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Abstract

Background: Most biological experiments are inherently designed to compare changes or transitions of state
between conditions of interest. The advancements in data intensive research have in particular elevated the need
for resources and tools enabling comparative analysis of biological data. The complexity of biological systems and
the interactions of their various components, such as genes, proteins, taxa, and metabolites, have been inferred,
represented, and visualized via graph theory-based networks. Comparisons of multiple networks can help in
identifying variations across different biological systems, thereby providing additional insights. However, while a
number of online and stand-alone tools exist for generating, analyzing, and visualizing individual biological
networks, the utility to batch process and comprehensively compare multiple networks is limited.

Results: Here, we present a graphical user interface (GUI)-based web application which implements multiple
network comparison methodologies and presents them in the form of organized analysis workflows. Dedicated
comparative visualization modules are provided to the end-users for obtaining easy to comprehend, insightful, and
meaningful comparisons of various biological networks. We demonstrate the utility and power of our tool using
publicly available microbial and gene expression data.

Conclusion: NetConfer tool is developed keeping in mind the requirements of researchers working in the field of
biological data analysis with limited programming expertise. It is also expected to be useful for advanced users
from biological as well as other domains (working with association networks), benefiting from provided ready-made
workflows, as they allow to focus directly on the results without worrying about the implementation. While the
web version allows using this application without installation and dependency requirements, a stand-alone version
has also been supplemented to accommodate the offline requirement of processing large networks.
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Background
Networks provide one of the means to construct a the-
oretical model for representing the relationships between
the entities of complex systems. Such representations
often help visualizing in a convenient way the relation-
ships as well as capture the concepts for an improved

understanding. Networks can also be used to transform
a generic problem into a mathematical model repre-
sented by graphs. Consequently, methods and tools used
for solving a graph theory problem can easily be applied
to augment the already available set of solutions. For
biological systems, the use of network-based methods
finds a wide range of applications for systems level un-
derstanding [1–4]. A biological network can be gener-
ated using known or predicted associations between
various components of the system (like genes, proteins,
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microbial taxa, and metabolites). With the availability of
large-scale multi-omics data, the current research focus in
biological systems has widened from understanding indi-
vidual level variations to comparison of variations across
systems (like different ecological environments, multiple
organisms, and multiple stages of a developmental cycle).
Multiple network comparisons provide a means to gather
improved insights into the variations across a number of
such systems which are each represented by a network.
Cytoscape [5], backed by a multitude of plugins across di-

verse categories, provides the most feature-rich interface for
biological network analysis. Although “network comparison”
is an active category of Cytoscape plugins, most of them
provide niche analytical workflows often useful for a specific
category of networks [6, 7]. Another stand-alone tool, called
CompNet [8], also provides methodologies applicable for
analyzing multiple biological interaction networks. With
rapid advancements in web-based technologies and signifi-
cant improvement in network bandwidth, modern web-
based tools provide a convenient alternative to stand-alone

software with advantages like platform independence, no
installation/updating requirements, and access from any-
where. Although a number of web-based tools, like tYNA
[9], NeAT [10], PINA [6], OmicsNet [11], BINA [12],
NAP [13], CellMaps [14], GraphSpace [15], NetworkAna-
lyst [16], and NetVenn [17], have been developed for ana-
lyzing specialized metabolic or interactome networks, they
have certain limitations pertaining to comparison of mul-
tiple networks. For example, Network Analysis Tool
(NeAT) mainly focuses on network clustering and is lim-
ited to comparison of two networks based on intersection
and union of network components. On the other hand,
Network Analysis Provider (NAP) allows comparison of
mainly local graph properties across multiple networks. A
detailed comparison of the above tools with NetConfer is
provided in Additional file 1: Table 1.
In this communication, we present a web-based tool

(called NetConfer) that implements various network com-
parison methodologies and present them in the form of
organized analysis workflows for comparing various types

Fig. 1 Description of the overall methodology for multiple network comparison using NetConfer starting from network selection, preview, and
application of workflows to a selection
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of biological networks (Fig. 1). Each workflow is designed
to achieve a specific network analysis objective. These in-
clude comparison of network components, identification
of union/intersection/exclusive nodes or edges, shortest
path comparison, community and clique analysis, and
comprehensive network visualization modules. Events like
network rewiring in different stages of progression of dis-
ease, topological property changes in time series networks,
and comparing networks belonging to different popula-
tions are some examples where NetConfer can be ex-
tremely useful. We expect our tool to be a valuable
contribution in the field of network and systems biology.

Methods
NetConfer represents an ensemble of workflows de-
signed to provide a structured approach for exploring
multiple (biological) networks as well as comparison
through several classical and innovative visualization
techniques. While the backend algorithms are coded
using Python with JavaScript and PHP for web compo-
nents, D3.js (https://d3js.org/) and Cytoscape.js [18] have
been used for the frontend modules. Networkx python
library (https://networkx.github.io) and SNAP C++ li-
brary [19] components have been employed in the back-
end for reliable and standard computations of individual
network parameters/properties. Given the “multi-net-
work” processing objective of the platform, end-users
are allowed to supply multiple network files (maximum
number of 8 networks) as delimited edge lists (Add-
itional file 2: Fig. S1). Various options like specifying the
columns corresponding to the source and target, delim-
iter selection, and edge weight can be easily specified
from the input form. It is pertinent to note that all the
input network files in a given submission should be de-
rived from a similar type of data like multiple networks
of genes, proteins, and microbes. In addition, the com-
pared networks are expected to share at least some
nodes in common to obtain meaningful insights. Never-
theless, NetConfer results are not biased by the nature
of data and the above recommendations are solely meant
for optimal testing of various features of the tool.
Upon successful upload of networks, an interactive

grouped bar chart-based preview of four global network
properties (i.e., total nodes, total edges, cluster coeffi-
cient, and density) of all the submitted networks is gen-
erated, thereby enabling users to gather an initial idea of
the input network structures (Additional file 2: Fig. S2).
A status terminal in the user interface displays errors en-
countered while performing the background tasks. Users
can modify labels and colors associated with each net-
work by assessing the color and label maps in the pre-
view (Additional file 2: Fig. S3). Upon proceeding, the
networks are automatically clustered based on their
overall similarity (using edge Jaccard index) and

presented to users in the form of an interactive tree/den-
dogram for ease of selection and subsequent application
of workflows and visualizations (Additional file 2: Fig.
S4). The working area is provided to the end-users in
the form of a personalized dashboard comprising of
“Workflows Dashboard” and “Visualization Dashboard.”
To start any analysis in Workflows or Visualizations
Dashboard, users get the option of selecting two or more
networks from the clustered tree. In addition to the
checkbox-based selection feature on the tree, clicking on
nodes of interest from the tree redirects users to the
graphical representation of the given network, wherein
users get to interact, analyze, and customize the node-
specific network graph.

Job management system
NetConfer provides an efficient job management system
comprising of following components:

a. Unique identifier-based task initiation and
recording

b. Tagging of unique identifier to a personalized
dashboard specific to the job and end-users

c. User specific local job history management
d. Search and access
e. No requirement for registration or sharing of

personal information

Each submission on NetConfer application web server
is assigned to a 10-character unique alpha-numeric code
(termed as JOB ID) and is displayed to the user for rec-
ord keeping. The same is also locally stored in the user
(and browser)-specific “Job History” page of NetConfer,
wherein the user can keep track of his/her personal sub-
missions. Post-submission of data and generation of JOB
ID, the user is redirected to a personal “Workflows”
dashboard. This dashboard along with all associated
modules can be accessed by using the provided unique
JOB ID. The search and access can be accomplished
through the dedicated Job History page or through the
Job Search widget provided on “Home Page” and “Sub-
missions” section of NetConfer. It is pertinent to note
that NetConfer purges a job and its associated dash-
board(s) after 7 days of completion of the job. This
unique “Job Management System,” coupled with person-
alized dashboards, ensures that users are able to use the
platform for tracking their tasks and re-assess their
workflows without needing them to register or share of
any personal information. In addition, the provision for
live status terminal in NetConfer allows an end-user to
get dynamic updates about status of the task being per-
formed. This is coupled by providing information about
the time taken for each task and is expected to enhance
the user experience.
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Workflows and modules
The available methodologies and visualizations in Net-
Confer can be broadly classified into two categories,
each tagged to a dedicated personalized dashboard:

(A)Analysis workflows
(B) Visualization modules

Analysis workflows
This category of analyses provides five mutually exclusive,
yet logically connected multiple network analysis work-
flows and is described below (Additional file 2: Fig. S5).

Assessing similarity of network components Identifi-
cation of common nodes and edges among a set of net-
works is one of the primary features considered while
comparing multiple networks. Therefore, the first work-
flow has been designed to identify nodes as well as edges
which are commonly shared between two or more of the
selected set of networks. The results can be viewed using
the following three ways:

(i) The first method provides Venn diagrams
augmented with interactive user operations to
graphically display similarities and differences
across user-chosen networks [20]. The overlapping
regions correspond to the intersection of multiple
networks, with the number depicting the number of
common nodes/ edges among the intersecting net-
works. The list of common edges/nodes among two
or more networks can be easily identified by click-
ing on the numbers displayed on the corresponding
intersecting regions (Additional file 2: Fig. S6, S7).

(ii) The second method uses a powerful visualization
technique called “upset plot” which displays the
number of common nodes and edges across all
combinations of networks [21]. The filled and
connected circles in the lower part of the upset plot
correspond to different combinations of the
networks which are being considered, and the bar
heights indicate the number of common edges of
the corresponding combinations (Additional file 2:
Fig. S8, S9). Clicking on any bar provides the
corresponding common nodes/edges of the selected
combination set in form of a list or circular graph.
If an “upset plot” of nodes is selected, only the
constituent nodes for the combination are
highlighted in the circle graph. Selecting a
combination bar from the “upset plot” of edges
shows the resultant network as a circle graph of the
constituent nodes and edges. The generated “upset
plots” can be sorted either by the size of the
combinations (combination cardinality) or by the
sets (set cardinality) (Additional file 2: Fig. S10).

(iii)The third method uses the classical, hitherto highly
interactive, customizable, and downloadable
network diagrams to visualize exclusive and
intersecting set of edges between selected set of
networks. This functionality can be accessed
through the visualization modules presented in
Visualization Dashboard discussed in a later section.

Biological use. This workflow can enable clinicians/re-
searchers to easily obtain an overall idea of the similar-
ities/dissimilarities between the uploaded networks. If
two or more networks are very similar with respect to
the constituent nodes, the values in the intersecting re-
gions of the Venn diagram will be helpful to quantify as
well as view the same. For example, the common genes
perturbed in the virulent and avirulent infections could
be identified using the Venn diagram of nodes in case
study 2 (described later in the manuscript). Events like
network rewiring can also be inferred for an uploaded
set of networks if their constituent nodes appear very
similar but show significant differences in the Venn
diagram of edges.

Identifying and comparing key nodes One of the most
common ways of comparing networks is by studying dif-
ferent properties (or centrality measures, also termed as
local properties) of the nodes and global properties of
the network (Additional file 2: Fig. S11). NetConfer pro-
vides a dedicated workflow for assessing and comparing
various global and local properties of all selected net-
works. Some of the most useful (local) properties of
nodes in a network covered by NetConfer are degree,
betweenness centrality, hub and authority score, eccen-
tricity, and eigenvector centrality [4]. The workflow al-
lows tabulated and graphical analysis and tracing of
various properties across selected set of networks. These
properties can be viewed by sortable and searchable ta-
bles for comparing the node properties across different
networks. Further, the table can be generated by either
having the values of one of the properties of a node
across different networks or having the different proper-
ties of all the nodes in one network. The first option is
useful for understanding the changes in centrality meas-
ure across different networks. Additionally, NetConfer
utilizes interactive parallel coordinates called “Delta
Centrality” for providing an innovative way of viewing
changes in various centrality measures (Additional file 2:
Fig. S12). A user can choose a centrality measure of
interest by using the radio button and highlight the
values for one or more selected node using the tabu-
lated summary by clicking on the desired node name.
This feature is useful especially for comparing spatio-
temporally ordered networks.
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Biological use. The centrality measures of various
nodes in a network can be used for identifying critical or
key nodes in a network. For example, in a microbial as-
sociation network, degree and betweenness might be
useful to identify key nodes (“microbes”) that help in mi-
crobial communication. Nodes with high betweenness
score are essentially key points of information flow and
if removed can disrupt the whole network. Similarly,
hub and authority scores have been proven to be useful
in identification of essential proteins in protein-protein
interaction networks.

Comparing shortest paths NetConfer allows a user to
perform a comparative analysis of shortest paths be-
tween a given pair of “source” and “target” node across
the selected set of networks using a novel interactive lay-
out (Additional file 2: Fig. S13). The layout not only al-
lows comparing multiple shortest paths within a
network, but also across a selected set of networks in an
easy and intuitive way. In the figure, the colors corres-
pond to different networks (there may be more than one
shortest path between two nodes in a single network),
and the numbers correspond to the order of the nodes
in the shortest path. The source and target nodes (as
chosen by the user in the workflow) are always posi-
tioned at the bottom and top of the graph, respectively.
Using this visualization, NetConfer makes it easy to
identify nodes which are consistently present along the
shortest path (indicating the preferred nodes) between
the “source” and “target” nodes across different
networks.
Biological use. Identification of shortest paths is useful

during analyses of a range of biological networks like
metabolic pathway analysis [22], alterations in protein-
protein interaction networks [23], and order of inter-
action cascades in transcription factor networks [24].
Nodes which are consistently present in the shortest
path between the “source” and “target” across different
networks are likely to play an important role in the dy-
namics of the system. For example, in case study 2, gene
“NCAPG” forms an important connecting member for
the multiple differential shortest paths identified be-
tween genes “BIRC5” and “ASPM” (details are described
later in the manuscript).

Inferring and comparing community structures This
workflow can be used to find and compare communities
in a selected set of networks using innovative plots and
tables. NetConfer offers a novel way of tracking changes
in community structures across a pair of networks.
Additional file 2: Fig. S14 represents an example of a
heatmap-embedded Sankey diagram-based community
transition tracking utility of this workflow. In both the
vertical axes, the communities (which are easily

distinguishable by colors) along with their constituent
member nodes are ordered in the descending order of
their size. Using the “node to node” flow between the
two vertical axes, changes in communities’ constituent
can be tracked easily, thereby helping users in identifying
not only communities which are conserved across net-
works, but also the ones which undergo reshuffling.
Heatmap embeddings besides the nodes represent the
three important centrality measures, i.e., degree, hub
score, and betweenness (whose values have been rank
normalized across the given pair of network). This fea-
ture allows easy identification of key nodes and tracking
their fate in communities of the two networks being
compared. Additionally, a tabulated summary of the
“community shuffling” (with an intersection and Jaccard
score of community similarity) is also presented for user
convenience. The results are also depicted in a “compre-
hensively searchable” tabulated layout for enabling users
in identifying the communities that comprise of nodes
(or group of nodes) of their interest (Additional file 2:
Fig. S15). Highlighting of the searched query further
makes the results easy to comprehend. By default, the
tabulated searchable and sortable layout enlists commu-
nities in the descending order of their size additionally
coloring them based on the parent network. By clicking
on the community in the table, a network visualization
(described in detail under the “Visualization modules”
section) tab pops up displaying the community as a sub-
network (Additional file 2: Fig. S15).
Biological use. Closely linked hubs of interacting nodes

represent a network community. Such communities pro-
vide important insights into the functional components
and organization pattern of a biological system. For ex-
ample, in a microbial association network, these modular
hubs may constitute groups of microbes interdependent
on each other for various functions. Understanding the
nature and change in communities can hence be of great
biological significance for community engineering exper-
iments, understanding functional potential, pathogen
colonization, etc. Further, understanding the changes in
community structure across various states of a system
(represented as a network) might help in identification
of crucial “drivers” of the change [1].

Analysis and comparison of network cliques This
workflow is designed to identify and compare “cliques”
between a selected set of input networks
(Additional file 2: Fig. S16). Results are provided in
“searchable, sortable, highlight-enabled” tabulated frame-
work, similar to the ones implemented in community
workflow. Users can choose nodes of interest (or a com-
bination thereof) to explore cliques across all the chosen
networks for comparison. In order to aid visual analyses
of the results, users have the option to view the
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individual cliques within the networks by simply clicking
on the clique names. Like the previous workflow, users
can track the members of the cliques in other networks
as well, which is facilitated by coloring the member
nodes as gray and keeping the non-member nodes with
the initial color (at the start of analysis). Another add-
itional feature of the visualization is the ability to click
and drag the clique member nodes together, which eases
the ability to view the member nodes and their connec-
tions (describes later as a part of the case study).
Biological use. Clique (closely knit subset of nodes in a

graph such as dyads, triads, and tetrads) serve as useful
indicators for identifying co-expressed genes, finding
(and comparing) motifs, protein complexes, and func-
tional modules from protein-protein interaction (PPI)
networks and for understanding microbial symbiosis.
These small subunits are similar to communities but are
often more robust indicators of biological subunits in a
system [25].

Visualization modules
Apart from the workflows for network comparison as
described above, NetConfer allows users to visually
compare the results in a variety of ways, as described
below:
In the “Visualization Dashboard” (Additional file 2:

Fig. S17), individual network can be viewed by clicking
on the network names in the hierarchically clustered
tree. The visualization offers users options to customize
and interact with the network visualization using simple
and intuitive operations like dynamic change of node,
font and edge size, and network layouts. In addition,
end-users can also overlay network properties like
degree, betweenness, and coreness to proportionally size
the nodes of the network. Along with the above module
for viewing the networks individually, NetConfer also
provides modules wherein users have the option to
choose two or more networks and view subsets or super-
sets of the networks. All these modules provide
customizable and interactive subsets/supersets. The
modules and their utilities are described below:

1. Intersection visualization module. In this module,
the edges which are common across all selected
networks can be viewed. All the features applicable
to the network view, as described above, can be
applied to analyze the intersection network.

2. Exclusive visualization module. In this module, the
edges present exclusively in each of the selected
networks as compared to all the other selected
networks can be visualized. Nodes are colored
according to their presence in different selected
networks and can be customized for size, font, and
layout as well.

3. Union visualization module. Using this module, the
nodes and edges present across all the selected
networks can be visualized. To help users
understand which network the nodes belong to,
every node is colored like a pie chart, with the
colors corresponding to the networks in which the
node is present. In addition, the edges are also given
multiple colors to identify the networks they are
found in. For example, the node A in Additional file
2: Fig. S18 has 5 colors indicating its presence
across all five networks, whereas node L has only
one color, implying its presence only in one
network (net 5). On the other hand, the edge
between node D and node S is present in two
networks as determined by the colors (net 3 and
net 5). Similarly, since the edge between node S and
node A has only one color, this node is present in
one network (net 1).

4. Property mapped individual network visualization
module. Visualization of the nodes along with their
local properties like degree, betweenness, and
closeness are often of interest to users. In order to
facilitate this, NetConfer offers a network
visualization wherein all the different properties of
the nodes can be used to size the nodes. For
example, in Additional file 2: Fig. S19, the different
nodes of network 1 (selected from the dropdown)
are sized based on their degrees. Hence, it would be
easier to identify the important nodes as well as
their connections. The layout can be modified using
the network layout (random, grid, concentric,
hierarchical, and degree sorted circular layout) and
property modifier, and the view can be zoomed
using the zoom-in and zoom-out buttons in the
network view modifier.

5. Distance from the global union network. A simple
yet useful utility to visualize the distance of the
individual network from the global union is
implemented in this module. The distances are
calculated as Jaccard indices [26] of the nodes and
edges of the respective networks from the global
union and presented as a radar chart. The network
names are displayed as dimensional anchors placed
equidistant on the periphery of a circle. The points
on the radial line connecting the center of the circle
to each network represent the corresponding
distance (node and edge displayed in orange and
green color respectively) of that network from the
global union (Additional file 2: Fig. S20).

A flowchart of all the steps associated with requirements
and submission of a task/job to NetConfer is summarized
in Fig. 2. Figure 3 provides a gallery of important visualiza-
tions demonstrating the various outputs of NetConfer.
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Details of backend methodology
Network similarity calculation
NetConfer utilizes the edge similarity using Jaccard dis-
tance [26] that calculates the ratio of intersecting edges
(between the compared pair) over their union. The all
versus all edge distance is first calculated in a matrix
which is then hierarchically clustered to generate a den-
drogram available in the Python networkx module
(https://networkx.github.io). A hierarchy of the individ-
ual networks is built by progressively merging clusters
obtained using the pairwise distance measures. The re-
sultant tree is displayed in the main “Workflow Dash-
board” with each leaf as a checkbox. In addition to the
edge Jaccard, the node Jaccard distance is also calculated
and used to calculate the distance of a set of individual
networks from their union. The output is displayed as a
radar plot available in the “Visualization Dashboard.”

Shortest path calculation
Shortest path is the set of minimum edges required to
connect a given “source” to a “target” node in a given
network. It can be noted that multiple shortest paths
can exist between one “source” and “target” node with
some nodes serving as preferred intermediates. NetCon-
fer uses Dijkstra’s algorithm [27] implementation in the
Python networkx module for this purpose. The algo-
rithm works by generating a shortest path tree with the
source node as root and proceeds using two sets, one

containing a track of the nodes used in the shortest path
and remaining nodes in the other. In every step, a vertex
from the other set having the least distance from the
source is identified and added to the path. For multiple
input networks, NetConfer stores all the path informa-
tion and displays them together as a path matrix. The
layout of all shortest paths is designed in such a manner
that the user-specified source and target nodes are posi-
tioned at the bottom and top of the path (respectively),
and all other nodes between them are numbered in the
order they appear in the path (starting from source,
which is assigned the order number 0). Consequently,
the number on the top (pertaining to the target node)
also indicates the total path length.

Community detection
NetConfer implements the “fast modularity maximization
algorithm” [28] to identify communities in an input net-
work. This algorithm has been proven to work efficiently
even with larger input networks. We used the well-known
SNAP library [19] for community detection. The modified
C++ implementation from the SNAP library and in-house
python codes were used in our platform to enable batch
calculations. The same library is also used for calculating
various graph properties in NetConfer. As opposed to
other implementations, this community detection algo-
rithm works using a greedy optimization on the modular-
ity using sophisticated data structures. A dendrogram of

Fig. 2 A flowchart summary of all the steps associated with requirements and submission of a task/job to NetConfer
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hierarchically decomposed communities is first created
with leaves as the vertices of the original network and in-
ternal nodes representing the joins. The algorithm mini-
mizes needless operations in storing the original data
matrix and achieves a dramatic improvement in speed
when compared to other implementations. A more de-
tailed and technical description of the algorithm is pro-
vided by the authors in the original publication [28].

Community transitions
The identified communities can be compared for their
similarities in the constituent nodes between a pair of net-
works. Each community in one network may split into
multiple communities in the other network. In order to
quantify this “community transition,” an individual Jaccard
score as well as intersection count is first calculated across
all communities between the two networks and presented

as a tabulated summary under “community transitions”
tab in “workflow 4.” Two other scores, namely sum Jac-
card and weighted sum Jaccard, are also calculated to
quantify the overall transition process. As the name im-
plies, the sum Jaccard score is a cumulative sum of all the
individual Jaccard scores, while its weighted version is cal-
culated by dividing the value with total community com-
parisons made and multiplying the result with 100. Given
that the Jaccard score calculates the “intersection over
union” values, it is imperative that a higher value would
indicate a higher intersection and hence higher similarity.
Hence, a lower weighted Jaccard score indicates a higher
amount of community transitions.

Clique finding
Similar to the community detection implementation,
NetConfer implements the C++ function of clique

Fig. 3 A graphical summary of various key visualizations and associated analyses possible using NetConfer. Panel 1 shows graphs pertaining to
the Workflows Dashboard, while panel 2 depicts the graphical results offered by the Visualization Dashboard of NetConfer. In panel 1, figure (a) is
a typical layout of the Edge-Jaccard index-based network dendogram containing selectable (checkbox) nodes; (b) represents the grouped bar
chart-based “global property preview” generated, immediately after submission of various network files to NetConfer; (c) highlights the upset plot
offered in NetConfer for set-similarity analysis (classical Venn diagrams are also offered as alternative); (d) represents the novel yet simple
visualization approach for tracing shortest paths for a given pair of source and target nodes across networks of interest; (e) depicts the novel
Sankey-heatmap coupled community transition visualization designed for tracing the changes in community memberships and centrality
measure of the members between a given pair of networks; and (f) represents the tabulated visualization of communities observed in all
uploaded networks, wherein nodes of interest can be searched, highlighted, and visualized in the main network as well. Cliques are also
visualized using the same method(s), (g–k) represent visualization of the community of interest in various networks. In panel 2, figure (a)
represents visualization of network graph in various layouts offered by NetConfer, (b) depicts the union visualization method adopted by
NetConfer using pie-nodes and multi-colored edges, and (c) represents a radar chart showing relative distances of a set of selected networks
from their union network
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finding available in the SNAP library (https://snap.stan-
ford.edu/). The function enumerates maximum cliques
within a reasonable time for a given network. The clique
finding problem refers to finding the complete sub-
graphs of a given size (usually denoted as “k”) and subse-
quently finding whether any other cliques of higher size
exist in the input graph. When a user sets the “k” value
in the “workflow 5,” all cliques of size ≥ k are calculated
and displayed as a table. The tabulated result is stored
using an efficient JavaScript data structure called “Data-
Tables” (https://datatables.net) in order to perform quick
searches with multiple filters.

Results
Case study 1: Understanding the role of gut microbiome
in multiple sclerosis using microbial association networks
In order to demonstrate the utility of NetConfer tool, we
chose a publicly available dataset [29] pertaining to gut
microbiomes from 60 multiple sclerosis patients span-
ning three sets (28 without any treatment, 18 treated
with interferon, and 14 treated with Copaxone for at
least 6 months) and 43 control subjects. The microbial
abundance data pertaining to the study was downloaded
from MGnify [30] corresponding to the study ID
MGYS00001194. Further, microbial association networks
(at genera level) corresponding to all the four groups
(“Control,” “Untreated,” “Interferon,” and “Copaxone”)
were generated using the abundance data using the
CCREPE tool [31] with significant correlations (p < 0.005)
at 1000 bootstrap iterations. The global graph properties of
the four networks indicated the disease groups (both
treated and untreated) to have little lower number of edges
as compared to the control (Additional file 3: Fig. S21). The
“network tree” feature in NetConfer interestingly showed
grouping of the “control” and “untreated” samples together
while the two treatment networks clustered far apart (Add-
itional file 3: Fig. S22). The “edge upset plot” and the “edge
Venn diagram,” available under “workflow 1,” further con-
firmed that the “control” and “untreated” network did share
the highest number of edges compared to others (Add-
itional file 3: Fig. S23,S24). The edge Venn diagram also
showed a fair share of exclusive edges in each network indi-
cating some amount of network rewiring. The observations
suggested an overall microbiome community structure
change in the treatment group. In order to further investi-
gate the changes pertaining to the key members (or import-
ant nodes) of the networks, the degree of each node was
visualized using the NetConfer’s network view option (by
clicking the individual network names or labels from the
checkboxes) of the generated tree. The obtained network
layout, with node sizes mapped to degree centrality and
high degree nodes placed in the center, provided some add-
itional insights (Additional file 3: Fig. S25). While microbial
genera like Enterococcus, Clostridium, Streptococcus, and

Actinomyces were seen as high degree nodes in the “con-
trol” network, genera like Aggregatibacter, Staphylococcus,
Cronobacter, Gemella, Corynebacterium, Ruminococcus,
and Turicibacter were found to be prominent key members
in the remaining three networks. In order to track how the
central nodes in the “control” network changed in the “dis-
ease” and “treatments,” NetConfer’s “workflow 2” was used
to identify the top 10 high degree nodes in the “control”
network and to visualize the changes in their centrality
values. As seen earlier in the analysis, the key nodes also ap-
peared to be consistent in their degree in the “control” and
“untreated” networks and underwent a major change in the
treated samples, the most prominent change being in the
interferon-treated patients (Additional file 3: Fig. S26).
None of the genera in the top 10 degree of “control” as well
as “untreated” was found to be common with the differen-
tially abundant genera reported in the original study. This
observation is not surprising considering the fact that a mi-
crobial association network captures the similarity changes
of intermicrobial associations rather than their individual
abundance level changes. Since pathogenic genera like
Staphylococcus, Streptococcus, and Enterococcus were ob-
served among the top 10 high degree nodes, we evaluated
their colonization as well as communication patterns across
the networks using NetConfer. Results obtained using the
shortest path workflow indicated that the direct communi-
cation between Enterococcus and Streptococcus/Staphylo-
coccus was interrupted during the Copaxone treatment, the
minimum path length being found to be increased to 2
(Additional file 3: Fig. S27). However, the number of short-
est paths connecting the genera was seen to increase, which
might be an indicator of the pathogens trying to find alter-
nate means of communication using other genera as inter-
mediate. The results of the clique analysis (in “workflow 5”)
for identifying the “partners in crime” for the above patho-
genic genera indicated genera like Granulicatella, Actino-
myces, and Gemella to be the likely players in pathogen
colonization (Additional file 3: Fig. S28,S29). The visual
outputs of the comparison of microbial community struc-
tures under different conditions, obtained using workflow 5
of NetConfer, indicated a drastic community change in the
interferon treatment (weighted Jaccard score = 1.87),
followed by the Copaxone treatment (weighted Jaccard
score = 3.03) with respect to the untreated as compared to
the untreated with respect to control. As discussed earlier
in the “Methods” section, it must be noted that a lower
“weighted Jaccard score” indicates higher community
change. The networks between the control and untreated
group showed an overall lesser change (weighted Jaccard
score = 3.8) in their community structure as compared to
the changes observed after treatment (Additional file 3: Fig.
S30). The observations from the microbiome networks
clearly indicated that the microbiome is more affected dur-
ing the treatment as compared to the disease itself.
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Evaluating the effectiveness of interferon versus Copaxone
is an active area of research [32], and the microbiome
might serve as a valuable component to enhance this
understanding.

Case study 2: Understanding differential mycobacterium
infection using time series gene networks
The mechanism of Mycobacterium tuberculosis infection
in human host provides a ground for interesting clinical
research [33]. For a long time, researchers have tried to
understand the differences in human gene perturbation
upon infection by virulent (H37Rv) and avirulent
(H37Ra) M. tuberculosis strains. In one such effort, a
gene expression study on human macrophages infected
with H37Ra and H37Rv at different infection time points
was performed [23]. The gene expression data obtained
from the study (https://www.jbc.org/content/suppl/2
011/09/26/M111.266239.DC1/jbc.M111.266239-2.xls)
was later analyzed using various bioinformatics ap-
proaches including gene perturbation networks [8] by
overlaying the highly perturbed genes at different time
points on the STRING human reference network [34].
In this case study, we used the above gene perturbation
networks for the three infection time points (16 h, 48 h,
and 90 h) corresponding to each strain (totalling to 6
networks) to demonstrate the applicability of NetConfer
features. The networks, available as edge lists of gene
IDs, were uploaded to the NetConfer web server, and
the summary global property plot was obtained (Add-
itional file 4: Fig. S31) which showed an increased gene
perturbation at the 48 h and 90 h time points for H37Ra
as evident from the higher node and edge counts. How-
ever, the density of the H37Rv networks showed a higher
trend as compared to that of its counterpart H37Ra. The
clustered network tree (Additional file 4: Fig. S32A) gen-
erated in the next step also showed a distinct cluster of
the post-infection time points (for both strains) with the
90th hour time points showing a slightly more differ-
ence. This trend was also more pronounced for the
H37Ra 90 h network observed in the radar plot (Add-
itional file 4: Fig. S32B) which plots the Jaccard node
and edge distance of each network from the union net-
work of the selected set. An inference of the network
similarities using the Venn diagram (available under
“workflow 1”) could identify and list the contributing
nodes representing the gene names (Additional file 4:
Fig. S33). High betweenness nodes (genes) for H37Rv 90
h network could be identified using “workflow 2” and
compared for their changes across other networks/prop-
erties (Additional file 4: Fig. S34A, B). The “BIRC5”
node, a gene known to be an inhibitor of apoptosis [35],
was found to have highest betweenness value in the
H37Rv 90 h network. Interestingly, when the value was
compared across other networks, it was found to be the

least even with respect to the H37Rv 48 h network. The
clique analysis for the virulent time points using “work-
flow 5” also showed higher size cliques forming only in
the 48th hour time point, indicating major connected per-
turbation events taking place at this time (Additional file 4:
Fig. S35). In order to get an idea of the connected perturb-
ation events, we selected another important cell division
gene “ASPM” [36] from the list of high betweenness nodes
as seen in Additional file 4: Fig. S34. The result showed a
list of differential shortest paths taken in H37Ra and
H37Rv strains for the different time points (Add-
itional file 4: Fig. S36). The gene “NCAPG” which encodes
for proteins responsible for stabilizing the chromosome
during cell division [37] forms an important connecting
member for all the paths. The H37Rv 90th hour time
point showed an exclusive shortest path using the
“CCNB1” gene which is known to encode important pro-
tein for cell cycle transition phase [38]. An improved un-
derstanding of this transition can be visualized using the
“community transition plot” available in “workflow 4” of
NetConfer (Additional file 4: Fig. S37).

Discussion
In order to perform a comparative evaluation of execution
times for computationally expensive modules in NetCon-
fer, random networks of varied sizes were created. This
random network sets consisted of seven categories with
total nodes ranging from 500 to 5000 and total edges be-
tween 1000 and 25,000. Each category was designed to
contain networks of “n” nodes having “2n,” “3n,” “4n,” and
“5n” edges, respectively. Further, three replicates were cre-
ated for each type of network (having same nodes and
edge counts, but having varied types of edge connections)
and were uploaded to the NetConfer web server for evalu-
ation. This evaluation included four computationally ex-
haustive operations, namely, network loading and global
property calculation, local graph property calculations,
community prediction, and clique finding. The results in-
dicated that the maximum time taken for an operation for
calculating local graph properties for the biggest network
set consisting of 5000 nodes and 25,000 edges was 134.81
s. The maximum time taken for community and clique
finding of this biggest set was also less than a minute. A
detail of the evaluation for all the sets is provided in Add-
itional file 5: Table 2. Networks of up to 10,000 and 20,
000 nodes were found to get uploaded and processed for
global properties in less than 20 s and 40 s per network,
respectively. Time taken for centrality measure assessment
for all networks was observed to be less than a minute and
3min per network for networks of aforementioned sizes.
Other available workflows were processed in less than 3 s
per network.
The primary intention of the case studies was to illus-

trate the ease with which complex comparative analysis
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of biological networks can be performed using NetCon-
fer. Our tool offers the unique feature of segregating im-
portant biological analyses into different workflows
which can be easily used by researchers. The case studies
provide a demonstrative analysis for each workflow that
might serve as a practical guide where it can be applied.
The results presented in the case studies however might
require addition experimental analysis and validation.

Conclusions
Given the established importance of interpreting bio-
logical information using networks, there is also an inher-
ent need for tools which can compare and visualize
multiple networks. The general intention behind develop-
ing NetConfer is to ease the accessibility and comprehen-
sion bottlenecks often faced by not only biologists or
clinicians, but also users looking for quick and easy way of
comparing multiple networks. Our tool is expected to be
of particular use for smaller or mid-sized networks (nodes
< 1000) which are very common in biology. Examples in-
clude pathway networks, microbiome genera interactions,
residue interaction networks (RINs), and connected gene
perturbations. Researchers might also be interested to
trim a protein-protein interaction (PPI) network to in-
clude only the most significant edges and perform quick
comparisons. NetConfer is expected to fill the existing
gaps in comparative network biology with pre-defined,
logically connected, easy to use workflows and modules.
Each workflow is developed keeping a biological analysis
objective in mind which is demonstrated using examples
and real-world case studies. The NetConfer web version is
tested to work efficiently with networks containing total
nodes up to 5000 and total edges up to 25,000. Larger net-
works consisting of up to 20,000 nodes and 40,000 edges
are also processed for analyzing network properties, Jac-
card similarity assessment, set based comparisons
(through Venn diagrams), shortest path analysis, and radar
plot generation. However, the stand-alone codes corre-
sponding to each of the NetConfer workflow (accessible
through the project page under “offline implementation”
section in the footer) can process even larger networks in
a local/offline desktop containing the required libraries/
software along with relevant documentation. Based on
user suggestions, NetConfer will also undergo continuous
development and updates to accommodate as many fea-
tures as possible. We expect our tool to be a valuable con-
tribution in the field of network analysis and comparison.
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