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Abstract

Background: Cancer cells reprogram their metabolism to survive and propagate. Thus, targeting metabolic
rewiring in tumors is a promising therapeutic strategy. Genome-wide RNAi and CRISPR screens are powerful tools
for identifying genes essential for cancer cell proliferation and survival. Integrating loss-of-function genetic screens
with genomics and transcriptomics datasets reveals molecular mechanisms that underlie cancer cell dependence
on specific genes; though explaining cell line-specific essentiality of metabolic genes was recently shown to be
especially challenging.

Results: We find that variability in tissue culture medium between cell lines in a genetic screen is a major
confounding factor affecting cell line-specific essentiality of metabolic genes—while, quite surprisingly, not being
previously accounted for. Additionally, we find that altered expression level of a metabolic gene in a certain cell line
is less indicative of its essentiality than for other genes. However, cell line-specific essentiality of metabolic genes is
significantly correlated with changes in the expression of neighboring enzymes in the metabolic network. Utilizing
a machine learning method that accounts for tissue culture media and functional association between neighboring
enzymes, we generated predictive models for cancer cell line-specific dependence on 162 metabolic genes
(representing a ~ 2.2-fold increase compared to previous studies). The generated predictive models reveal
numerous novel associations between molecular features and cell line-specific dependency on metabolic genes.
Specifically, we demonstrate how cancer cell dependence on one-carbon metabolic enzymes is explained based on
cancer lineage, oncogenic mutations, and RNA expression of neighboring enzymes.

Conclusions: Considering culture media as well as accounting for molecular features of functionally related
metabolic enzymes in a metabolic network significantly improves our understanding of cancer cell line-specific
dependence on metabolic genes. We expect our approach and predictive models of metabolic gene essentiality to
be a useful tool for investigating metabolic abnormalities in cancer.

Keywords: Cancer metabolism, Gene-silencing screens, RNAi, CRISPR, Tumor microenvironment, Tissue culture
medium, Metabolic networks

Background
Metabolic reprogramming is an emerging hallmark of
cancer [1]. Evidence for alterations in metabolic activity in
malignant cells goes back almost a century ago to the dis-
covery of the “Warburg effect” [2]. The recent resurgence
of interest in the field of cancer metabolism involves nu-
merous findings of metabolic alterations in a variety of

pathways in cancer cells [3]. These metabolic adaptations
are directly regulated by growth-promoting signaling
pathways, in which somatic mutations drive tumorigenesis
[4]. Multiple drugs targeting metabolic enzymes have been
used in clinics for decades, and many promising agents
are under clinical trials [5–7]. Major ongoing research is
aimed to identify tumor-specific reliance on metabolic en-
zymes that are limiting for cancer progression and to
exploit these liabilities to treat cancer [5].
Genome-scale RNAi and CRISPR-based gene

silencing-screens are powerful tools to identify essential
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genes for cancer cell proliferation and survival [8–13]. Re-
cent pan-cancer loss-of-function screens of hundreds of
cancer cell lines have identified novel oncogenes involved
in cell signaling pathways. Integration of measured gene
essentiality profiles with genomic features (DNA mu-
tations, copy number variations, and RNA expression)
was shown to provide a mechanistic understanding
and predictive models for tumor-specific gene essenti-
ality [14–16].
Explaining cell line dependence specifically on metabolic

enzyme-coding genes appears to be particularly challenging.
For instance, in a recent large-scale RNAi screen by Tsher-
niak et al. [14], the number of generated predictive models
for cell line-specific dependence on metabolic genes was
significantly lower (by ~ 30%) than for non-metabolic genes
(hypergeometric p value < 10−4). In the genetic screen by
McDonald et al. [15], a similar difficulty to predict cell
line-specific dependence on metabolic genes was shown. A
notable example of cell line-specific dependency on a meta-
bolic enzyme-coding gene that is explainable based on gene
expression is that of TYMS (thymidylate synthase) [15],
where TYMS was found to be essential in cell lines where
its expression level is low (hence, cells may be limited for
thymidylate needed for DNA biosynthesis) while the
expression of TYMP (thymidine phosphorylase) is high
(further depleting thymidylate pools).
Here, we aimed to generate predictive models for cell

line-specific dependence on metabolic genes based on
genomic features, providing insight into the underlying
molecular mechanisms. Considering that cellular metab-
olism is highly dependent on the availability of metabolic
nutrients in the environment [17–19], we further
accounted for the variability in tissue culture medium
used for different cell lines in the genetic screens—a
confounding factor that appears to have a major effect
on cell line-specific essentiality of metabolic genes,
thought quite surprisingly, has not been previously
accounted for. We show that considering culture media
as well as accounting for the functional association be-
tween metabolic enzymes via a metabolic network model
enables generating predictive models for cancer cell
line-specific dependence on a ~ 2.2-fold higher number
of metabolic genes than in previous studies.

Results
Metabolic gene essentiality depends on tissue culture
medium
Considering that metabolic activity is highly dependent on
nutrient availability, we hypothesized that variability in cul-
ture media used for different cell lines in genetic screens
may have a profound effect on cellular dependence on spe-
cific metabolic genes. To test this hypothesis, we utilized
data from recent large-scale RNAi and CRISPR screens
(covering 501 and 341 cell lines, respectively, as part of the

Cancer Dependency Map) [14, 16]. Analyzing the reported
information on tissue culture media in both screens showed
that multiple media were used for different cell lines within
each study (Fig. 1a, b). The two most commonly used
media in both studies were RPMI and DMEM, in which >
50% and > 20% of the cell lines were cultured, respectively.
RPMI and DMEM differ in terms of their composition of
inorganic salts, amino acids, vitamins, and metabolic nutri-
ents. For instance, RPMI includes several non-essential
amino acids such as proline, aspartate, and asparagine
which are absent from DMEM [20].
We compared the distribution of gene dependency scores

of metabolic genes for cell lines grown in DMEM and
RPMI (considering genes included in the metabolic net-
work model Recon 2.2 [21]). We focused on metabolic
genes whose dependency scores showed major variation
throughout the cell lines, considering those whose depend-
ency score in at least one cell line is lower by more than six
standard deviations from the mean of each gene as in [14]
(a low dependency score of a gene in a certain cell line re-
flects increased essentiality). We find that the RNAi-based
dependency scores of 37% (22/59) of the analyzed meta-
bolic genes are significantly associated with the utilized cul-
ture media (FDR-corrected Wilcoxon p value < 0.05) versus
18% of the non-metabolic genes (135/754, Fig. 1c). Simi-
larly, we find that utilized culture media are significantly
correlated with CRISPR-based dependency scores for a
markedly higher percent of the metabolic genes (26%, 15/
58 genes) versus other genes (3%, 19/716 genes; Fig. 1d).
The metabolic gene that showed the strongest dependence
on culture media in both RNAi and CRISPR screens was
ASNS (asparagine synthase, Fig. 1e, f) and found to be sig-
nificantly more essential in cells grown in DMEM (Fig. 1g,
h; FDR-corrected Wilcoxon p value < 10−12 and 10−9 for
the RNAi and CRISPR screens, respectively, comparing the
distribution of dependency scores in cell lines grown in
DMEM and RPMI). This is readily explainable by the lack
of asparagine in DMEM, rendering ASNS essential for de
novo asparagine biosynthesis under this culture media. Fur-
thermore, ASNS was found to be significantly more im-
portant in cell lines grown in DMEM than those grown
with other asparagine containing media, McCoy (FDR-cor-
rected Wilcoxon p value < 10−3 for both RNAi and CRISPR
screens), and Hams F12 (p value < 10−6 for both screens).
Overall, we found a significantly stronger association be-

tween metabolic gene dependency scores and culture
media versus that of non-metabolic genes and media
(Wilcoxon p value < 10−2 for the RNAi screen and p value
< 10−4 for the CRISPR screen, comparing the distribution
of FDR-corrected Wilcoxon p values computed above for
metabolic versus non-metabolic genes; Fig. 1b).
We next examined whether the identified correlation

between metabolic gene dependency scores and culture
media can be explained by variation in cell culture type
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(i.e., adherent versus suspension) or cancer lineage. Not-
ably, DMEM was initially developed for culturing adher-
ent cells [22] while RPMI was introduced for suspension
cells [23]. Indeed, we found that ~ 90% and ~ 30% of the
adherent and suspension cell lines from the genetic
screens were grown in DMEM and RPMI, respectively.
However, the correlation between metabolic gene depend-
ency scores and media type remained highly significant
when controlling for the cell culture type; for ~ 90% of the
metabolic genes whose RNAi- or CRISPR-based depend-
ency score correlate with media type, the correlation re-
mains significant when controlling for cell culture type
(FDR-corrected Spearman partial correlation p value <
0.05). Likewise, the correlation between gene dependency
scores and media type remained significant for 64% of the
cases when controlling for cancer lineage (see the
“Methods” section; FDR-corrected p value < 0.05). Taken
together, our results suggest that culture media is an im-
portant confounding factor affecting metabolic gene es-
sentiality in RNAi- and CRISPR-based screens.

Metabolic gene essentiality depends on the expression
level of neighboring enzymes in the metabolic network
We explored whether cell line-specific dependence on
metabolic genes is explainable based on altered RNA ex-
pression level. We find that RNAi- and CRISPR-based
dependency scores of 26% and 14% of the metabolic
genes, respectively, are significantly correlated with their
expression level across cell lines (FDR-corrected Spear-
man correlation p value < 0.05; with the r value having
an either positive or negative sign). This is significantly
higher than expected by chance, when considering cor-
relations between gene dependency scores and the ex-
pression of randomly chosen genes (p value < 0.05,
Fig. 2a, b). However, the fraction of metabolic genes
whose cell line-specific dependence is predictable by
their expression level is significantly lower (by ~ 40%)
than for non-metabolic genes (Wilcoxon p value < 10−4

for the RNAi screen and p value < 10−7 for the CRISPR
screen; comparing the distribution of FDR-corrected
Wilcoxon p values computed for metabolic versus
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Fig. 1 Tissue culture media significantly affect cancer cell dependence on metabolic enzymes. a, b The distribution of culture media types
throughout cell lines used in large-scale RNAi genetic screen by Tsherniak et al. (a) and in a CRISPR-based screen by Meyers et al. (b). c, d
Difference in RNAi (c)- and CRISPR (d)-based dependency scores of metabolic genes between cell lines grown in DMEM versus in RPMI (green)
versus for other genes (purple), showing the cumulative distribution of FDR-corrected Wilcoxon p values. e, f Metabolic genes whose cell line-
specific dependence is significantly correlated with the utilized tissue culture media in the RNAi (e) and CRISPR (f) screens. Blue and red represent
genes that were found to be more essential in RPMI and DMEM, respectively. g, h The distribution of RNAi (g)- and CRISPR (h)-based
dependency scores for ASNS (asparagine synthetase) throughout cell lines grown in DMEM versus in RPMI
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non-metabolic genes; Fig. 2c, d). Interestingly,
RNAi-based gene dependency scores and gene expres-
sions are negatively correlated for a significantly small
fraction of the metabolic genes (in ~ 20% of the cases;
binomial p value < 10−5, assuming a probability of 0.5
for a positive correlation; Fig. 2e); that is, a negative cor-
relation representing high essentiality in cell lines in
which their expression level is high. With CRISPR, on
the other hand, metabolic gene dependency scores were
negatively correlated with the gene expression in ~ 60%
of the cases. These results suggest that RNAi-based
knockdown is especially effective in cell lines where the
expression level of the target metabolic gene is already
low, while CRISPR-based gene knockout affects cell via-
bility regardless of the gene expression level.
Considering that metabolic flux typically depends on the

collective activity of multiple interconnected enzymes (ra-
ther than the expression of a single enzyme), we hypothe-
sized that cell line dependence on a specific metabolic gene
might be explained by altered expression of neighboring en-
zymes in the metabolic network. To test this hypothesis, we
computed the Spearman correlation between the RNAi- or
CRISPR-based metabolic gene dependency scores and

expression levels of isozymes and neighboring enzymes in
the metabolic network (utilizing Recon 2.02) [21]. Specific-
ally, we consider neighboring enzymes as those producing
or consuming a shared metabolite, excluding those sharing
highly prevalent currency metabolites such as energy or
redox co-factors (see the “Methods” section). We find that
the RNAi- and CRISPR-based dependency scores of a sig-
nificantly high fraction of the metabolic genes are corre-
lated with the expression level of at least one isozyme (for
CRISPR screen) and with the expression of at least one
neighboring enzyme (for both RNAi and CRISPR screens,
p value < 0.05; Fig. 2a, b). Accordingly, we find higher
Spearman correlations between gene dependency scores
and the expression level of isozymes versus with other
genes (p value < 10−2 for the RNAi screen and p value <
10−26 for the CRISPR screen) and with neighboring en-
zymes versus with other genes (p value < 10−6 for the RNAi
screen and p value < 10−26 for the CRISPR screen; Wil-
coxon test comparing the two distributions of absolute
Spearman r values). A significantly high negative correl-
ation between both RNAi- and CRISPR-based gene de-
pendency scores and the expression levels of neighboring
enzymes (binomial p value < 10−5) represent increased
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Fig. 2 Cell line-specific dependence on metabolic enzymes is explainable by the expression level of neighboring enzymes in the metabolic
network. a, b The fraction of metabolic genes whose cell line-specific RNAi (a) and CRISPR (b) gene dependency scores are significantly
correlated with their expression, with the expression of an isozyme and with the expression of a neighboring enzyme in the metabolic network
(shown in green) versus the fraction of metabolic genes with such significant correlations when randomly shuffling the expression measurements
across genes (in pink). c, d The correlation between gene expression level and RNAi (c)- and CRISPR (d)-based dependency scores of metabolic
(green) versus non-metabolic (purple) genes; showing the cumulative distribution of FDR-corrected Spearman p values. e The fraction of negative
Spearman correlations (out of all significant correlations; positive or negative) between RNAi (green)- and CRISPR (brown)-based gene
dependency scores and the expression level of the gene, that of an isozyme, or a neighboring enzyme. The asterisk marks a statistically
significant high number of positive correlations (binomial p value < 0.05)
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reliance on metabolic genes in cell lines having induced
expression level of interconnected enzymes.

Generating predictive models for cell line-specific
dependence on metabolic genes accounting for culture
medium and neighboring enzymes
Having found a significant correlation between meta-
bolic gene essentiality and culture medium, and with the
expression of functionally related enzymes in the meta-
bolic network, we aimed to generate improved predictive
models for cell line-specific dependence on metabolic
genes. For each metabolic gene, we build a predictive
model considering expression and copy number of func-
tionally related metabolic genes (i.e., considering iso-
zymes and neighboring enzymes in the metabolic
network), somatic mutation of 125 known oncogenes/
tumor suppressors [24], and culture media type. We uti-
lized a bootstrap-aggregated random forest algorithm
[25, 26] (similar to [14]; see the “Methods” section). The
goodness of fit was evaluated based on the Pearson cor-
relation between out-of-bag predicted and measured
knockdown effects, estimating statistical significance via
a random permutation test of dependency scores (see
the “Methods” section).
Our analysis resulted in significant predictive models

for RNAi-based dependency scores for 19% of the ana-
lyzed metabolic genes (162 out of 838) (FDR-corrected p
value < 0.05; Fig. 3a), with a mean Spearman correlation
between predicted and measured dependency scores of
~ 0.37. This represents ~ 2.2-fold higher number of
metabolic genes with a significant predictive model than
those previously found via an unbiased approach as part
of the Dependency Map project [14]. Notably, Tsherniak
et al. repeated their analysis focusing on molecular fea-
tures of functionally related genes (protein-protein inter-
action [27] or members of a protein complex [28]) to
reduce the feature space and avoid overfitting. However,
this increased the number of metabolic genes for which
significant predictive models were generated by only
11% (while increasing the total number of genes with a
predictive model by up to 19%). Hence, while focusing
on molecular features of functionally related genes is
clearly useful to increase the predictive power of gene
dependence, the functional association of metabolic
genes is better captured by our neighboring enzymes
measure. Further considering that cellular metabolism is
highly dependent on cancer lineage [29, 30], accounting
for the information on cancer lineage markedly in-
creased the number of significant predictive models for
metabolic gene dependency to 24% of the metabolic
genes (Fig. 3a, Additional file 1). Similarly, our analysis
resulted in significant predictive models for
CRISPR-based dependency scores for 32% of the meta-
bolic genes (Fig. 3b, Additional files 2, 3, 4 and 5).

Next, we explored which type of molecular feature
contributes the most to explaining metabolic gene de-
pendency by performing permutation-based feature im-
portance test on the derived predictive models from
RNAi and CRISPR data (see the “Methods” section). We
find that the expression level of neighboring enzymes is
the top predictive feature of gene dependency in both
RNAi (~ 50%) and CRISPR (34%) screens (Fig. 3c, d).
Surprisingly, the expression level of the gene itself is the
top predictive feature of RNAi- and CRISPR-based de-
pendency scores in only ~ 10% and 8% of the metabolic
genes, respectively, emphasizing the importance of ana-
lyzing the expression of interconnected enzymes in the
metabolic network. Media type is the top predictive fea-
ture for another ~ 5% and ~ 11% of the metabolic genes
with the RNAi and CRISPR screens, respectively. In
comparison, oncogenic mutations were found to be the
top predictive feature of RNAi- and CRISPR-based gene
dependency for less than 5% of the metabolic genes
(though oncogenic mutations have important predictive
value when combined with other molecular features;
among the top 5 predictive features of up to 40% of the
metabolic genes).
Among the known oncogenic mutations, BRAF and

KRAS mutations are the most frequently observed alter-
ations within the top 5 predictive features of the
RNAi-based (6%) and CRISPR-based (8%) metabolic
gene dependency (Fig. 3e), followed by TP53 (~ 4%) for
both screens. This is in agreement with major metabolic
reprogramming known to be regulated by oncogenic
mutations in these genes [31–34]. Among cancer line-
ages, leukemia is the most frequent cancer type within
the top 5 predictive features of the RNAi screen (10%),
followed by melanoma in both screens (8%, Fig. 3f ).
Integrating multiple molecular and cancer lineage fea-

tures within a predictive model for gene dependency re-
veals numerous important predictive features that
cannot otherwise be inferred when analyzing each fea-
ture individually (Fig. 3g, h). For example, for 18 meta-
bolic genes, we find that their gene expression level is an
important predictive feature of RNAi-based cell line de-
pendence (within the top 5 predictive features), while no
significant correlation is found between their expression
and dependency score across all cell lines. We find that
the top predictive feature of RNAi-based cell line de-
pendency for DAD1 (involved in N-glycan synthesis) is
its expression level, while no significant correlation is
found between DAD1 expression level and its depend-
ency score across all cell lines (Spearman r = 0.03, p
value = 0.57). Considering that the mutation status of
NOTCH1 is also within the top 5 predictive features of
DAD1, we find a significant correlation between DAD1
expression and its dependency score when focusing on
NOTCH1-mutated cell lines (Spearman r = − 0.35, p
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value < 0.05). This is consistent with the known import-
ant role of glycosylation in Notch signaling [35], suggest-
ing that in cancer cell driven by NOTCH1 mutation,
high DAD1 expression level indicates high dependence
on its function.
The generated predictive models enable raising hypotheses

regarding specific metabolic mechanisms that underlie cell
line-specific dependence on metabolic genes. For example,
we present predictive models generated for RNAi-based

dependency on genes involved in one-carbon metabolism.
This metabolic system has long been a target for chemother-
apy and has recently been shown to involve substantial meta-
bolic rewiring that can be targeted for therapeutic purposes
[36–41]. We find an increased dependency of leukemia cell
lines on MTHFD1 (cytosolic methylene-tetrahydrofolate de-
hydrogenase) where the expression of MTHFR (methyle-
ne-THF reductase) that consumes 5,10-methylene-THF is
high, and the expression of FTCD (formimidoyltransferase

a b e
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Fig. 3 Predictive models for cell line-specific dependence on metabolic genes combining multiple molecular features. a, b The fraction of metabolic
genes for which a significant predictive model of RNAi (a)- and CRISPR (b)-based gene dependency was generated by focusing on molecular features
of neighboring enzymes and culture media and when also considering cancer lineage information (green for RNAi, brown for CRISPR). In comparison,
the number of generated predictive models for RNAi-based gene dependency scores of metabolic genes derived by the Dependency Map project
(based on molecular featured of all genes and using related genes) is shown in orange. c, d The prevalence of various types of features as the top
(green) or within the top 5 (blue) features in the generated predictive models of RNAi (c)- and CRISPR (d)-based dependency scores of metabolic
genes. “Exp” and “Cnv” are used as the abbreviations for gene expression and copy number variation, respectively. “Iso” and “Related” are used as
abbreviations for an association of the target gene with its isozyme and related gene (i.e., neighboring enzyme), respectively. e, f The prevalence of
specific oncogenic mutations (e) and cancer lineages (f) within the top 5 features in the generated predictive models for RNAi (green)- and CRISPR
(brown)-based metabolic gene dependency scores. g, h The number of the top (green) or within the top 5 (blue) features in the generated predictive
models that are not individually correlated with the RNAi (g)- and CRISPR (h)-based dependency scores
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cyclodeaminase) that produces 5,10-methylene-THF as part
of histidine catabolism is low (Fig. 4a). This suggests that
maintaining the high activity of MTHFD1 is required to
overcome a potential depletion of its substrate 5,10-methyle-
ne-THF in these conditions. Increased dependence on
ALDH1L1 (cytosolic formyltetrahydrofolate dehydrogenase)
is found in KRAS-mutated cell lines where MTHFD1 copy
number is high, potentially to facilitate the regeneration of
THF from 10-formyl-THF (Fig. 4b). Increased dependency
on SHMT2 (mitochondrial serine-hydroxymethyl-
transferase) is found in cell lines with increased expression of
AMT (a subunit of the glycine-cleavage system; localized in
mitochondria) and of MTHFD2 (mitochondrial methylene-
tetrahydrofolate dehydrogenase, Fig. 4c). This might occur in
the face of a high demand rate for mitochondrial one-carbon
units, requiring both serine and glycine catabolic activities.
In cells where the expression of MTHFD2 is high, increased
dependency on MTHFD1L might be needed to support
mitochondrial formate production from 10-formyl-THF, fa-
cilitating the shuttling of one-carbon units to cytosol to sup-
port purine and pyrimidine biosynthesis [42, 43] (Fig. 4d).

Discussion
A genome-scale genetic screen is a powerful approach for
unbiased discovery of vulnerabilities in cancer cells that can

be targeted for therapeutic purposes. Since the develop-
ment of RNAi- and CRISPR-based gene-silencing tech-
niques, both approaches have been systematically applied
for screening the gene knockdown and knockout effects in
numerous cell lines. To identify genes whose perturbation
would selectively affect cancer cells, gene-silencing profiles
are typically integrated with tumor-specific mutations and
alterations in gene expression to identify a specific molecu-
lar marker indicative of cancer cell dependence on a target
gene. This is typically referred to as synthetic lethality or
synthetic dosage lethality, where a perturbation of a single
gene is viable but the perturbation of both genes is lethal to
cells [44]. The identification of such synthetic lethal gene
pairs provides a patient stratification strategy based on the
mutation or expression status of one gene where the drug
targeting of its partner gene enables selective eradication of
cancer cells while minimizing toxic side effects. Previous
studies suggest going beyond the search for synthetic lethal
pairs, generating predictive models of gene essentiality in
cancer cells based on multiple molecular features [14, 15].
However, as shown here, the ability to generate such pre-
dictive models for metabolic genes was significantly limited
compared to other non-metabolic genes.
Analyzing genetic silencing screen data from recent RNAi

and CRISPR screens, we found a confounding effect of

Fig. 4 Predictive models for cell line-specific dependence on genes in one-carbon metabolism. Predictive models for RNAi-based dependency
scores of MTHFD1 (a), ALDH1L1 (b), SHMT2 (c), and MTHFD1L (d). Significant predictive features of induced cell line-specific dependency are
shown for each model (increased expression or copy number in green; decreased expression or copy number in orange)
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culture media on cell line-specific response to the silencing
of especially metabolic genes. Our finding is consistent with
recent studies, demonstrating the major effect of the tumor
microenvironment in determining the cancer cellular meta-
bolic phenotypes [17, 45–47]. In fact, several recent at-
tempts have been made to develop culture media which
would more closely mimic nutrient availability and concen-
tration as in human plasma [20]. Our results, showing that
the specific choice of media affects cell line dependence on
metabolic genes, call for future genetic screens to maintain
a similar culture media for different cell lines, optimally
matching the true physiological conditions. Predictive
models for cell line dependence on specific genes are not
only important for potential usage as a patient stratification
tool, but also useful for studying the molecular mechanisms
that underlie cell line-specific metabolic activities. Hence,
taking into account the culture media in our analysis, the
generated predictive models are readily available for re-
searchers interested in exploring cancer cell line depend-
ence on specific metabolic genes. As shown, the integration
of multiple molecular and cancer lineage features within a
predictive model for gene dependency reveals numerous
important predictive molecular features that cannot other-
wise be inferred.
Another factor that complicates the finding of molecular

features explaining cell line-specific gene dependence is the
substantially high number of candidate predictive features:
Specifically, the ability to identify synthetic lethality by ana-
lyzing the correlation between the dependency score of a
certain gene and a large set of molecular feature suffers from
multiple hypothesis testing, and the generation of predictive
models via machine learning while considering a high num-
ber of features is complicated by overfitting. The incorpor-
ation of prior knowledge regarding feature relevance was
previously shown highly useful for limiting the number of
candidate predictive features and increasing statistical power
[48]. Here, we show that a measure of functional relatedness
of metabolic genes, defined based on connectivity in a meta-
bolic network, is highly useful for generating predictive
models for metabolic genes. Overall, utilizing this measure
and also considering culture media composition, resulted in
a 2.2-fold increase in the number of generated predictive
models for metabolic genes compared to those derived as
part of the Cancer Dependency Map [14].
Notably, while we were able to generate significant predict-

ive models for cell line specific dependence on ~ 30% of the
analyzed metabolic genes by integrating multiple molecular
features, additional molecular characterization of the ana-
lyzed cell lines is expected to enable expanding this to other
genes. Specifically, considering that metabolic activity is con-
trolled beyond genomic and transcriptomic levels, additional
high-throughput measurements of epigenetic modifications,
proteomics, and metabolomics are expected to be highly use-
ful in closing the gap.

Conclusions
Culture media has a significant confounding effect on
cell line-specific response to the silencing of metabolic
genes, which should be taken into account when analyz-
ing results from gene-silencing screens. Together with
the media type, molecular features of functionally related
enzymes in a metabolic network improve the prediction
of cell line-specific dependence on metabolic genes.
Overall, we expect our approach and predictive models
of metabolic gene essentiality to be a useful tool for in-
vestigating metabolic abnormalities in cancer.

Methods
Pan-cancer gene essentiality screening data
The RNAi screen data analyzed in this study contains de-
pendency scores for 17,098 genes over 501 cancer cell
lines (released on July 2017) [14], while the CRISPR-Cas9
screen contains scores for 17,670 genes over 341 cancer
cell lines (released on October 2017) [16].

Statistical analysis of the correlation between gene
dependency scores and culture media
To check whether cell culture type explains the correl-
ation between media composition and dependency
scores, we calculated for each gene the Spearman partial
correlation between its RNAi dependency score across
cell lines and a binary vector representing media com-
position in each cell line (DMEM or RPMI), controlling
for binary vector representing cell culture type (suspen-
sion vs adherent). Derived p values were FDR-corrected
via the method of Benjamini-Hochberg [49].
To test whether cancer cell lineage explains the correl-

ation between media composition and dependency scores,
we computed a similar Spearman partial correlation for
each gene while controlling for the effect of an indicator
variable representing each cancer lineage (having a value
of one for cell lines of belonging to a specific lineage). We
consider a correlation between gene dependency scores
and media composition as not explainable based on can-
cer lineage information in case the above partial correl-
ation remains significant when controlling for each cancer
lineage (i.e., having an FDR-corrected p value < 0.05).

Identifying neighboring enzymes in the human metabolic
network
We consider a total of 1612 metabolic genes included in
the genome-scale human metabolic network model
Recon 2.02 [21] (omitting EGFR and PIK due to their
central role in signaling pathways). The metabolic neigh-
bors of a given metabolic enzyme are those that con-
sume or produce substrate or product metabolites of
this enzyme. Currency metabolites that participate in
more than 1% of the reactions in the network (central
energy or redox factors, etc.) were not considered to
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define metabolic neighbors. For each gene, we consid-
ered no more than 50 neighboring enzymes and those
connected through reactants participating in the min-
imal number of metabolic reactions in the network.

Pairwise correlations between gene dependency scores
and expression of functionally related genes
We calculated the Spearman correlations between depend-
ency scores of metabolic genes (focusing on those whose de-
pendency score in at least one cell line is lower by more than
four standard deviations from the mean of each gene) and
the expression of 19,541 protein-coding genes derived from
the CCLE [50]. Resulting p values were FDR-corrected using
the method of Benjamini-Hochberg [49]. A similar analysis
was performed using gene expression of isozymes or enzyme
neighbors in the metabolic network. The dependency
scores of a gene were considered to be explained by
the expression levels of isozymes/metabolic neighbor
in case a significant correlation (FDR-corrected p
value < 0.05) is found for at least a single isozyme/
metabolic neighbor. In order to check the statistical
significance of the fraction of metabolic genes having
a significant correlation, we performed a random per-
mutation test repeating the analysis above 1000 times
while randomly shuffling the set of neighbors/iso-
zymes for each enzyme.

Generation of predictive models of RNAi- and CRISPR-
based gene dependency scores
We focus on metabolic genes from Recon 2.02 for
which RNAi- or CRISPR-based dependency scores
were available, and whose dependency scores showed
considerable deviation throughout the cell lines
(whose dependency score in at least one cell line is
lower by more than two standard deviations from the
mean of each gene). Molecular features, including
RNA levels, copy number variation, and mutations in
125 oncogenes or tumor suppressors (non-synon-
ymous point mutations, frameshift and splice muta-
tions) [24], were derived from the CCLEs [50] and
from CBioPortal [51, 52]. Information on media type
and primary disease was derived from the screens
data [14, 16]. Only cancer lineages having at least 10
cell lines in the screen were considered. To find pre-
dictive models, we use random forest learning [25,
26], generating an ensemble of 100 decision trees
using MATLAB, with a min leaf size of 5. This
method accommodates both continuous and categor-
ical features, capturing nonlinear relationships and
correcting for potential overfitting [53]. We perform
out-of-bag prediction and record the Pearson correl-
ation as the goodness of fit. We assessed the signifi-
cance of the goodness of fit for each model by
comparing its Pearson p value with a distribution of

p values computed with randomly shuffled data (mak-
ing 25K repetitions of selecting a gene by random,
permuting its dependency scores, generating a pre-
dictive model, and computing the goodness of fit). To
estimate the importance of the features used to learn
the model, we calculated the out of bag permutated
variable importance. To derive robust predictors, we
selected the features with a positive feature import-
ance for each model and regenerate that model by fo-
cusing on these features only (as in [14]). Extending
the above analysis to include also copy number vari-
ation of oncogenes/tumor suppressors did not result
in a higher number of significant predictive models
for either RNAi or CRISPR screens.

Additional files

Additional file 1: RNAi models. Excel table containing statistically significant
predictive models found using the RNAi screen data. (XLSX 32 kb)

Additional file 2: CRISPR models. Excel table containing statistically
significant predictive models found using the CRISPR screen. (XLSX 39 kb)

Additional file 3 Figure S1. P value distributions calculated as part of
the generation of predictive models for metabolic gene dependency
scores using expression/copy number variation of related metabolic
genes, genomic mutations, media information, and cancer lineage for
RNAi (a, c, e) and CRISPR (b, d, f) screens. (a, b) Distributions of p values
obtained using randomly shuffled data: Selecting a gene by random,
randomly permuting its dependency scores throughout the cell lines,
generating a predictive model of its shuffled dependency scores
throughout cell lines, and computing the goodness of fit between the
generated model and shuffled dependency scores (25K repetitions). (c, d)
Distributions of Pearson p values assessing the goodness of fit between
dependency scores and model predictions. (e, f) Distributions of empirical
p values after FDR correction: For each predictive model, an empirical p
value is computed based on the fraction of Pearson p values obtained
with random data (shown in panels c and d) that are equal or lower to
the p value computed with the original data (and correcting for multiple
hypothesis testing using the method of Benjamini-Hochberg). The black
lines in subfigures c and d denote the threshold of significance (based
on the distribution of p values generated with shuffled data; shown in
panels a and b), and the lines in subfigures e and f denote a threshold of
0.05 on the empirical p values. (PNG 485 kb)

Additional file 4: Figure S2. Percent of statistically significant predictive
models identified in our analysis using expression/copy number variation
of related metabolic genes, genomic mutations, and media information
(green); the percent of statistically significant predictive models using the
same set of features though without media information (orange); and the
percent of significant predictive models when randomly shuffling the set
of related metabolic genes (i.e., for a given gene having N-related genes,
N genes were randomly selected), repeating the analysis 100 times (pur-
ple). The latter was significantly lower than the percent of genes with a
significant predictive model when considering all features (green) and
without media information (orange; p value < 0.05, marked with an aster-
isk). (PNG 196 kb)

Additional file 5: Figure S3. (a, b) The fraction of metabolic genes
(whose dependency score in at least one cell line is lower by more than
six standard deviations from the mean of each gene) for which a
significant predictive model of RNAi (a)- and CRISPR (b)-based gene
dependency was generated by focusing on molecular features of
neighboring enzymes and culture media and when also considering
cancer lineage information (green for RNAi, brown for CRISPR). In
comparison, the fraction of predictive models for RNAi-based gene de-
pendency scores derived by the Dependency Map project (based on
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molecular featured of all genes and using functionally related genes) is
shown in orange. (PNG 155 kb)
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