Cheng et al. BMC Biology (2020) 18:138
https://doi.org/10.1186/s12915-020-00868-3

BMC Biology

®

Check for
updates

Importance of scientific collaboration in
contemporary drug discovery and
development: a detailed network analysis

Feixiong Cheng'*?", Yifang Ma**", Brian Uzzi® and Joseph Loscalzo®"

Abstract

Background: Growing evidence shows that scientific collaboration plays a crucial role in transformative innovation
in the life sciences. For example, contemporary drug discovery and development reflects the work of teams of
individuals from academic centers, the pharmaceutical industry, the regulatory science community, health care
providers, and patients. However, public understanding of how collaborations between academia and industry
catalyze novel target identification and first-in-class drug discovery is limited.

Results: We perform a comprehensive network analysis on a large scientific corpus of collaboration and citations
(97,688 papers with 1,862,500 citations from 170 million scientific records) to quantify the success trajectory of
innovative drug development. By focusing on four types of cardiovascular drugs, we demonstrate how knowledge
flows between institutions to highlight the underlying contributions of many different institutions in the
development of a new drug. We highlight how such network analysis could help to increase industrial and
governmental support, and improve the efficiency or accelerate decision-making in drug discovery and development.

Conclusion: We demonstrate that network analysis of large public databases can identify and quantify investigator

and institutional relationships in drug discovery and development. If broadly applied, this type of network analysis may
help to enhance public understanding of and support for biomedical research, and could identify factors that facilitate
decision-making in first-in-class drug discovery among academia, the pharmaceutical industry, and healthcare systems.

Keywords: Cardiovascular disease, Collaboration network, Drug discovery, Network analysis, PCSK9, Scientific

collaboration, TNF inhibitors

Background

A recent study estimates that in 2015, it costs the
pharmaceutical industry $2.6 billion to develop a new
US Food and Drug Administration (FDA)-approved drug
[1]. This high cost is, in part, a consequence of the col-
laborative complexity of the drug development process
[2]. Contemporary drug discovery and development re-
flect the work of teams of individuals from academic
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centers, the pharmaceutical industry, the regulatory sci-
ence community, health care providers, and patients.
Within academia, current drug discovery and develop-
ment involve scientific collaborations between laborator-
ies, is multidisciplinary, and almost invariably crosses
inter-institutional boundaries among industrial and aca-
demic institutions.

Scientific collaboration is more strikingly prevalent
today than it was several decades ago [3, 4]. In many im-
portant areas of biomedical research, the scientific
process increasingly involves catalyzing collaborative ef-
forts that bring together investigators with diverse
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scientific backgrounds and perspectives to solve complex
biomedical problems that benefit from an interdisciplin-
ary or multidisciplinary approach [5, 6]. Public under-
standing of how collaborations between academia and
industry result in novel target identification and first-in-
class drug discovery is limited [7]. Furthermore, whether
team-driven human genetic studies, for example, accel-
erate target identification and which type of collaborative
arrangement will maximize the efficiency of drug discov-
ery, remain unclear [8—10]. Here, we analyze a large sci-
entific corpus of collaboration and citation networks to
quantify the success trajectory of drug development
using proprotein convertase subtilisin/kexin type 9
(PCSK9) and its inhibitors as a case study, as well as
phosphodiesterase type 5 (PDES5) inhibitors, hydroxy-
methylglutaryl (HMG)-CoA reductase inhibitors, and
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tumor necrosis factor (TNF) inhibitors as additional ex-
amples of different, commonly used drug classes.

Results

Publications record the trajectory from the discovery of
PCSK9

We utilized a comprehensive analysis that integrates
large-scale publicly accessible scientific datasets (Fig. 1
and cf. the “Methods” section). We used the Microsoft
Academic Graph (MAG) database [11], which contains
170,099,684 publications dating from 1900 to 2017. In
MAG, papers’ topics are classified using artificial
intelligence and semantic understanding of content [12].
Each scientist’s institution(s) is (are) identified using the
affiliation information within the publication, with the
specific commercial and academic institutions manually
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Fig. 1 Projecting paper institutions and references to the institutional collaboration network and the institutional knowledge flow network. a Paper |
written by authors from institution a and b cite paper Il written by authors from institution ¢, d and e, and paper Ill written by authors from institution
cand d. b Collaborations among the five institutions based on the affiliations in the three papers. Link strength between institution ¢ and d is 2; other
link strengths are 1. ¢ Directed links indicate the knowledge flows from institution ¢, d, and e to institution a and b; links from ¢/d to a/b have weight 2
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identified (Fig. 1). In the primary case study, we assem-
bled all papers related to PCSK9 [13], with the tag
“PCSK9” and its aliases (Methods), and identified 2,675
publications and 50,513 additional relevant citations
from 1900 to 2017. From these papers, we successfully
presented the full trajectory of PCSK9’s discovery and
development (Fig. 2a). Importantly, we found the same
trajectory after excluding self-citations (Additional file 1:
Fig. S1). For example, a human genetic study in 2003 first
reported that gain-of-function PCSK9 mutations led to
hypercholesterolemia [14], after which the number of pa-
pers and citations began to increase. Three years later, a
second human genetic study reported that PCSK9 loss-of-
function mutations reduced low-density lipoprotein

Page 3 of 9

cholesterol (LDL-c) and protected against coronary heart
disease [15].

Collaboration network structure from the discovery of
PCSK9 and its inhibitors

We next inspected the collaboration network between
institutions; in the network, we regarded each institution
as a node, with the weighted links between institutions
reflecting the number of papers on which collaboration
occurred (Fig. 1). By referring to the institutions in all
PCSK9 papers, we found that the development of the
PCSKO9 field involved the collaborations of 9,286 scien-
tists distributed among 4,203 institutions worldwide over
the last two decades. For example, Amgen investigators
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Fig. 2 PCSK9 target discovery and development network analysis. a The number of publications and number of citations for PCSK9 papers by
year. b Collaboration network in the discovery of PCSK9 for the top 20 institutions. Stripe width between institutions corresponds to the
collaboration strength, i.e., the number of cases in which the two institutions collaborate. ¢ The citation flow from cited papers (left) to citing
papers (right). Stripe width from institutions on the left to institutions on the right corresponds to the number of cases in which papers from
institutions on the left are cited by papers from institutions on the right
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published 548 PCSK9-related papers in the last two decades,
followed by the University of Montreal (UdeM) with 452 pa-
pers and Inserm with 414 papers. Forty percent of the collab-
orations involved intra-institutional co-investigators (ie.,
scientists within the same institutions), while the remaining
60% of collaborations involved inter-institutional co-
investigators (i.e., scientists in different institutions). Among
the inter-institutional collaborations, 20% involved pharma-
ceutical companies, highlighting the critical, but non-
exclusive, role of the industry in drug target discovery.

In Fig. 2b, we show the relationships among the top 20
most collaborative institutions (according to their degree in
the collaboration network). We note that Amgen and Brig-
ham and Women’s Hospital/Harvard Medical School have
a strong collaborative tie, as do other strongly collaborative
institutions such as the University of Montreal (UdeM) and
Inserm and the University of Amsterdam (UvA) and
Regeneron. The collaboration between institutions is not
uniform, with 6% of the top institutions accounting for 90%
of the collaboration weights in the network, illustrating that
a small number of institutions dominate the research.

For comparison, we further investigated the collabor-
ation networks for three specific PCSK9 inhibitors
(Fig. 3): two recently FDA-approved drugs (alirocumab
and evolocumab) and one failed drug (bococizumab).
Alirocumab (trade name Praluent, Sanofi Aventis), a
PCSKO9 inhibitor monoclonal antibody, was approved by
the FDA on July 24, 2015, for the treatment of patients
with heterozygous familial hypercholesterolemia or ath-
erosclerotic cardiovascular disease based on five double-
blind placebo-controlled trials that enrolled 3,499 pa-
tients. The studies related to alirocumab involved 1,407
different investigators who published 403 papers and
listed 908 different institutional affiliations (Figs. 3
and 4a). Evolocumab (trade name Repatha, Amgen), the
second human monoclonal antibody, was approved by
the FDA on August 27, 2015, as an adjunct treatment to
diet and maximally tolerated statin therapy in adults
with heterozygous or homozygous familial hypercholes-
terolemia, or those with clinical atherosclerotic cardio-
vascular disease [16]. On December 1, 2017, the FDA
approved evolocumab to prevent myocardial infarction,
stroke, and coronary revascularization in adults with
established cardiovascular disease based on the 27,564-
patient FOURIER cardiovascular outcome study [17].
Specifically, evolocumab reduced the risk of myocardial
infarction by 27%, the risk of stroke by 21%, and the risk
of coronary revascularization by 22% [17]. The collabor-
ation network leading to the development of evolocu-
mab included 1,185 different investigators who
published 400 papers and listed 680 different institu-
tional affiliations (Fig. 4b). Bococizumab, a PSCK9
monoclonal antibody developed by Pfizer, was with-
drawn in November, 2016, owing to a lack of significant
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clinical benefit to patients (NCT01975389). The collab-
oration network leading to bococizumab included only
346 investigators across 173 different institutions who
published 66 papers (Fig. 4c). Comparing the three in-
hibitors’ collaboration networks to that for PCSK9 as a
disease target (Fig. 2b), we found that the collaboration
networks for PCSK9 inhibitor development are domi-
nated by pharma, with Regeneron, Amgen, and Pfizer
contributing much more in the development of the three
inhibitors than academic institutions (Fig. 4). Further-
more, for a comprehensive comparison, we calculated
the network indices for each of the collaboration net-
works (Table 1). We validated that the collaboration net-
works for the three PCSK9 inhibitors have higher
industrial participation (>40%) than the collaboration
networks for the PCSK9 as a disease target (20%). Com-
pared to alirocumab and evolocumab, bococizumab (a
failed drug) has a larger average clustering and a larger
value of “[f]raction of top institutions accounting for
90% collaborations” (Table 1), suggesting that the more
narrowly defined collaborative groups involved in this
follow-on drug and also within the collaboration net-
work are less likely to support successful collaboration
in drug development.

Heterogeneous collaboration patterns in drug discovery

Recent studies have suggested that network-based ana-
lysis of citations from literature data offers potential evi-
dence for the novelty, disruption, and success of
scientific research [4, 18], including drug discovery [7].
We posited that this complex collaboration network
may help us identify factors that improve the efficiency
or accelerate decision-making in drug discovery and de-
velopment. To answer this question, we created and
compared additional collaboration network structures
for three additional types of drugs classes: (i) three
phosphodiesterase type 5 (PDE5) inhibitors (Additional
file 1: Fig. S2), (ii) eight statins HMG-CoA reductase in-
hibitors, (Additional file 1: Fig. S3), and (ii) five TNF in-
hibitors (Additional file 1: Fig. S4), and calculated their
network indices (Table 1). We found several interesting
patterns across different network indices. For example,
among the three PDE5 inhibitors (vardenafil, tadalafil,
and sildenafil), sildenafil showed lower industrial partici-
pation than the other two, a lower clustering coefficient
(0.009), and collaborator research that was dominated by
leading institutions (4% of the leading institutions ac-
count for 90% of the collaboration weights, Table 1).
Among the 8 HMG-CoA reductase inhibitors, pitavasta-
tin and simvastatin have lower industrial participation
and cerivastatin and fluvastatin have higher than average
clustering, while pravastatin has a negative assortativity
(Table 1). This negative assortativity means that institu-
tions tend to collaborate with other institutions with
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Fig. 3 Publication and citation growth. The number of annual publications (column a, ¢, e, g) and the number of annual citations (column b, d, f,
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inhibitors (certolizumab pegol, golimumab, etanercept, adalimumab, and Infliximab). In total, 170,099,684 publications dating from 1900 to 2017
were analyzed (see the "Methods” section)
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showed the highest number of publications and the
highest industrial participation. Although atorvastatin is
a highly successful drug developed by Pfizer, Pfizer is
not the top-most institution involved in atorvastatin’s
collaboration network (Additional file 1: Figs. S3a and
S3e), suggesting high heterogeneity of collaboration rela-
tionships among institutions in successful drug develop-
ment. Among the 5 TNF inhibitors, certolizumab pegol
had lower than average industrial participation, while
golimumab had greater than average industrial participa-
tion (Additional file 1: Fig. S4). From the comparisons,
we can see that although the network indices vary across
drug classes, they successfully capture potential network
features involved in collaborative drug discovery among
academic and industrial institutions for specific drug
classes. Equally important, among all of the network in-
dices, no clear and consistent patterns emerged that
crossed drug classes. For example, first-in-class drugs
did not exclusively derive from industry or academia,
nor did follow-on drugs invariably derive from purely
intra-institutional industry collaborations. We interpret
these findings to indicate that collaboration networks

underlying drug development evolve from local investi-
gator or institutional interests that are driven by intellec-
tual and cultural champions.

The contribution from knowledge flow networks

We further learned that the knowledge contribution of
successful drug target identification is complex, hier-
archical, and interdisciplinary. Specifically, we built an
institutional citation network by tracing the citations be-
tween institutions based on the affiliation information of
authors and the cited references. Citations between re-
search institutions show the patterns of knowledge flow
in developing PCSK9 as a drug target (Fig. 2c). Import-
antly, knowledge does not spread randomly from one in-
stitution to another. In Fig. 2c, we show the knowledge
flux between pairs of institutions, with knowledge dis-

seminating from the cited institutions (left) to the citing
institutions (right). In total, 4.6% of the citation flow is

within the same institutions, i.e., papers cite other papers

derived from investigators in the same institution. Spe-

cifically, for example, the University of Montreal (UdeM)

shows citations spreading to more than 1,000
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Table 1 Characteristics of collaboration networks for four classes of drugs

Drug name Target class No. of No.of No. of Fraction with Fraction Average  Assortativity Fraction of top
papers authors institutions inter- with clustering institutions with 90%
institutional industrial or greater
collaboration participation collaborations

Alirocumab PCSK9 403 1407 908 0.72 0429 0015 —-0.087 0.126
Bococizumab PO gg 345 173 073 0465 0047 - 0057 0347
Evolocumab 400 1185 680 0.63 0.509 0.006 -0.075 0.153

Sildenafil PDES 8018 25171 12,659 0.39 0.128 0.009 -0018 0.043

Tadalafi nhibitors 468 7918 4556 045 0236 0012 0055 0073
Vardenafil 1464 4407 2556 041 0.240 0.012 -0.022 0.098
Atorvastatin - Statins (HMG- 13478 42607 22,201 049 0.162 0.003 0.060 0.024
Cerivastatin rCe?ﬁJCtase 722 2725 1416 0.38 0.150 0.014 0.066 0.129
Fluvastatin inhibitors) 2848 9722 5112 036 0.131 0.020 0.021 0.079
Lovastatin 4554 15,168 7679 0.39 0.139 0.008 0.023 0.068
Pitavastatin 1228 4660 2212 037 0.052 0.007 0.047 0.076
Pravastatin 5356 18214 8403 045 0.108 0.002 -0.016 0.047
Rosuvastatin 5285 17,718 9242 0.59 0.134 0.003 0.095 0.037
Simvastatin 12,738 43,187 21,691 0.85 0.067 0.001 0.101 0.007
Adalimumab  TNF 8756 30,178 19,734 0.61 0.126 0.003 0.026 0.020
Certolizumab MO j0s5) 3630 2085 0.89 0.024 0004 0.067 0052

pegol

Etanercept 8521 28,705 15,002 0.55 0.187 0.006 -0.024 0.030
Golimumab 1285 4810 2980 0.69 0.430 0.006 —0.032 0.073
Infliximab 16371 52436 31,727 0.55 0.134 0.002 -0.012 0.015

Note: The significant changes of network characteristics are highlighted by bold text. The detailed descriptions for network indices are provided in the

“Methods” section

institutions worldwide (only the top 20 are shown in
Fig. 2¢); however, 11.9% of the citations come from the
institution itself, as was the case for Amgen, with a value
of 10.1%. Other institutions show different knowledge
flow patterns. For example, NIH and Brigham and
Women'’s Hospital/Harvard Medical School spread know-
ledge relatively evenly to certain leading institutions, with
only 4.1% and 4.0% of the knowledge disseminated intern-
ally, respectively. We also show the knowledge flow pat-
terns for PDE5 inhibitors, HMG-CoA reductase
inhibitors, and TNF inhibitors for comparison and valid-
ation of these findings (Additional file 1: Figs. S2-S4).

Discussion

Here, we demonstrate that network analysis of large
public databases can identify and quantify investigator
and institutional relationships in drug discovery and de-
velopment. We also show different collaboration pat-
terns in drug discovery based on publication history for
four classes of commonly used drugs. By comparing the
three PCSK9 inhibitors, we found that the collaboration
network with many narrow collaboration groups, or
groups that are less concentrated in the top 90%, may be
a potential proxy for failure. We demonstrate how

knowledge flows between institutions to highlight the
underlying (and often unnoticed) contributions of many
different institutions in the development of a new drug.
While this analysis is not comprehensive, it does show
that none of these highly successful drug classes identi-
fied and developed drug candidates as a purely internal
process within a single institution. Collaboration is not
only commonplace, but also likely essential for success,
requiring academia-industry interaction and cooper-
ation. Recent studies suggest that citation and collabor-
ation networks from literature data provide evidence for
impact, novelty, and success for academic-industry part-
nership and innovation relating to the biomedical/
pharmaceutical industry [19-21].

Conclusions

Scientific collaboration is more strikingly prevalent today
than it was several decades ago. For example, contem-
porary drug discovery and development reflects the work
of teams of individuals from academic centers, the
pharmaceutical industry, the regulatory science commu-
nity, health care providers, and patients. However, public
understanding of how collaborations between academia
and industry result in novel target identification and
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first-in-class drug discovery is limited. In this study, we
performed a comprehensive network analysis on a large
scientific corpus of collaboration and citations. We dem-
onstrate that network analysis of large public databases
can identify and quantify investigator and institutional
relationships in drug discovery and development. If
broadly applied, this type of analysis may help to en-
hance public understanding of and support for biomed-
ical research, and may identify factors that facilitate
decision-making in drug discovery among academia, the
pharmaceutical industry, and healthcare systems.

Methods

Data resources

We used the MAG database [11], which contains 170,
099,684 publications from 1900 to 2017. In total, we ex-
tracted and analyzed 97,688 papers, as well as their 1,
862,500 citations, and all of the affiliation information in
each paper from MAG. We used the machine learning-
based tags to identify the papers that study a specific
drug annotated by generic name and Medical Subject
Headings (MeSH) vocabularies [22]. We combined the
aliases from the human gene database, GeneCards
(https://www.genecards.org/cgi-bin/carddisp.pl?gene=
PCSK9), and checked them manually. For PCSK9, we
considered its aliases, such as proprotein convertase sub-
tilisin/kexin type 9, FH3, HCHOLA3, LDLCQ1, NARC-
1, NARC1, PC9, FHCL3, and searched each of the tags
in MAG. The papers’ affiliation(s) are identified using all
the authors’ affiliations within the paper, and affiliations
are also well identified and linked to the official links
and Wikipedia links in the database, for example, the
Amgen: https://academic.microsoft.com/institution/132
0553840. We manually identified the industrial institu-
tions and the academic institutions.

Construct collaboration and knowledge flow network

We constructed institution-level collaboration and cit-
ation networks. In the collaboration network, each node
is an institution, and links with weights indicate the col-
laboration strength between the two institutions, i.e., the
number of cases with both of the institutions appearing
within the same paper. The citation flow network is a di-
rected network, each node is an institution, and a link
(edge) from institution a to institution b weighs the
cases when paper affiliated b cites paper affiliated a. See
Fig. 1 for the illustrative example.

Definitions of network indices

We investigated four commonly used network indices to
quantify the structure of collaboration networks. All of
the following indices are defined on the whole weighted
collaboration network.
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Fraction of industrial participation

In the collaboration network, we selected all the
weighted links whose connected nodes contain corporate
entities and calculated the fraction of link weights asso-
ciated with corporate entities over the sum of the all link
weights, i.e.,

g i or jeCorporates Wij/z Wi
ij Y
(1)

where w;; is the collaboration strength between institu-
tion i and institution j.

Average clustering

This parameter is a measurement of the degree to which
nodes in a graph tend to cluster together. A larger aver-
age clustering means the nodes tend to form triplets in
the network. Clustering is often defined with respect to
a node, and the average clustering of a network is the
average over all nodes in the network. For weighted net-
work, there are several ways to define clustering; here,
we used the one defined as the geometric average of the
subgraph edge weights (see details in reference [23]).

Assortativity

In network science theory, assortativity or assortative
mixing is a network-based measure used to quantify the
preference for a network’s nodes to link to other nodes
that have similar degrees. In this paper, if we rank the
institutions by their number of collaborations with
others (i.e., the degree), the assortativity is the tendency
for an institution to collaborate with other institutions
with similar rank. There are several ways to capture such
a correlation. A convenient approach is to use the Pear-
son correlation coefficient between the degrees found at
the two ends of the same link. In our collaboration net-
work, the Pearson correlation coefficient of weighted de-
gree (the degree of institution i is defined as s; = Lw;)
between pairs of linked nodes measures the similarity of
connections in the graph with respect to the node de-
gree, the value lies between -1 and 1. Negative values
mean that the links in the network tend to form between
nodes with very different degrees, while positive values
mean that links tend to form between nodes with similar
degrees [24, 25].

Fraction of top institutions with 90% or greater
collaboration weights

We rank the institutions according to their weighted de-
gree. The degree of institution i is defined as s; = Lw;.
We then calculate the minimal fraction of top institu-
tions that account for 90% of the whole nodes’ degrees
in the network. This measure captures the “dominant


https://www.genecards.org/cgi-bin/carddisp.pl?gene=PCSK9
https://www.genecards.org/cgi-bin/carddisp.pl?gene=PCSK9
https://academic.microsoft.com/institution/1320553840
https://academic.microsoft.com/institution/1320553840
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role” of top institutions, only a small fraction of top in-
stitutions account for more than 90% of the total collab-
orations in drug development; which is a common
phenomenon observed in social science, economics, and
network science.
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