the evolutionary relationships between

the predicted YPs from S. calcitrans, M. domestica, G.
morsitans, and D. melanogaster by phylogenetic analysis
(Fig. 6) suggests the yolk protein gene family expanded
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in S. calcitrans and M. domestica sometime after their
divergence from Drosophila, which has three YP gene
family members [222]. Of the Stomoxys and Musca spe-
cific YPs, three members are orthologous between the
two species suggesting derivation from a common ances-
tor. However, the remaining yolk protein genes are par-
alogous and may originate from independent duplication
events occurring after the divergence of the Stomoxys
and Musca lineages. An alternative explanation is that
these genes were originally orthologs, but have been al-
tered via gene conversion resulting from homology
based DNA repair mechanisms [223]. The lineage-
specific expansions suggest that duplications in this gene
family may confer a reproductive advantage by increas-
ing reproductive capacity. In support of this role, all
eight YP genes were detected by RNA-Seq in reproduc-
tively active S. calcitrans females, but not teneral fe-
males. Further, expression was not detected by RNA-Seq
analysis of the female reproductive tract, which suggests
these genes are expressed and translated in the fat body,
secreted into the hemolymph and transported to the
ovaries as observed in other higher flies (Fig. 6).

Evidence of Stomoxys male-biased reproductive tract
genes with putative seminal fluid function
Insect seminal fluid proteins are produced by the male
reproductive tract and are transferred to females during
mating. The seminal fluid proteins induce a post-mating
response in females that results in behavioral and
physiological changes including refractoriness to add-
itional matings. The S. calcitrans reproductive tract is
comprised of testes, vas deferens, and an ejaculatory
duct, the latter of which has a region that produces the
seminal fluid and serves an accessory gland function
[224]. While Meola [224] observed storage of

proteinaceous accessory gland material in the S. calci-
trans ejaculatory duct, its composition has not been de-
scribed. To identify male-biased reproductive tract genes
encoding potential seminal proteins, RNA-Seq data de-
rived from S. calcitrans male and female reproductive
tract tissues were compared (Fig. 7). Genes in the male
reproductive tract dataset were filtered to identify those
expressed at least five-fold higher than in the female re-
productive tract dataset. This analysis resulted in the
classification of 763 genes with male reproductive tract-
biased expression (see Additional file 10).
A reciprocal BLAST analysis identified orthologs of

the male reproductive tract-biased genes in other species
in which seminal proteins are characterized. These in-
clude G. morsitans [194], D. melanogaster [192, 225], A.
aegypti [226], and Homo sapiens [227] (Fig. 7a). The
overall number of identified orthologs corresponds
roughly to the evolutionary distances between the spe-
cies tested. However, these relationships did not hold for
the number of gene orthologs associated with seminal
function. Reciprocal analysis with Drosophila identified
469 1:1 orthologs of male reproductive tract-biased S.
calcitrans genes, amounting to the largest number of
orthologs identified between species included in this
analysis. In contrast, of those 469 orthologs only one is
associated with seminal fluid function in D. melanoga-
ster. Comparison with G. morsitans identified the second
highest number of orthologous proteins (n = 387). Of
those, 53 were associated with seminal function, suggest-
ing a greater similarity in the constitution of seminal se-
cretions between Glossina and Stomoxys consistent with
their closer phylogenetic relationship compared to Dros-
ophila. Of note, none of the S. calcitrans male repro-
ductive tract-biased proteins were orthologous to
seminal proteins across all four species. In Drosophila,

Fig. 6 Maximum likelihood phylogenetic analysis of yolk protein genes from Drosophila melanogaster, Glossina morsitans, Musca domestica, and Stomoxys
calcitrans. Gene sequences with significant homology were aligned using the ClustalO software package [221], and the alignment used to estimate a Maximum
likelihood phylogeny in CLC Main Workbench (construction method: neighbor joining, Protein substitution model: WAG, Bootstrap analysis: 1000 replicates).
Numerical annotations indicate bootstrap values for each branch point in the tree. Heat map of gene expression (transcripts per million, TPM) is based on RNA-
Seq data (see Additional file 4). RS, reproductive system
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male-biased genes evolve at a faster rate, especially those
expressed in reproductive tissues. These genes tend to
lack identifiable orthologs relative to genes expressed in
an unbiased pattern [228, 229]. There is evidence for this
in M. domestica as well [94], and this phenomena is

likely due to sexual selective pressure resulting in rapid
evolution of male-biased genes [229]. However, one gene
within this group encoding a catalase (XM_013259723)
is orthologous to seminal protein genes in Aedes, Glos-
sina, and H. sapiens. In S. calcitrans, two catalase genes

Fig. 7 Analysis of male reproductive biased genes in Stomoxys calcitrans. a Results of reciprocal BLAST analysis of male reproductive tract biased genes. b
Expression analysis of top 20 most abundant gene classes in the male reproductive tract RNA-Seq dataset versus the female reproductive tract, as annotated by
BLAST best hits. Bar length represents combined expression values in TPM for the genes included in that category. Numbers associated with the bars represent
the number of genes in that functional classification that had a male reproductive tract-biased expression. c Scatter plot of the 763 Stomoxysmale reproductive
biased genes. The plot shows on the x-axis - log2 fold change expression in males relative to females and the y-axis represents the log2 transformed expression
value in TPM in the male reproductive tissue. Triangular points are genes predicted to contain signal peptides and blue points are genes with orthology to
seminal proteins in other species. Genes with a log2 expression value above 10 and log2 Male/female fold change value above 5 are annotated with putative
functional descriptions
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were identified on separate scaffolds, one for which ex-
pression was detected in all life stages and tissues ana-
lyzed (XM_013257324) and the other, described above,
that was detected primarily in the male reproductive
tract. As catalases function to reduce oxidative stress,
this finding could reflect a conserved mechanism that
protects the sperm from oxidative damage.
The 763 S. calcitrans male reproductive tract-biased

genes were annotated by BLAST and gene ontology ana-
lysis and then categorized by best hit annotation. Of those
genes, 216 lacked significant BLAST hits or were homolo-
gous to hypothetical proteins with no functional associa-
tions. Of the remaining genes that had significant hits to
annotated proteins, certain categories were highly
expressed in terms of both the number of genes and the
relative level of expression within the male reproductive
tract (Fig. 7b, c). These genes were also tested for the pres-
ence of a secretion signal peptide within the predicted
open reading frame to differentiate between secreted and
non-secreted proteins. Approximately 22% of the male re-
productive tract-biased genes (165/763) were found to in-
clude a predicted signal peptide. Gene ontology analysis of
this group’s constituents revealed several significant func-
tional enriched categories (see Additional file 10). The
most highly significant groups included chitin binding,
serine/cysteine-type endopeptidase inhibitors, metalloen-
dopeptidases, antibacterial humoral response, and innate
immune response among others. While the 1:1 orthologs
to most of these genes do not act as seminal proteins in
other organisms, they represent generally conserved func-
tions in seminal proteins. Functions such as protease in-
hibition, immunity, protease activity and chitin binding
have been characterized in the seminal secretions of other
flies and insects [194, 226, 230–233].
Chitinases represented the most highly expressed

functional group within the transcriptome and comprise
16 chitinase-like genes, of which 12 are clustered on
scaffolds KQ079939 (seven genes) and KQ080089 (five
genes). Of the approximately 37 genes annotated as chit-
inase in the S. calcitrans genome, the RNA-Seq results
suggest these 16 are biased towards the male reproduct-
ive tract tissue (see Additional file 10). Chitinases confer
anti-fungal activity in honey bee seminal secretions, pre-
venting the transfer of pathogenic spores during copula-
tion [234]. Although it is unclear if these have the same
role, such antimicrobial properties would be beneficial
to Stomoxys given the high probability of exposure to
fungi in the moist and microbe rich substrates in which
females oviposit. The second most highly expressed cat-
egory consists of a single gene, XM_013245551, which is
the most highly expressed gene in the male reproductive
tract dataset. While it is annotated as a GATA zinc-
finger domain containing protein, further analysis reveals
little in the way of conserved domains to indicate its

function. Interestingly, “domesticated” transposable ele-
ments tend to have a number of zinc-finger domains
[235] and further studies are needed to evaluate whether
this transcript may actually be a highly expressed trans-
posable element. This analysis provides some insight
into genetic associations with male reproductive func-
tions in Stomoxys and further highlights several interest-
ing targets for functional analysis in the future.

Immunomodulatory and anti-hemostatic products are
prominent in the Stomoxys sialome
Blood-feeding insects salivate while probing their host
skin for a blood meal. Development of a sophisticated
salivary potion that disarms their hosts’ hemostasis is
among the adaptations to blood feeding found in
hematophagous animals [236, 237]. Blood clotting inhib-
itors, anti-platelet compounds, vasodilators, and immu-
nomodulators are found in salivary gland homogenates
or saliva of blood sucking arthropods [237]. To deter-
mine the genes associated with salivation, transcripts
from male and female salivary glands (SG) were com-
pared with those from teneral male and female whole
bodies (WB). To be consistent with salivary gland tran-
scriptome analyses completed in other blood-feeding ar-
thropods, an Χ2 test was employed to identify those that
were significantly over-expressed in salivary glands
(Fig. 8), as in [238] (see Additional file 11). A subset of
SG transcripts with 100-fold higher expression com-
pared with teneral adults was analyzed in more detail
(see Additional file 11). The SG 100-fold overexpressed
set was comprised of 139 transcripts, 18 of which were
found to be splice variants, or identical to other tran-
scripts, as verified by their scaffold coordinates. The
non-redundant set comprised of 121 transcripts was
classified into three major groups: Putative Secreted,
Putative Housekeeping, and Unknown; these groups
were further classified into finer functional categories
(see Additional file 11).
In congruence with S. calcitrans SG polypeptides pre-

viously sequenced from one-dimensional protein gel
fragments [239], the antigen 5 family comprised 62% of
the total reads mapped to the 121 SG-enriched tran-
scripts (Fig. 8). Members of this family in S. calcitrans
may function as inhibitors of the classical complement
system [240]. Thrombostasin [241] members, which are
precursors for anti-thrombin peptides previously identi-
fied in S. calcitrans, were represented by two transcripts.
They accrued 29% of the reads and are strongly repre-
sented in the protein study [239]. The Hyp 16 family of
peptides (unknown function, 4.9% of accrued reads) and
one transcript encoding an endonuclease (1.2% of ac-
crued reads) were also noted. Together, these groups of
transcripts account for 97% of the reads that are over
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expressed in the salivary glands relative to the whole
body of S. calcitrans.
There was a wide variety of other transcripts repre-

sented in the last 3% of the reads, and serine proteases,
nucleotide deaminase, amylase, phospholipase A2, and
lipases were found enriched in the S. calcitrans salivary
gland transcriptome. These enzymes are also found
enriched in other sialomes and their functions have been
reviewed [237, 242, 243]. Two of eight serine proteases
were found 5–15 times overexpressed in female salivary
glands when compared to male glands. These two prod-
ucts produce best matches to vitellin-degrading prote-
ases from M. domestica (XM_005191887.2) and may be
indeed female enriched enzymes that were hitchhiked to
the salivary set due to their similarities to overexpressed
salivary enzymes. No other peptides were found above
fivefold expressed in either salivary gland gender.
Several antimicrobial peptides appeared enriched in

the S. calcitrans sialome, including lysozyme, attacins,
defensins, diptericin, a GGY rich peptide, and sarco-
toxin. Of these, only the GGY peptide and diptericin
were identified in the previously reported Sanger-based
S. calcitrans sialotranscriptome [239]. Given that a
bloodmeal can be stored in the stable fly midgut for up
to 48 h [244], these peptides may be a first line of
defense to control microbial growth in the ingested
meal. Regarding polypeptides with anti-proteolytic

activity, in addition to thrombostasin precursors dis-
cussed above, two transcripts encode serpins (however,
with very low expression) and one encodes a Kazal
domain-containing peptide (accruing 0.3% of the reads).
While serpins may modulate clotting and inflammation-
related proteases, the Kazal domain peptide may be re-
lated in function to vasotab, a vasodilatory peptide from
a tabanid fly [245].
Finally, 24 transcripts accruing 0.19% of the reads

could not be functionally classified and were thus
assigned to the “unknown” class. These include mem-
brane proteins XP_013114823.1 and XP_013117270.1
that are over one thousand-fold over expressed in the
salivary glands relative to whole body, the former of
which was identified in the Sanger sialotranscriptome.
Given their abundance in salivary gland tissue, these are
attractive targets for gene disruption experiments to elu-
cidate the contribution of these proteins to the salivary
function of S. calcitrans.

Expanded cytochrome P450 gene family suggests
enhanced metabolic detoxification in Stomoxys
Various detoxification mechanisms have evolved in in-
sects to enable their survival upon exposure to environ-
mental toxins. Metabolic detoxification is mediated by
members of the carboxylesterase and glutathione-S-
transferase gene families (identified and described from

Fig. 8 Analysis of salivary gland biased genes in Stomoxys calcitrans. Number of Illumina reads versus fold enrichment in the salivary gland related to the whole
body. Each point represents the average among all genes in that specific category. Expression levels are based on results in Additional file 11
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S. calcitrans; see Additional file 1: Gene families associ-
ated with metabolic detoxification, Figures S16 - S19
[246–263] and Additional file 12), as well as the cyto-
chrome P450 (CYP) gene family. Arthropod CYPs have
diverse roles in insect physiology, including ecdysteroid
biosynthesis and xenobiotic detoxification [264, 265].
The CYP gene family size varies among insects, with dip-
terans having large arrays (i.e., 145 in Musca, 86 in Dros-
ophila, and 77 in Glossina). The 214 S. calcitrans CYPs
that were identified from genome analysis encode repre-
sentatives from each of the CYP clans that are typically
found in insects (i.e., mitochondrial, CYP2, CYP3, and
CYP4), and they represent a substantial increase in num-
ber relative to other sequenced Dipteran genomes (Fig. 9;
see Additional files 13 and 14). The S. calcitrans mito-
chondrial and CYP2 clans contain orthologs of the Hal-
loween genes that mediate the pathway for ecdysteroid
biosynthesis, namely Cyp306A1, Cyp302A1, Cyp314A1,
and Cyp315A1, and the mitochondrial clan (21 genes)
contains tandemly arranged genes along three scaffolds:
nine CYP12A genes on KQ080363 and seven CYP12G

genes on KQ080439 and KQ082110. As in M. domestica,
expansions in S. calcitrans were primarily observed in
clans 3 and 4. The CYP4 clan (62 genes) was represented
by the CYP4 (51 genes) family, while the CYP3 clan (107
genes) comprised the largest increase in number of CYPs
in Stomoxys, predominated by the CYP6 (81 genes) and
CYP9 (16 genes) families. Together, members of the CYP4
and CYP6 families represent 62% of the S. calcitrans
CYPs, which is comparable to M. domestica [94].
At least three families of tandemly arranged CYP

genes were present in the S. calcitrans genome (Fig. 9,
shaded) and illustrate duplication and loss processes in
this superfamily. The S. calcitrans and M. domestica
CYP9F genes encode 15 and 4 proteins, respectively, and
they are tandemly arranged on Stomoxys scaffold
KQ080085 and Musca scaffold KB855374 with micro-
synteny of flanking genes DNA ligase 3, fatty acyl co-A
reductase, and a cluster of glutathione-S-transferase
delta genes (see Additional file 1: Figure S20). A similar
arrangement is found for the two D. melanogaster
CYP9F proteins on chromosome 3R, and phylogenetic

Fig. 9 Phylogenetic analysis of cytochrome P450 genes from Stomoxys calcitrans. Amino acid sequences from each family were aligned with the MUSCLE
algorithm [201], and the alignments trimmed with the trimAl tool using the –strictplus option [266]. The trimmed alignment was used to construct a maximum
likelihood phylogeny, rooted with Mus musculus CYP51 as the outgroup, with the web server version of IQ-TREE software (best-fit substitution model, branch
support assessed with 1000 replicates of UFBoot bootstrap approximation; bootstrap percentages reported [114]). The CYP clades are identified by different
colored lineages, and CYP gene clusters that are found in tandem within the genome are shaded in gray. P450 gene names were assigned based on
comparative analyses (see Additional file 13), and the full phylogenetic tree can be found in Additional file 1: Figure S21
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comparison suggests an expansion in Stomoxys and
Musca that was lost in Drosophila (see Additional file 1:
Figure S20-A). Genes encoding 24 CYP6A proteins in S.
calcitrans are clustered on two scaffolds (KQ080770 and
KQ080111) that are likely on one array in the genome,
and a comparable cluster of genes encoding 19 CYP6A
proteins on two M. domestica scaffolds (KB855857 and
KB859418) were identified. Phylogenetic comparison
with the 13 CYP6A D. melanogaster genes depicted ex-
pansion in Stomoxys and Musca relative to Drosophila
CYP6A2, but a loss in Drosophila relative to 15 Sto-
moxys and 8 Musca CYP6As (see Additional file 1: Fig-
ure S20-B). While upregulation of genes in the CYP4,
CYP6, and CYP9 families have been associated with re-
sistance to spinosad and pyrethroid insecticides in
Musca, Anopheles, and Drosophila [267–269], this has
yet to be investigated in Stomoxys. Regardless, the large
CYP gene family suggests Stomoxys may have an en-
hanced capacity for metabolic detoxification.

Evidence for transcription factors with putative role in
regulation of reproduction and salivation
To determine transcription factors (TFs) that might con-
trol specific gene expression profiles in S. calcitrans, TF-
encoding genes were first predicted by identifying putative
DNA binding domains (DBDs), using a previously de-
scribed approach [40, 70]. These analyses resulted in 837
predicted TFs, with the highest number coming from the

C2H2 zinc finger and homeobox structural families
(Fig. 10), consistent with previously analyzed insect ge-
nomes [40, 69, 70]. DNA binding motifs were subse-
quently predicted for as many of these putative TFs as
possible using a previously developed method [270], and
“inferred” motifs were identified for the S. calcitrans TFs.
For example, the DBD of the uncharacterized XP_
013101333 protein is 92.3% identical to the DBD of the D.
melanogaster gene cropped (FBgn0001994). Since the
DNA binding motif of cropped has already been experi-
mentally determined, and the cutoff for the bHLH family
of TFs is 60% (see the “Methods” section), we can infer
that XP_013101333 will have the same binding motif as
cropped. This procedure resulted in inferred motifs for
285 of the S. calcitrans TFs (34%).
TF binding site motif enrichment was then completed

using promoter regions for groups of genes with similar
gene expression patterns in our RNA-Seq datasets. Pro-
moters were defined as either 500 or 2000 bp upstream
of the predicted transcription start site for each gene
and gene set/motif pairs were filtered as described in the
“Methods” section. Expression of each TF was verified in
specific tissues using our RNA-Seq datasets (see Add-
itional file 15). Based on these criteria and comparative
analyses between samples, seven and nine TFs, respect-
ively, were enriched in SG tissues for the 2000 bp and
500 bp promoter regions (Fig. 10). Based on the 500 bp
promoter regions, two specific TFs, proboscipedia (XM_

Fig. 10 Transcription factors associated with Stomoxys calcitrans. a Number of transcription factors identified in S. calcitrans compared to other
flies. b, c Overlap between transcription factors with increased binding sites in differentially expressed genes that have noted expression in the
same tissue (F, teneral female; FRS, female reproductive system; M, male; MRS, male reproductive system; SG, salivary glands). d Expression of
specific TFs associated with female, male, and salivary glands among multiple tissues and developmental stages
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013251179) and orthopedia (XM_013261230), likely
regulate SG-based transcript expression. These two TFs
have been associated with head and salivary develop-
ment in Drosophila [271, 272], and the increased binding
sites and specific expression profile suggest a role in S.
calcitrans saliva production.
Male- and female-enriched analysis based on stage and

tissue specific RNA-Seq datasets identified TF targets in
each of the 500 bp and 2000 bp promoter regions (Fig. 10).
The four most likely TFs associated with female specific
genes are XM_013251807.1 (iroquois-class homeodomain
protein) and XM_013252765.1 (Unc4 homeodomain pro-
tein) based on the 500 bp promoter region and two other
likely homeodomain proteins, XM_013245879.1 (unchar-
acterized) and XM_013261334.1 (uncharacterized), in the
2000 bp regulatory region. The latter have high TPM
values in females and female reproductive tract tissues
(Fig. 10). Two TFs within the 500 bp promoter region
were for male enriched genes XM_013258869.1 (BarH-2)
and XM_013251073.1 (uncharacterized), both of which
are highly expressed in S. calcitrans teneral males, male
heads, and/or the male reproductive tract tissue. When
expanded to the 2000 bp promoter region, two additional
putative TFs related to male enriched genes were XM_
013260987.1 (uncharacterized) and XM_013257948.1
(drop), which are both highly expressed in male samples.
Functional characterization of these TFs is warranted, as
they could provide novel targets for the control of stable
fly reproduction or the prevention of feeding, including
development of genetically modified strains based on re-
productive tract-specific regulatory elements.

Conclusions
This study advances the knowledge of stable fly genomics
and genetics to the breadth of other non-model, but ex-
tremely important, dipterans such as tsetse and house
flies. Analysis of the genome sequence of stable fly males
coupled with the life-stage and tissue-specific gene expres-
sion datasets revealed unique aspects of muscid fly biology
that will guide future research within the livestock pest
community. The distinct increase in the number of che-
mosensory receptors that are putatively involved in bitter
taste perception is intriguing (Figs. 3 and 4), as it may sup-
port the stable fly’s cosmopolitan distribution by enhan-
cing avoidance behaviors and enabling a more discerning
host and ovipositional substrate selection process [12, 19,
20]. This distribution is likely further supported by puta-
tive enhanced metabolic detoxification mediated by an in-
crease in number of CYPs encoded by the genome
(Fig. 9). Downstream functional analyses are critically es-
sential to clarifying these roles. Importantly, this study
provides the resources to support development of novel
control approaches for this livestock pest. Identifying
stable fly chemosensory factors that invoke aversion could

inform development of species-specific behavior modify-
ing compounds and/or strategies [273], while the unique
stable fly catalog of putative seminal proteins reported
here (see Additional file 10) could be targeted for develop-
ment of reproductive inhibitors. Conventional sterile in-
sect technique methods are not sustainable for a stable fly
control program, as stable flies are broadly dispersed in
areas where they are problematic and both sexes of Sto-
moxys blood-feed. A continuous release of large numbers
of irradiated, sterile males would be required to achieve
successful population reduction [274–276]. Gene drive-
based systems are attractive technologies, and availability
of the genome enables identification of regulatory regions
to develop such strains. Lastly, the recent analysis of sex
chromosome evolution in stable flies and the recently se-
quenced horn fly underscores the unique opportunity that
this genomic resource provides to enable future compara-
tive genome analyses [49, 277].

Methods
Genome sequencing, assembly, and annotation
Total genomic DNA was isolated from pooled, teneral
adult males (n = 120) of a Stomoxys calcitrans line that re-
sulted from single paired mating for 7 generations
(Sc8C7A2A5H3J4). High quality/high molecular weight
DNA was isolated from pooled flies using the Genomic-
tip purification column and the associated buffer kit
(QIAGEN, Valencia CA), and samples were processed ac-
cording to the protocol for tissue-based DNA extraction.
The pooled DNA isolates were utilized for sequencing on
Illumina® HiSeq2000 instruments. The sequencing plan
followed the recommendations provided in the ALLPAT
HS-LG assembler [278]. Using this model, we targeted
45x sequence coverage each of fragments (overlapping
paired reads ~ 180 bp length) and 3 kb paired end (PE) se-
quences as well as 5x coverage of 8 kb PE sequences. The
first draft assembly scaffold gaps were closed where pos-
sible with mapping assembly input sequences (overlapping
paired reads ~ 180 bp length) and local gap assembly
[279]. Contaminating sequences and contigs 200 bp or less
were removed. The genome assembly, Stomoxys_calci-
trans-1.0.1, was made publicly available in the Genbank
sequence database, accession number GCF_001015335.1.
All sequence files associated with the project can be
accessed on Genbank under BioProject PRJNA188117
([280]; see Additional file 1: Table S1).
Automated gene annotation of the Stomoxys genome

assembly (Stomoxys_calcitrans-1.0.1) was completed
using the NCBI Eukaryotic Genome Annotation Pipe-
line, version 6.4 with supporting RNA-Seq from existing
transcripts in the expressed sequence tag [281] database
and a de novo assembled transcriptome (Trinity-v2;
transcriptome shotgun assembly (TSA) sequence data-
base, Accession number GDIM00000000.1). The
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resulting Stomoxys Annotation Report 100 can be
accessed at https://www.ncbi.nlm.nih.gov/genome/
annotation_euk/Stomoxys_calcitrans/100/
The Web Apollo tool [282], adopted by VectorBase

[283], was used by our community to review and edit
automated gene predictions. Edited gene models were
incorporated into a community annotation patch build,
ScalU1.6 (release date: November 5, 2020).

Lateral gene transfer prediction
A DNA-based computational pipeline was used to iden-
tify “contaminating” bacterial scaffolds and bacterial to
Stomoxys lateral gene transfer candidates in the Sto-
moxys genome assembly. The pipeline was originally de-
veloped by David Wheeler and John Werren [284] and
has subsequently been modified. Details of the pipeline
are provided in [81], and the procedure is summarized
here. First, genome scaffolds were broken into 1000-bp
units, which are screened against a bacterial genome
database (see Additional file 16) containing over 2100
representative bacterial species. Scaffolds were then eval-
uated for proportion of bacterial matches along their
length – those with greater than 20% bacterial matches
were identified as likely bacterial scaffolds in the insect
genome assembly and were manually examined for aver-
age coverage depth compared to all the scaffolds in the
genome. That analysis supported twelve very small scaf-
folds (1028–3546 bp) as bacterial contamination (see
Additional file 1: Table S6). The small size and low read
depth compared to genome scaffold average supports
the conclusion that these represent trace bacterial con-
tamination (see Additional file 1: Tables S6 and S7).
To examine the assembly for candidate bacterial LGTs,

analyses were conducted on scaffolds of greater than 100
kb in length, because confidently assigning a candidate
LGT requires confirmation of eukaryotic flanking se-
quences to the candidate. Positive bacterial hits in each
1000-bp region with bit scores greater than 50 were com-
pared to an “eukaryotic” database (see Additional file 16),
which contains transcripts from the following eukaryotes:
Xenopus, Daphnia, Strongylocentrotus, Mus, Homo sapi-
ens, Aplysia, Caenorhabditis, Hydra, Monosiga, and
Acanthamoeba. The purpose of this step is to exclude
highly conserved sequences that are shared between bac-
terial and eukaryotes from further analysis. Focus was
then placed on strong LGT candidates with bitscore > 75
in the bacterial match and zero bitscore in the eukaryotic
match. Regions were combined when adjacent 1Kb frag-
ments each had a zero “animal” match and a bacterial
match to the same or similar bacterial source. The 1Kb
fragments were also screened against transcripts from
seven arthropod species to identify possible conserved
arthropod genes (see Additional file 16). The initial candi-
date LGTs were then manually curated, through a series

of steps including (1) BLASTn to NCBI nr database, (2)
BLASTx to NCBI protein database, (3) examination of
flanking regions in the scaffold to confirm presence of
flanking eukaryotic (insect) orthologous sequences and
gene models, (4) removal of matches due to repetitive
DNA, and (5) examination of RNA-Seq datasets for evi-
dence of expression. In addition, LGT candidates were ex-
amined for sequencing read depth in the candidate LGT
and flanking 1 kb up and downstream regions to deter-
mine if there were large changes in read depth across the
junction. Sequencing reads were aligned to the reference
genome using BWA v 0.7.17 [285]. Paired end alignment
was called using the -mem function and aligned to the ref-
erence genome using default parameters. The coverage
software program Mosdepth [286] was then used to calcu-
late the average 50 bp read depth spanning the LGT and
its junctions. Coverage ratio was calculated as the average
read depth spanning a 50 bp window divided by the aver-
age 50 bp window read depth of the entire scaffold.

RNA isolation and sequencing
A variety of developmental stages and dissected tissues were
collected for total RNA isolation, and the accession numbers
and metadata associated with these samples is summarized
in see Additional file 1: Table S1. Specifically, RNA collected
from whole females (teneral and mated, reproductive), whole
males (teneral), male reproductive tracts, female reproductive
tracts, male heads (fed, mated), female heads (fed, mated),
and a single third instar larva were examined to assist in ad-
dressing core questions of this study and to assist with gen-
ome annotation. RNA was extracted with the use of TRizol.
DNA contamination was reduced via DNase treatment
according to methods previously described [287, 288].
Poly(A)+ RNA was isolated, then measured with the Agilent
Bioanalyzer for quality and only those samples with a mini-
mum RIN score of 7 were used to build non-normalized
cDNA libraries using a modified version of the Nu-GEN
Ovation® RNA-Seq System V2 (http://www.nugeninc.com).
We sequenced each cDNA library (0.125 lane) on an Illu-
mina HiSeq 2000 instrument (~ 36 Gb per lane) at 100 base
pair length. RNA-Seq datasets used in gene prediction have
been deposited to the NCBI Sequence Read Archive under
the accession codes SRX995857–5860, SRX229930,
SX229931, and SRX275910 (see Additional file 1: Table S1).

RNA-Seq analyses
In conjunction with the genomic sequencing, RNA-Seq
analyses were performed to examine specific transcript
differences between different stages and tissues (see Add-
itional file 4). RNA-Seq analyses were conducted based on
methods in Benoit et al. [287] and updated according to
Rosendale et al. [288, 289]. RNA-Seq datasets analyzed are
summarized within Table S1. The main goals for analyz-
ing these datasets were to (1) determine male, female, and
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larva-enriched gene sets, (2) identify reproductive specific
genes, and (3) establish chemosensory genes associated
with sexes and specific tissue. Quality of each RNA-Seq
dataset was assessed with FastQC prior to analyses, and
RNA-Seq datasets were trimmed and low-quality reads
were removed with trimmomatic [290]. Each dataset was
mapped to the predicted gene set (NCBI Annotation Re-
lease 100) for S. calcitrans using CLC Genomics with each
read requiring at least 95% similarity for over 60% of the
read length with only two mismatches allowed. Splicing
was allowed as long as 60% of each read mapped to the
respective mRNA sequence. Read alignments were
converted to per million mapped to allow comparison be-
tween RNA-Seq data sets with varying coverage (see Add-
itional file 1: Table S1). Expression was based upon
transcripts per million (TPM) and fold changes were de-
termined as the TPM in one sample relative to the TPM
of another dataset [288]. Significant enrichment was based
on a Baggerly’s test (compares proportional changes be-
tween groups) followed by Bonferroni correction at 0.01
(number of genes x α value). This similar, stringent ana-
lysis was used on previous samples with only a single rep-
licate and proved to be useful in the identification of
genes of interest associated with specific developmental
stages and sexes [41, 70]. RNA-Seq analyses are summa-
rized in Additional file 4.
Transcripts in the official gene set were identified by

BLASTx searching against an NCBI non-redundant pro-
teins database for arthropods with an expectation value
(e value) of at least 0.001. Gene ontology assessment for
specific groups were conducted by the use of g:Profiler
following conversion of Stomoxys gene IDs to D. mela-
nogaster gene IDs [291]. The proteome of the stable fly
was organized on a hyperlinked spreadsheet (see Add-
itional file 2) with accompanying information (e.g., the
presence or absence of signal peptide indicative of secre-
tion, presence of transmembrane domains, and similar-
ities to several databases). Expression values present
within this sheet are based on the RNA-Seq data sets
(see Additional file 1: Table S1) and analyzed according
to previously described methods [238, 243].

Reverse transcription quantitative PCR (RT-qPCR)
verification of RNA-Seq results
Since each RNA-Seq dataset is based on a single repli-
cate, the results were validated by RT-qPCR (see Add-
itional file 1: Figure S2, Table S5). RNA-Seq and RT-
qPCR results showed Pearson correlation of 0.8643, indi-
cating the RNA-Seq results are valid. Twenty-five tran-
scripts were randomly selected to evaluate correlation
between log2 fold changes of RT-qPCR versus RNA-Seq.
Total RNAs were isolated from tissues to represent
those used for RNA-Seq {i.e. female or male heads (7d
fed, mated), female or male reproductive systems (7d

fed, mated, dissected), adult female or male (whole, ten-
eral), adult female or male (whole, 7d fed, mated), third
instar larvae}. Samples were placed in TRIzol™, macer-
ated, and stored at − 80 °C until isolation using the
Zymo Direct-zol™ method (Zymo Research, Irvine CA)
with on-column DNAse treatment (TURBO DNase,
ThermoFisher Scientific, Waltham MA). cDNA tem-
plates were synthesized from 500 ng total RNA in a 20ul
volume using SuperScript® III reverse transcriptase
(ThermoScientific) primed with a dTVn oligonucleotide.
Primers for RT-qPCR were designed with Beacon soft-
ware to span exon-intron junctions (see Additional file
1: Table S5), and primer efficiencies were estimated
using serially diluted cDNAs. Reactions were prepared in
a 20ul volume consisting of 250 nM each of the forward
and reverse primers, cDNA from 25 ng RNA, and the
iTaq™ Universal SYBR® Green Supermix (Bio-Rad
Laboratories, Hercules CA). Reactions were run in tripli-
cate on a LightCycler® 96 System (Roche Life Sciences,
Indianapolis IN). Data were analyzed using the 2-ΔΔCT

method incorporating primer efficiency data [292], and
all values were normalized to the S. calcitrans ribosomal
protein S3 reference gene RpS3. Pearson’s correlation of
log2 fold change for RNA-Seq and RT-qPCR results was
calculated using GraphPad Prism version 7.00 for
MacOSX (GraphPad Software, La Jolla CA).

OrthoDB analysis
The OrthoDB hierarchical orthology delineation proced-
ure was employed to predict orthologous groups (OGs)
of genes across 87 arthropods for OrthoDB v8 [63].
Briefly, protein sequence alignments were assessed to
identify all best reciprocal hits (BRHs) between genes
from each pair of species, which are then clustered into
OGs following a graph-based approach that starts with
BRH triangulation. The annotated proteins from the
genome of Stomoxys calcitrans were first filtered to se-
lect one protein-coding transcript per gene and then
mapped to OrthoDB v8 at the Diptera (37 species),
Endopterygota (72 species), Insecta (80 species), and
Arthropoda (87 species) levels. OrthoDB orthology map-
ping uses the same BRH-based clustering procedure
used to build the OGs but only allowing proteins from
the mapped species to join existing OGs. Gene ontology
assessment for specific groups were conducted by the
use of g:Profiler following conversion of Stomoxys gene
IDs to D. melanogaster gene IDs through BLASTx com-
parison [291].

Bacterial community analysis
To identify culturable bacterial communities harbored
by adult stable flies, fly specimens were collected at each
of four Texas dairies in April and June 2015 (Lingleville
and Comanche, Texas), and total bacterial isolates from
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the collections is reported. Twenty flies per site per date
were collected by aerial sweep nets in the area surround-
ing each dairy’s milking parlor. Within 4 h, whole flies
were surface sterilized in 1% sodium hypochlorite for 15
min, followed by two washes in 70% ethanol and three
rinses in sterile water. Individual flies were macerated in
Butterfield’s phosphate buffer, and the homogenate was
diluted and plated on tryptic soy agar. Individual, mor-
phologically distinct colonies were selected, suspended
in Butterfield’s phosphate buffer, and the DNA isolated
by rapid boiling. These DNAs were used as template in
16S PCR amplification with a universal primer pair
(16SEub_61F: 5′ – GCTTAACACATGCAAG – 3′;
16SEub_1227R: 5′ – CCATTGTAGCACGTGT – 3′).
Individual amplicons were sequenced in both directions
and the sequences assembled (n = 281). Data were ana-
lyzed in mothur, v 1.38.1 [281], including UCHIME to
detect and remove 19 chimeras, resulting in 262 isolates.
Sequences were aligned using the silva.seed_v132.align
file, distance matrices calculated, and isolates classified
at a 97% similarity cut-off, average neighbor, silva.seed_
v132.align/.tax. Phyla and genera for each isolate is re-
ported (see Additional file 5).

Analysis of immune system gene families
Two computational approaches were combined with tar-
geted manual annotation to produce an annotation of
immune-related genes and gene families in the S. calci-
trans genome. First, an initial list of S. calcitrans gene
models was generated that likely have an immune func-
tion based on homology to annotated and functionally
characterized D. melanogaster genes. Homologous genes
were identified based on OrthoDB groups and include
both orthologs and paralogs (e.g., every S. calcitrans
gene in an OrthoDB group that includes a D. melanoga-
ster immune-related gene is annotated as immune-
related). To complement these homology-based annota-
tions, all predicted S. calcitrans proteins were screened
for similarity to HMM profiles of well-characterized
Dipteran immune-related protein families (see Add-
itional file 6) [93, 100], using hmmscan (from the
HMMER software package). Finally, because antimicro-
bial peptides can be difficult for computational pipelines
to properly annotate (due to their small size), we also in-
clude some manual annotation of S. calcitrans AMPs
(see Additional file 6).

Chemosensory gene family identification and
phylogenetic analysis
tBLASTn searches of the genome assembly were per-
formed with gustatory receptors (GR) from M. domestica,
D. melanogaster, and, where relevant the medfly, C. capi-
tata [42], and with all newly identified Stomoxys GRs.
Models were built primarily in the WebApollo server at

VectorBase, using a combination of existing automated
models, RNA-Seq information from multiple lifestages,
tissues, and sexes, and comparisons with the Musca and
Drosophila Gr gene structures. A few models with regions
missing in assembly gaps were repaired using raw gen-
omic and/or RNA-Seq reads. Pseudogenes were translated
as best possible to provide an encoded protein that could
be aligned with the intact proteins for phylogenetic ana-
lysis. A 200 amino acid minimum was enforced for includ-
ing pseudogenes in the analysis (roughly half the length of
a typical GR), and there are several shorter fragments of
genes that were not included in the analysis. All Stomoxys
GRs were aligned in CLUSTALX v2.1 [293] using default
settings with the GRs of D. melanogaster [118] and M.
domestica [94]. Problematic gene models and pseudogenes
were refined in light of these alignments. The final align-
ment was trimmed using TrimAl v1.4 [266] with the
“strict” option. Phylogenetic construction was performed
by maximum likelihood analysis using the PHYML v3.0
webserver with default settings, implementing an auto-
matic model selection parameter [294]. The resultant tree
was formatted and colored using FigTree v1.4.2 (http://
tree.bio.ed.ac.uk/software/figtree/), while the final version
with labels was made in Adobe Illustrator. Analysis of the
Ionotropic Receptor (IR) family in S. calcitrans was gener-
ally similar to that for the GRs, except that pseudogenes
were only included if they encoded at least 50% of the
length of a related intact IR given that IRs vary consider-
ably in length. The GR maximum likelihood tree was
rooted by declaring the distantly-related and divergent
carbon dioxide and sugar receptor subfamilies as the out-
group, while the IR tree was rooted by declaring the Ir8a/
25a lineage as the outgroup.
Odorant receptor (OR), odorant binding protein (OBP),

and chemosensory protein (CSP) sequences from D. mela-
nogaster and M. domestica were used in tBLASTn
searches to identify orthologs in the Stomoxys calcitrans
1.0.1 genome assembly. Models were built primarily in the
WebApollo server at VectorBase, using a combination of
existing automated models, RNA-Seq information from
multiple lifestages, tissues, and sexes, and comparisons
with the Musca and Drosophila gene models. Amino acid
sequences from each family were aligned with the
MUSCLE algorithm [201], and the alignments trimmed
with the trimAl tool using the –strictplus option [266].
The trimmed alignment was used to construct a max-
imum likelihood phylogeny with the web server version of
IQ-TREE software ([114]; best-fit substitution model,
branch support assessed with 1000 replicates of UFBoot
bootstrap approximation). The OR tree was rooted with
the highly conserved ORCO. OBP domains of dimer OBPs
were separated for phylogenetic analysis and labeled “a”
and “b,” and the Plus-C OBPs were not included in assem-
bling alignments for tree construction.
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Opsin identification and analysis
For preparation of the global opsin gene tree, S. calci-
trans sequences were collected by tBLASTn searches
against the genome sequence draft version 1.0.1 (GCF_
001015335.1). A multiple sequence alignment was gener-
ated with MUSCLE [201] and variable sites were filtered
using Gblocks with least stringent settings [65]. Bayesian
tree analysis was performed out with MrBayes v3.2.6
[295] in the CIPRES Science Gateway V 3.3 environment
[296], applying the GTR model of protein sequence evo-
lution and correcting for across site substitution
variation with a four rate category gamma distribution.
A bootstrapped maximum likelihood tree was estimated
in MEGA version 6.0 [203] applying the Jones-Taylor-
Thornton (JTT) model of amino acid sequence evolution
and assuming Gamma Distributed substitution rates
across sites with three categories. For Bayesian analysis
of the calyptrate expansion of Rh1 opsins, protein se-
quences were aligned with webPRANK [297]. Ambigu-
ous alignment regions were filtered using TrimAl (v. 1.3)
[266] as implemented on the Phylemon 2.0 server [298]
applying User defined settings (Minimum percentage of
positions to conserve: 10, Gap threshold: 0.9, Similarity
threshold: 0.0, Window size: 1.0).

Yolk protein gene identification and phylogenetic
analysis
Annotated yolk protein gene sequences from Drosophila
melanogaster, Glossina morsitans, and Musca domestica
were used to identify yolk protein ortholog sequences
from the Musca domestica and Stomoxys calcitrans pre-
dicted transcriptomes available at VectorBase ([283];
www.vectorbase.org). Gene sequences with significant
homology were aligned using the ClustalO software
package [221]. The alignment was used to generate a
maximum likelihood phylogeny using the tree gener-
ation software included in the CLC Main Workbench
(Qiagen, Redwood City CA) software package using the
following settings (construction method: neighbor join-
ing, Protein substitution model: WAG, Bootstrap ana-
lysis: 1000 replicates). Sequences with homology closer
to lipase enzyme sequences (the ancestors to yolk pro-
tein genes) that form outgroups relative to annotated
yolk proteins were removed from the alignment and the
phylogeny was recalculated.

Identification of male reproductive tract-biased genes
and reciprocal orthology analysis
RNA-Seq libraries from male and female reproductive
tissues of fed, mated Stomoxys calcitrans adults were
used in this analysis. TPM values from the read mapping
of these libraries against the putative Stomoxys transcrip-
tome from the male and female reproductive tissues
were compared to identify genes with a male/female

expression ratio of at least 5 and a minimum TPM value
of 50 in the male reproductive tract. The sequences
meeting these criteria were extracted from the Stomoxys
transcriptome and then further filtered based on the
presence of a secretory peptide. The narrowed list was
categorized by gene ontology analysis using the R pack-
age topGO v 2.40 [299], providing statistical analysis of
the categorization. Orthologous sequences for these
genes were identified using a reciprocal hit analysis using
the BLAST+ [300] software package against the pre-
dicted transcriptomes from Glossina morsitans, Drosoph-
ila melanogaster, Aedes aegypti, and Homo sapiens. Best
hits from each of these transcriptomes from these spe-
cies against male biased Stomoxys genes were extracted
and used to BLAST back against the predicted Stomoxys
transcriptome. BLAST output was parsed to detect Sto-
moxys genes with reciprocal hits (see Additional file 10).

Salivary gland RNA-Seq analysis
Sixty salivary gland pairs were dissected from 7d fed, adult
female and male stable flies. Tissues were placed in TRI-
zol™, macerated, and stored at − 80 °C until isolation using
the Zymo Direct-zol™ method (Zymo Research) with on-
column DNAse treatment (TURBO DNase, ThermoFisher
Scientific). Resulting cDNA libraries were sequenced on
an Illumina HiSeq 2000 instrument, and a total of 24.8M
and 47.6M, 75 bp, single end reads were obtained. The
salivary gland RNA-Seq dataset is based on a single repli-
cate. To be consistent with previous studies on the sia-
lome of insect vectors, salivary gland RNA-Seq analyses
were conducted using a published pipeline [301–303].
Briefly, the reads from four RNA-Seq libraries (male and
female salivary glands, as well as teneral male and female
whole bodies) were mapped to the S. calcitrans predicted
gene set. To further be consistent with SG analyses com-
pleted in other blood-feeding arthropods, an χ2 test was
employed to identify those that were significantly over-
expressed in SG relative to teneral whole bodies, as in
[238] (see Additional file 11). Normalized fold-ratios of
the sample reads were computed by adjusting the numer-
ator by a factor based on the ratio of the total number of
reads in each sample and adding one to the denominator
to avoid division by zero. Expression results for the saliv-
ary glands showed high level of correlation between males
and females (Pearson = 0.93). The complete dataset was
organized in a hyperlinked spreadsheet as previously re-
ported [238] and is provided in Additional file 2.

Transcription factor analyses
To assess potential transcription factors regulating tissue
and sex-specific expression, TFs were identified accord-
ing to previously developed methods in other insect sys-
tems [40, 70]. DNA binding motifs were then predicted
for as many of these putative TFs. In brief, the percent
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of identical amino acids was calculated between each S.
calcitrans TF and each eukaryotic TF with a known
motif, with values exceeding a TF family-specific thresh-
old resulting in “inferred” motifs for the S. calcitrans
TFs. TF binding site motif enrichment was then com-
pleted using promoter regions for groups of genes with
similar expression patterns. Promoters were defined as
either 500 or 2000 bp upstream of the predicted tran-
scription start site for each gene. The search was re-
stricted to gene set/motif pairs with significant
enrichment based on RNA-Seq analysis using Baggerly’s
test followed by Bonferroni correction at 0.01, as de-
scribed earlier. Gene set/motif pairs were further filtered
to cases where (1) the given motif was present in at least
60% of the promoters of the gene set, (2) the given motif
was present in less than 20% of all gene promoters, and
(3) the difference between the presence of the motif in
the gene set and promoters of all genes exceeded 40%.
Expression of each TF was verified in specific tissues
using our RNA-Seq datasets (see Additional file 15).
Enriched TF binding motifs were identified in the 500
and 2000 bp regions upstream of the putative transcrip-
tion start site using the HOMER tool [304] supple-
mented with the Stomoxys inferred binding motifs
obtained from the CisBP database (build 0.90).
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