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Dynamics of BMP and Hes1/Hairy1
signaling in the dorsal neural tube
underlies the transition from neural crest to
definitive roof plate
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Abstract

Background: The dorsal midline region of the neural tube that results from closure of the neural folds is generally termed
the roof plate (RP). However, this domain is highly dynamic and complex, and is first transiently inhabited by prospective
neural crest (NC) cells that sequentially emigrate from the neuroepithelium. It only later becomes the definitive RP, the
dorsal midline cells of the spinal cord. We previously showed that at the trunk level of the axis, prospective RP progenitors
originate ventral to the premigratory NC and progressively reach the dorsal midline following NC emigration. However, the
molecular mechanisms underlying the end of NC production and formation of the definitive RP remain virtually unknown.

Results: Based on distinctive cellular and molecular traits, we have defined an initial NC and a subsequent RP stage,
allowing us to investigate the mechanisms responsible for the transition between the two phases.
We demonstrate that in spite of the constant production of BMP4 in the dorsal tube at both stages, RP progenitors only
transiently respond to the ligand and lose competence shortly before they arrive at their final location. In addition,
exposure of dorsal tube cells at the NC stage to high levels of BMP signaling induces premature RP traits, such as Hes1/
Hairy1, while concomitantly inhibiting NC production. Reciprocally, early inhibition of BMP signaling prevents Hairy1
mRNA expression at the RP stage altogether, suggesting that BMP is both necessary and sufficient for the development
of this RP-specific trait.
Furthermore, when Hes1/Hairy1 is misexpressed at the NC stage, it inhibits BMP signaling and downregulates BMPR1A/
Alk3 mRNA expression, transcription of BMP targets such as Foxd3, cell-cycle progression, and NC emigration. Reciprocally,
Foxd3 inhibits Hairy1, suggesting that repressive cross-interactions at the level of, and downstream from, BMP ensure the
temporal separation between both lineages.

Conclusions: Together, our data suggest that BMP signaling is important both for NC and RP formation. Given that these
two structures develop sequentially, we speculate that the longer exposure of RP progenitors to BMP compared with
that of premigratory NC cells may be translated into a higher signaling level in the former. This induces changes in
responsiveness to BMP, most likely by downregulating the expression of Alk3 receptors and, consequently, of BMP-
dependent downstream transcription factors, which exhibit spatial complementary expression patterns and mutually
repress each other to generate alternative fates. This molecular dynamic is likely to account for the transition between the
NC and definitive RP stages and thus be responsible for the segregation between central and peripheral lineages during
neural development.
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Background
The fundamental decision whether to become peripheral
nervous system (PNS) or central nervous system (CNS)
takes place in the dorsal domain of the developing
neural tube (NT). In this area three main populations of
cells are sequentially generated. First to appear are vari-
ous populations of neural crest (NC) cells, consisting of
precursors of most neurons and all glia of the PNS as
well as melanocytes, endocrine derivatives, etc. [1–3].
Second to appear are roof plate (RP) cells, which consti-
tute the definitive dorsal midline of the CNS, and third
are dorsal spinal interneurons, whose specification and
differentiation are controlled by dorsal NT-derived sig-
nals [4–8].
Only selected aspects of dorsal NT development have

been experimentally addressed, and many essential ques-
tions remain unanswered. For instance, the mechanisms
responsible for the ordered transition between NC and
RP are largely unknown. Although prospective premigra-
tory NC and RP cells are not distinguishable at the early
stages either morphologically or by molecular means,
NC progenitors proliferate both before as well as after
delamination, and in the trunk they synchronously exit
the epithelium at the S phase of the cell cycle [9]. In
contrast, RP cells become post-mitotic [10] and adopt
their characteristic morphology, constituting the defini-
tive dorsal domain of the spinal cord.
Single cell lineage tracing suggested that NC and NT

progenitors derive from a common founder cell [11].
Nonetheless, these studies did not identify the precise
CNS cell types involved (i.e., RP, specific interneurons,
or both), neither did they determine the exact stage(s) in
which this putative common founder cell prevails or seg-
regates. Hence, questions remain, such as where in the
dorsal NT do RP cells originate and when precisely do
they segregate from the NC lineage? Using spatiotempo-
rally controlled lineage analysis, our previous findings
revealed that the dorsal NT is sequentially transited by
distinct cell populations that exit the NT to populate
NC derivatives [12, 13]. In one of these studies it was
found that RP progenitors originate ventral to the pre-
migratory NC and relocate ventro-dorsally to reach their
final position in the dorsal midline of the NT upon com-
pletion of NC exit [12]. Furthermore, tracing the dynam-
ics of the NC marker Foxd3 using a specific reporter
revealed that NC and RP progenitors are initially part of
the Foxd3 lineage, yet RP precursors downregulate its
expression while relocating into the dorsal midline; this
occurs when some NC progenitors still reside within the
neuroepithelium [13]. Hence, it is most likely that RP
precursors share a common lineage with NC only at an
early stage of dorsal NT development. This domain is,
therefore, a dynamic area in which progressive NC emi-
gration takes place until replacement by the definitive

RP, thus resulting in the separation between CNS and
PNS [4, 12].
The signaling activity of bone morphogenetic proteins

(BMPs) is essential for NC induction, epithelial-to-
mesenchymal transitions (EMTs), and specification and
patterning of dorsal interneurons [6, 8, 14–19]. But
whether BMP signaling is necessary for RP development
and what distinguishes between RP and NC in terms of
BMP activity remains to be addressed. The transcription
factors Lmx1a and 1b are highly expressed in the dorsal
NT and differentiated RP cells in the chick developing
spinal cord. They were reported to act downstream to
BMP and to affect expression of RP markers and inter-
neuron development [20, 21]. However, given that Lmx
genes in turn stimulate expression of both BMP and
Wnt [20, 21], the possibility exists that BMP acts on RP
and/or interneuron production independently of Lmx or
that additional downstream factors are necessary.
In the present study, we characterize the nascent RP

as an epithelial group of cells exhibiting apico-basal
polarity and apically localized cilia, little or no cell
proliferation, expression and activity of the basic helix-
loop-helix (bHLH) transcriptional repressor Hes1/Hairy1
[22, 23], and transcription of the ciliary protein Foxj1
[24]. This contrasts with the proliferative NC stage in
which dorsal NT cells are devoid of, or discontinuously
express, N-cadherin and laminin while transcribing typ-
ical NC markers such as Foxd3, Snail2, and Sox9 [4, 12,
13]. Furthermore, we show that despite the constant
production of BMP4 in the dorsal NT, RP progenitors
only initially respond to the ligand and lose competence
during their ventro-dorsal relocation towards the mid-
line of the NT, with a concomitant downregulation of
BMPR1A/Alk3. Because both NC and RP progenitors
are localized within a domain of high BMP activity [18],
we hypothesized that RP progenitors are also sensitive to
BMP signaling. Indeed, constitutive activation of the
BMP pathway resulted in premature transcription of the
RP marker Hairy1. Notably, this was associated with an
inhibition of NC production. Furthermore, early misex-
pression of Hes1/Hairy1 at the NC stage inhibited BMP
signaling while downregulating expression of the Alk3
receptor, transcription of BMP targets such as Foxd3,
cell-cycle progression, and NC emigration. Conversely,
Foxd3 inhibited Hairy1 altogether, suggesting that re-
pressive cross-interactions at the level of and down-
stream of BMP ensure the temporal separation between
the two lineages.

Results
Cellular characterization of the dorsal NT at NC and RP
stages
To begin understanding the mechanisms underlying the
transition from the NC to the RP stage, we first
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characterized differences in cellular behavior between the
two phases. Following electroporation of a GFP-encoding
DNA into the flank-level NT at embryonic day 2 (E2)
(Hamburger and Hamilton stages HH12–14, 17–20 so-
mite stage [ss]), we observed labeled NC derivatives in the

periphery at E4.5 (Fig. 1a). GFP+ cells were found in char-
acteristic positions, such as the sympathetic ganglia, along
nerves as Schwann cells, in the dorsal root ganglion
(DRG), and in the dermis corresponding to melanocytes
(see also [12]). In contrast, electroporation of GFP at E3.5

Fig. 1 Differential cellular characteristics of the neural tube at neural crest (NC) and roof plate (RP) stages. a, b Transverse sections of the flank
region of E4.5 avian embryos whose hemi-neural tubes (NTs) were electroporated with a control GFP plasmid at E2 (a) or E3.5 (b). Note the contribution
of labeled cells to NC derivatives including melanocytes (arrow in a) following early but not late stage electroporations. c, d Bromodeoxyuridine (BrdU)
incorporation following a 1-h pulse at NC (E2–E2.5, c) or RP (E3.5, d) stages. Dashed lines in insets mark the dorsal NT domain that was quantified (see
text for details). Note the presence of the BrdU+ nuclei (Red) in c–c” but not in the equivalent dashed area in d–d”. Nuclei were visualized with Hoechst.
e–j Antibody staining for epithelial (ZO-1, N-cadherin, laminin) or ciliary (Arl13b) markers. Arrows point to disorganized cilia (e’), the absence of N-
cadherin in the dorsal NT compared to more ventral regions (g), and an incomplete laminin-containing basal lamina (i, i’) at the NC stage. In contrast,
note the apically oriented cilia (f), positive N-cadherin immunostaining (h), and continuous laminin expression (j) in the dorsal NT at the RP stage (arrow-
heads in f, h, and j’). Ect ectoderm. Bar in a, b, d, h, j= 80 μM; c= 50 μM; c’, d’, e= 30 μM; f, g, i’= 40 μM; e’ =15 μM; j= 240 μM; i =140 μM
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(40 ss, HH19–20) followed by fixation at E4.5 did not pro-
duce any labeled cells outside the neuroepithelium
(Fig. 1b), in agreement with our previous results [12]. This
suggests that by E3.5 at flank levels of the axis, all NC pro-
genitors have already left the dorsal neuroepithelium,
which is now occupied by definitive RP cells. Hence, we
refer to the period between E2 and E3.5 in which the dor-
sal NT produces emigrating cells as the “NC stage” and to
the period starting from E3.5 onward as the “RP stage.”
We next characterized the dynamics of cell proliferation

in the dorsal NT, because the transition from the G1 to
the S phase of the cell cycle was found to be critical for
NC delamination [9]. To this end, an area containing 8–
10 nuclei per hemi-NT was considered in each section
(dashed lines in Fig. 1c, d). These cells are included within
the expression domain of Foxd3 and MafB at the NC and
RP stages, respectively. At the NC stage, 45.9 ± 4.0 % of
the cells in the dorsal NT had incorporated BrdU follow-
ing a 1-h pulse, consistent with previous findings [17]. At
more advanced stages of NC delamination, the proportion
of BrdU+ nuclei decreased to 26.4 ± 3.4 %, and by E3.5
only 4.8 ± 0.5 % of the nuclei were BrdU+ (N = 5 embryos/
stage, Fig. 1c, d). Thus, the shift from the NC stage to the
RP stage involves cell-cycle exit [10], which is associated
with the end of NC emigration.
Next, we examined the expression of several proteins

that characterize embryonic epithelia. At the NC stage,
the apical epithelial markers ZO-1 and N-cadherin were
discontinuous or virtually absent in the dorsal NT, re-
spectively (Fig. 1e, g) [25]. In addition, Arl13b-positive
cilia [26] were randomly distributed in the dorsal NT ra-
ther than pointing apically into the NT lumen as ob-
served at more ventral regions of the neuroepithelium
(Fig. 1e, e’). Furthermore, the laminin-expressing base-
ment membrane at the basal side of the dorsal NT was
discontinuous (Fig. 1i, i’, see also [27, 28]). In contrast, a
close association between ZO-1 and Arl13b in the apical
side of the NT was apparent at the RP stage (Fig. 1f, f ’),
N-cadherin was re-expressed (Fig. 1h), and the laminin-
positive basal lamina was uninterrupted (Fig. 1j, j’).
These observations suggest that the nascent RP regains
epithelial characteristics such as apico-basal polarity, in
spite of these being disrupted during the period of NC
delamination.

Shared and differential transcriptional gene patterns in
the dorsal NT at NC and RP stages
To elucidate the mechanisms leading to the transition
between NC and RP stages, it would be useful to identify
and functionally characterize genes whose expression is
restricted to either stage. To this end, we examined ex-
pression patterns of candidate dorsal NT markers.
The Id family of transcriptional regulators encodes four

HLH proteins that lack a basic DNA-binding domain, and

function in a dominant negative manner by binding and
sequestering bHLH transcription factors into inactive
heterodimers [29, 30]. Id2 was reported to regulate NC
specification, and to maintain the balance between cell dif-
ferentiation and proliferation [31]. Ids are also known ef-
fectors of BMP signaling [32–34]. Id2 and Id3 were
expressed in the dorsal NT at the NC stage, but not in the
definitive RP, and at the RP stage Id2/3 only appeared ven-
tral to the RP, likely in dorsal interneuron progenitors
(Additional file 1: Figure S1A–D). In contrast, no Id1 or
Id4 were apparent in the dorsal NT (not shown).
Leukocyte tyrosine kinase (LTK) is expressed in zebrafish
NC cells, and in particular in iridophores, where it was
shown to be critical for their development [35]. LTK is
also expressed in migrating avian cranial NC [36]. In the
trunk, LTK was transcribed in the dorsal NT at the
NC but not RP stage (Additional file 1: Figure S1E, F).
Additionally, transcription of Foxd3, Sox9, and Snail2 was
restricted to the neural progenitors of the NC and absent
from the definitive RP (Additional file 1: Figure S1G, H
and see [12]).
The transcription factor Foxj1 has been implicated in

the formation of motile cilia. In the floor plate (FP),
Foxj1 alters responsiveness of these ventral midline cells
to Sonic hedgehog (Shh), prompting them to become re-
fractory [24]. Evidence also points to its regulation by
BMP signaling [37]. Foxj1 mRNA was only evident at
the RP but not the NC stage, despite being transcribed
continuously in the FP (Additional file 1: Figure S1I, J).
Hairy1, a bHLH transcriptional repressor of the Hairy/
Hes family, revealed a similar profile of expression to
that of Foxj1 (Additional file 1: Figure S1K, L). Thus,
while Id1/2, LTK, Foxd3, Snail2, and Sox9 are differential
markers for the early NC stage, Foxj1 and Hairy1 differ-
entially map to the RP stage. Notably, Bmp4, Gdf7,
Wnt1, MafB, and Lmx1a/1b are continuously expressed
throughout NT development, even if classically defined
as RP markers (Fig. 2a, c; Additional file 1: Figure S1M–R;
and see [4, 14, 20, 21]). Taken together, the above cellular
and molecular traits differentially define two discrete
phases in dorsal NT development: NC and RP.

BMP signaling is transient in the dorsal midline of the NT
The definitive RP cells are refractory to BMP signaling
Next, we began addressing the mechanisms responsible
for the transition between these stages. During pattern-
ing of the nervous system, the dorsal NT produces and
secretes proteins of the BMP family that at early stages
control the emigration of NC [16, 17, 25, 38] and later
induce, in a non-cell autonomous manner, the specifica-
tion and differentiation of spinal interneurons [39, 40].
These activities of BMP prompted us to examine its in-
volvement in the transition between NC and RP stages
during dorsal NT development.
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In agreement with previous findings [4, 12], we observed
that expression of Bmp4 transcripts was evident in the dor-
sal NT at both NC and RP stages (Fig. 2a, c). BMP activity
was evidenced with anti-Phospho-Smad 1-5-8 (pSMAD)
[41]. In contrast to Bmp4 transcription, pSMAD staining
was positive in the dorsal NT only at the NC stage (Fig. 2b).
At the RP stage, only dorsal interneurons, located ventral to
the definitive RP, were pSMAD+, while the midline RP
domain was negative (Fig. 2d).
To further examine this stage-dependent difference in

BMP sensitivity, we took advantage of a genetic reporter
for BMP activity, consisting of a BMP responsive elem-
ent (BRE) that drives expression of GFP [8, 18]. Focal
electroporations of BRE-GFP together with RFP to con-
trol for transfection efficiency were directed to the dor-
sal NT at E2 (17–20 ss) or E3 (35 ss). Dorsal views of
transfected neural primordia revealed many RFP+ cells
at the NC stage exhibiting a BRE:GFP signal (Fig. 2e–e”),
whereas only a few RFP+ cells approaching the RP stage
were BRE:GFP+ (Fig. 2f–f”) when examined 16 h after
electroporation. Hence, while both NC and RP cells pro-
duce and secrete BMP proteins, only progenitors at the
NC stage are responsive. The definitive RP loses compe-
tence to respond to the BMP ligand, while continuing to
provide BMP to the ventrally localized interneurons
and/or their progenitors.

Prospective RP cells are initially responsive to BMP
In a previous study [12] we demonstrated that preceding
the onset of NC delamination, RP progenitors cells are
located ventral to the presumptive NC pool, and that
they relocate dorsally upon NC emigration. In addition,
we found that, initially, prospective RP progenitors are
part of the Foxd3+ lineage, but downregulate its expres-
sion during dorsal relocation [13]. We then hypothesized
that RP progenitors are initially responsive to BMP sig-
naling, given that all dorsal NT cells appear to be sensi-
tive to BMP signaling at the NC stage (Fig. 2b, e). To
test this notion, we transfected BRE-GFP to the flank of
22 ss (HH14)-stage embryos corresponding to the early
NC stage. Embryos were re-incubated for an additional
24 or 36 h until reaching the RP stage. As predicted, the
midline RP domain was BRE-GFP+ (Fig. 3a–a”, b–b”).
Because the RP is already insensitive to BMP by the time
of fixation, (e.g., BRE-GFP−, see Fig. 2), the GFP signal
observed in the dorsal NT at E3–E3.5 must result from
an accumulation of the GFP protein following the early
electroporation. Because GFP has a half-life of about 48
h, it is possible to trace cells after the BMP signal has
been turned off [42].
To control for this dynamic behavior, we performed

similar electroporations a few hours later, in embryos
aged 28–30 ss (HH16–17), still well within the NC stage

Fig. 2 The roof plate (RP) loses responsiveness to BMP signaling. a, c In situ hybridization for Bmp4 at the neural crest (NC) and RP stages.
b, d Antibody staining for pSMAD1,5,8. Note positive signaling in the dorsal neural tube (NT) at the NC stage (delimited by dotted yellow lines,
see “Methods” for definition). In contrast, the definitive RP (dorsal to the dotted yellow lines, see “Methods” for definition) lacks a pSMAD signal
yet the domain ventral to the yellow lines containing dorsal interneurons is positive. e, f Dorsal views of whole mounted embryo fragments
following dorsally directed electroporations (EP) of BMP-responsive element (BRE)-GFP along with control RFP to monitor electroporation
efficiency. Note positive and negative BMP reporter signaling at NC and RP stages, respectively. Embryos were electroporated at either E2 (e–e”)
or E3 (f–f”) and analyzed 16 h later. White dashed lines delineate the NT in b and d. C caudal, DI dorsal interneurons, R rostral. Bar in a = 40 μM;
b, d = 80 μM; c = 50 μM
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Fig. 3 Dynamics of BMP responsive element (BRE) in the dorsal neural tube (NT). a–c Hemi-NT electoporations of BRE-GFP along with control RFP
to trace electroporation efficiency. Embryos were electroporated and analyzed at designated times. Note presence of positive BRE-GFP signal in
RFP+ cells in the early electroporations (a–b”). When electroporated later (c–c”), the BRE-GFP signal is absent in the definitive roof plate (RP) but
positive more ventrally. Dashed lines in b and c delimit the definitive RP (see “Methods”). d–d” In situ hybridization for Foxd3 transcripts, showing
co-localization with the BRE-GFP signal in the dorsal NT. Dashed lines mark the ventral limit of the Foxd3-positive domain. Note also the presence
of Foxd3+ neural crest cells migrating dorso-ventrally outside the neuroepithelium (arrows). In addition, the BRE-GFP signal also extends further
ventrally into a Foxd3-negative region. Bar for a–a” = 50 μM; b–d” = 40 μM
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[12, 43]. Under these conditions, the RP was largely
negative for the BRE-GFP signal (Fig. 3c–c”). In this
time frame, prospective RP cells are either unable to ac-
cumulate enough GFP before losing their capacity to re-
spond to BMP, or they have already lost BMP sensitivity.
These results reveal a similar temporal dynamic to that
of RP progenitors, which only transiently exhibited
Foxd3 reporter activity [13]. For this reason, we analyzed
embryos that were injected at an early stage with BRE-
GFP and then in situ hybridized for Foxd3. The Foxd3+
signal was included within the dorsal domain of BRE-
GFP+ expression, encompassing at this stage both NC
and RP precursors [13]. In addition, the BRE-GFP signal
extended further ventrally into a Foxd3− region, likely
comprising dorsal interneuron progenitors (Fig. 3d–d”).
Together, these results suggest that prospective RP progeni-
tors initially respond to BMP and then lose sensitivity upon
relocation to their definitive dorsal midline position.
Because BMP ligands are continuously produced by

dorsal NT cells, we hypothesized that the development of
RP insensitivity to BMP may be accounted for by a timely
downregulation of BMP receptors. In situ hybridization
revealed that while expression of Bmpr1b (Alk6) tran-
scripts is apparent in the dorsal NT at both NC and RP
stages, that of Bmpr1a (Alk3) is positive at the NC stage
but downregulated at the RP stage (Additional file 2:
Figure S2). This indicates that the downregulation of spe-
cific BMP receptors is part of a mechanism responsible
for the loss of competence of nascent RP cells to respond
to BMP.

The dynamics of BMP signaling vis-à-vis RP progenitors
Our results suggest that RP progenitors will respond to
BMP signaling until they arrive at their dorsal midline
position. Notably, because of their initial ventral
localization with respect to the NC and their prolonged
ventro-dorsal relocation, RP progenitors are likely sub-
jected to BMP for longer than the NC cells, which pro-
gressively exit the NT. It was previously suggested that
extended exposure to morphogens such as BMP and
Shh is equivalent to generating a higher level of signaling
required for the specification of distinct dorsal [18] and
ventral [44] neuronal subsets, respectively. In such a
case, exposing early neural progenitors to high BMP sig-
naling should prematurely induce RP at the expense of
NC. To test this possibility, a constitutively active (ca)
version of Alk3 was used. In all cases (N = 6), when elec-
troporated into hemi-NTs at 18–20 ss and fixed a day
later, an ectopic pSMAD signal was detected in trans-
fected cells. This contrasted with an observed pSMAD
expression restricted to the dorsal domain under control
conditions (N = 4) (Additional file 3: Figure S3).
Next, we examined the effects of caAlk3 on NC EMT,

G1/S transition, and gene expression. Electroporations

were directed ventro-dorsally, transfecting either the dor-
sal quadrant of hemi-NTs or their dorsal domain on both
sides of the midline. Consistent with our hypothesis, NC
EMT was dramatically inhibited upon transfection of
caAlk3 (N = 7) when compared to controls (N = 5, Fig. 4a,
b), as was the extent of BrdU incorporation into the nuclei
of transfected progenitors when challenged for a pro-
longed pulse of 2 h (N = 7 and 6, respectively, P < 0.005,
Fig. 4c–e). In addition, by 12 h Foxd3 mRNA was
downregulated in the caAlk3-electroporated progeni-
tors (N = 5, Fig. 4g, g’ arrow) compared to control GFP
(N = 3, Fig. 4f, f ’), confirming that NC production was
inhibited. Reciprocally, expression of the RP marker
Hairy1 (Additional file 1: Figure S1K, L) was upregu-
lated as early as 9 h post-transfection to levels similar
to those apparent in the FP (N = 8, Fig. 4i, i’ arrow)
whereas control GFP had no effect (N = 4, Fig. 4h, h’).
Whereas NC proliferation and Foxd3 expression are

inhibited by high BMP signaling, our previous results
showed that inhibiting endogenous BMP activity by nog-
gin at the early NC stage also attenuates NC prolifera-
tion, Foxd3 expression, and NC EMT [16, 45, 46]. Here,
we further confirm and extend these data by showing
that treatment with noggin, Smad6 (a negative effector
of BMP signaling [47]), or a dominant negative form of
BMP receptor (dnBMPR) [48] all caused a significant re-
duction of BrdU incorporation in premigratory NC cells
16 h after electroporation when compared to control
GFP-treated embryos (N = 4 embryos per treatment, P <
0.05, Additional file 4: Figure S4). Hence, both early in-
hibition as and high levels of BMP signaling compromise
NC production. However, abrogation of endogenous
BMP signaling did not promote a premature upre-
gulation of Hairy1 expression (N = 5, Additional file 4:
Figure S4F), in contrast to the premature appearance of
Hairy1 transcripts observed upon caAlk3 treatment. In
addition, no Hairy1 mRNA was apparent at the RP stage
in embryos treated with either dnBMPR or noggin
when compared to controls (N = 4 for each treatment,
Additional file 5: Figure S5). Together, these results
suggest that BMP signaling is both necessary as well
as sufficient for expression of Hairy1 in RP and fur-
ther indicate that development of RP properties re-
quires high BMP signaling.

Dynamics and function of Hes/Hairy1 in the dorsal NT
Hes1/Hairy1 activity is restricted to the RP stage
Hes1/Hairy1 is a candidate gene possibly involved in the
transition between NC and RP stages because it is pre-
maturely transcribed upon exposure of dorsal NT cells
to high BMP signaling levels (Fig. 4i). Furthermore,
Hairy1 mRNA is expressed at the RP but not the NC
stage (Additional file 1: Figure S1). To further evaluate
its involvement in this transition, we implemented the
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mouse Hes1 promoter, homologous to chick Hairy1
[49], that drives expression of a reporter GFP cassette
[50]. Co-electroporation of the Hes1/GFP promoter
and control RFP at the NC stage (17–18 ss) showed
no GFP signal in the RFP+ progenitors when examined
10 h later (N = 6, Fig. 5a, a’). In contrast, the RFP+ RP
cells were GFP+ when co-electroporation was per-
formed at 40 ss (N = 5, Fig. 5b, b’). Thus, consistent

with its mRNA expression pattern, Hes1 is specifically
active in the RP.

Hes1/Hairy1 inhibits NC delamination and cell-cycle
progression
Next, we examined whether misexpression of Hes/
Hairy1 at the NC stage may adversely affect NC behav-
ior. We observed no delamination either 1 or 2 days

Fig. 4 Early exposure to constitutively active (ca)Alk3 inhibits neural crest (NC) traits and stimulates premature transcription of Hairy1. a, b
Transverse sections of control GFP (a) showing labeled cells that colonized the dorsal root ganglion (DRG) primordium as well as ectoderm
(arrows). In contrast, no significant NC cell emigration is evident in caAlk3-GFP transfected neural tubes (NTs) (b). The NC marker HNK1 is in red.
c, d Transverse sections following an extended 2-h pulse with BrdU. Embryos were sacrificed 16 h after a dorsally directed electroporation of
either control GFP (c–c”) or caAlk3 (d–d”). Arrowheads point to GFP+/BrdU+ cells. Arrows point to GFP+/BrdU− cells. e Quantification of the mean
percentages ± standard error of the mean of BrdU+/GFP+ cells of total GFP+ cells in the dorsal NT (about 10 nuclei were counted per hemi-NT;
*P < 0.005). f–i’ caAlk3 downregulates Foxd3 mRNA (g, g’, arrow) and prematurely upregulates Hairy1 to a level similar to that apparent in the
floor plate (FP; i, i’, arrow) when compared to the corresponding contralateral sides or to control GFP-electroporated NTs that show a similar level
of bilateral transcript expression (f, f’, h, h’). Bar for a, b = 50 μM; c, d = 40 μM; c’, c” d’, d” = 30 μM; f–i’ = 40 μM
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after electroporation of Hes1, the mouse Hairy1
homologue (Fig. 5d, f, h), when compared to control
GFP-electroporated embryos (Fig. 5c, e, g). Next, we
found that Hes1 misexpression promotes premature

cell-cycle exit in the electroporated cells, evidenced
by the inhibition of BrdU incorporation when com-
pared to GFP controls (N = 5 for each treatment,
Fig. 5i–k, P < 0.01).

Fig. 5 Misexpression of Hes1 at the neural crest (NC) stage inhibits G1/S transition and NC emigration. a–b’ Co-electroporation of the dorsal
neural tube (NT) at the NC (17 ss) or RP (40 ss) stages, respectively, with control RFP (red) and a Hes1 reporter-GFP. Ten hours later, Hes activity is
apparent in RFP+ cells only at the roof plate (RP) stage (b, b’). c–j Hemi-NT electroporations of control GFP or Hes1 at the NC stage, analyzed 16
h (i, j), 24 h (c–f), or 48 h (g, h) after transfection. Dorsal views of whole embryos (c, d) and sections stained for the migrating NC marker HNK-1
(e–h) showing the absence of migrating Hes1+ cells in d, f, and h compared to GFP+ controls in c, e, and g. i, j A BrdU incorporation assay (1-h
incubation) showing reduced incorporation in the dorsal NT of embryos electroporated with Hes1 compared to GFP controls. Nuclei are visualized
with Hoechst (blue). Dashed lines delimit the analyzed dorsal NT domain. k Quantification of the mean percentages ± standard error of the mean
of BrdU+ cells in the dorsal NT (*P < 0.01). Bar in b, e, f = 50 μM; g, h =70 μM; a, i–j” = 40 μM
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Hes1/Hairy1 attenuates BMP responsiveness in the dorsal
NT and downregulates Alk3 mRNA expression
The preceding results indicate that Hes1 plays a role in
ending NC production. This could be accounted for by
Hes1 exerting a negative feedback on BMP signaling or
on genes acting downstream of BMP. Such a Hes1-
dependent loss of endogenous BMP activity in dorsal
NT cells might explain the loss of responsiveness to
BMP observed upon transition into the RP stage, which
causes a concomitant exit from the cell cycle and the
end of NC EMT.
To examine this possibility, Hes1 was electroporated

at the NC stage, and pSMAD expression analyzed 20 h

later. In control GFP-transfected tubes, pSMAD staining
was similarly expressed on both sides of the dorsal NT
(Fig. 6a–a”). In contrast, NTs transfected with Hes1/
Hairy1 displayed a significant reduction in pSMAD
staining in the transfected hemi-NTs (Fig. 6b–b”, arrow
in b’).
Next, we asked whether the Hes1-dependent loss of

BMP activity can be explained by a downregulation of
Alk3 receptors, whose expression is normally lost in the
transition between NC and RP stages (see Additional file 2:
Figure S2). Fifteen hours after the co-electroporation of
Hes1 and GFP-encoding plasmids at the NC stage, we ob-
served a premature reduction of Alk3 mRNA signal in the

Fig. 6 The relationship between Hes1/Hairy1, BMP signaling, and downstream Foxd3 expression. a–b” Embryos were electroporated with either
control GFP (a–a”) or Hes1 (b–b”) at the neural crest (NC) stage and analyzed 20 h later for pSMAD immunostaining (red). Note the decreased
pSMAD signal in the treated side at b’ (arrow) compared to the untransfected side and to control GFP. c–d’ Embryos were electroporated with
either control GFP (c, c’) or Hes1/GFP (d, d’) at the NC stage and analyzed 15 h later for Alk3 mRNA expression. Note the reduction in the Alk3
signal in the transfected (green) side of the Hes-treated hemi-neural tube (NT) (white arrow). e–e” Mutually exclusive spatial expression domains
of Foxd3 and Hairy1. In situ hybridization on adjacent sections of the same embryo performed at 35 ss. Note that at this particular stage, Hairy1
expression (blue) is ventral to the Foxd3+ (black) domain. f, g’ Foxd3 and Hairy1 inhibit each other’s expression. Electroporation of Foxd3 at E2.5
cell autonomously inhibits Hairy1 expression in the dorsal NT 16 h later (g, g’; arrowheads), compared to the contralateral side and to GFP-
electroporated controls (f, f’; arrows). h, h’ Electroporation of Hes1 at the NC stage inhibits Foxd3 transcription compared to the contralateral side.
Arrowheads point to GFP+/Foxd3− cells. For control see Fig. 4f. Bar for a–b”, f–g’ = 60 μM; c–e”, h, h’ = 50 μM
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transfected hemi-NTs (N = 9, Fig. 6d, d’) when compared
to control GFP alone (N= 6, Fig. 6c, c’).
Thus, the onset of Hairy1 production in the nascent RP

might be sufficient to inhibit both BMP receptor expres-
sion and BMP responsiveness, consequently abrogating
BMP-dependent G1-S transition and cell delamination.

A mutual cross-inhibition between Foxd3 and Hairy1
The transcription factor Foxd3 is a BMP-dependent gene
expressed from early stages onwards in the dorsal NT
[4, 13, 16, 51]. Consistently, Foxd3 is transcribed at
the NC but not definitive RP stages (Additional file 1:
Figure S1G, H) [12, 13]. Conversely, expression of
Hes1/Hairy1 is largely reciprocal to that of Foxd3
(Additional file 1: Figure S1K, L and Fig. 5). To fur-
ther examine their differential expression, we performed
in situ hybridization on embryos aged 33–36 ss (HH17–
18), an intermediate stage corresponding to the dorsal re-
striction of the Foxd3-positive domain [12] and the onset
of Hairy1 transcription (e.g., the transition between NC
and RP stages). In these embryos, Foxd3 and Hairy1 were
not co-expressed in the same cells. Whereas Foxd3 mRNA
was already restricted to a narrow strip of progenitors lo-
cated in the dorsal midline, Hairy1 expression was appar-
ent immediately ventral to the Foxd3-positive domain,
presumably corresponding to prospective RP progenitors
(Fig. 6e, e’). These results further strengthen the dynamic
behavior of dorsal NT precursors where RP progenitors
are situated ventral to the premigratory NC prior to arriv-
ing at their definitive position [12].
Based on their reciprocal expression patterns, we

hypothesize that Foxd3 and Hes1/Hairy1 may stand in a
mutually repressive interaction. Misexpression of Foxd3
close to the end of the NC stage inhibited in a cell-
autonomous manner the transcription of Hairy1 when
analyzed at the RP stage (N = 5, arrowheads in
Fig. 6g, g’) in comparison to GFP controls (N = 5, ar-
rows in Fig. 6f, f ’). In addition, misexpression of
Hes1 at the NC stage repressed Foxd3 mRNA in the
dorsal NT when compared to the untreated side and
to control GFP (N = 6, arrowheads in Fig. 6h, h’ and
see Fig. 4f, f ’ for control GFP).
These results suggest that Foxd3 and Hairy1 negatively

regulate each other, thus maintaining both spatial and
temporal separation between NC and RP properties in
the dorsal neuroepithelium.

Discussion
During the development of the CNS, neuroepithelial
cells gain distinct identities and give rise to numerous
cell types. In the region of the NT destined to become
the spinal cord, the acquisition of distinct fates is coordi-
nated by the RP and FP, organizing centers secreting dif-
fusible instructive signals. But how do the organizing

centers themselves form and gain their proper fates?
While significant work has been invested in understand-
ing FP development [52], very little is known about the
formation of the RP. This is further complicated by the
highly dynamic behavior of this region, which is first
populated by NC progenitors and only after their exit
from the NT becomes the RP, a definitive group of CNS
cells.
Here, we have begun to unravel the mechanism that

accounts for the transition between NC and RP stages.
First, we have identified a number of cellular and mo-
lecular traits that characterize each stage. Second, we re-
port that although initially responsive to BMP, RP
progenitors lose competence to respond to the ligand
upon transition to their definitive location. In parallel,
RP cells upregulate Hairy1, which is likely to confer the
observed insensitivity to BMP signaling, despite the fact
that they continuously synthesize the ligand. Conse-
quently, NC production and emigration end, presumably
due to a cell-cycle arrest induced by Hairy1 via down-
regulation of BMP receptors and consequent BMP sig-
naling. In addition, Foxd3 and Hairy1 not only have
non-overlapping temporal expression patterns, but also
inhibit each other’s transcription. Together, this consti-
tutes a negative regulatory loop at the level of, and
downstream from, BMP signaling that controls the se-
quential production of NC followed by RP (Fig. 7).
Classically, the term RP is generically used to define

the dorsal domain of the NT, in particular with regard
to its morphogen-secreting capacity and function in pat-
terning of dorsal interneurons [14, 22, 39]. However,
compounds that are usually considered as RP mar-
kers—such as morphogens like BMPs and Wnts, and
transcription factors like MafB and Lmx1a/b—are pro-
duced throughout dorsal NT development, encompass-
ing the early NC period [4, 5]. Clearly, the dorsal NT
differs significantly between the stages both in terms of
cell fates and cellular behaviors, demonstrating the need
for a more exact definition.
Our previous experiments [12, 13] showed that pro-

genitors of the definitive RP are initially located ventral
to the prospective NC. Initially, these cells are molecu-
larly indistinguishable from presumptive NC because
they also express Foxd3, as evidenced by the use of a
Foxd3 reporter [13], and are still responsive to BMP, as
revealed here by lineage analysis with a BRE-GFP re-
porter. Upon NC emigration, prospective RP cells re-
locate dorsally toward their definitive midline position,
and during this time they become refractory to BMP,
downregulate Alk3, and cease to express Foxd3 and the
direct BMP target genes Id2/3. The initiation of Hairy1
expression must be associated with these events, because
it is initially evident in a band of cells localized ventrally
to the Foxd3+ domain; later, when BMP responsiveness
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and Foxd3 transcription are lost, Hairy1 expression and
activity are evident in the most dorsal NT domain. This
correlates in time with the completion of NC emigration.
This view would suggest that the functions of BMP

and Wnt signaling differ between the NC and RP stages.
Studies so far have addressed the role of these signaling
molecules on various aspects of interneuron develop-
ment yet misexpressed the ligands starting at the NC
stages and analyzed the outcome 2 days later, thus
encompassing both phases [8, 18, 53]. Clearly, limiting
the loss of either BMP or Wnt function to the NC phase
inhibits G1/S transition and the consequent EMT of
these precursors by activating a molecular network that
includes N-cadherin processing and Rho-GTPase activity
[9, 17, 38, 54]. However, it remains unclear whether such
an early and time-limited inhibition suffices for prevent-
ing or altering interneuron development, and whether
the latter cells require a continuous supply of the factors
or, alternatively, whether a late supply by the definitive
RP suffices given that interneuron progenitors still

exhibit BMP responsiveness at this stage (Fig. 2). An-
other possibility would be that signals emanating from
the young dorsal NT are important for interneuron spe-
cification and then differentiation [8, 18], whereas those
from the definitive RP are necessary for axonal out-
growth and/or guidance. Taken together, we sustain that
the use of the term RP to describe the structure emer-
ging upon NT closure is inappropriate and propose in-
stead to use the term RP only when NC delamination
has ended, and the full segregation between CNS and
PNS lineages is evident.
Members of the Hes/Hairy family of transcriptional re-

pressors were found to be constitutively expressed in
neural boundary domains, like the RP and FP of the
spinal cord [22]. Persistent and high Hes1 expression
levels repress both proneural gene transcription and cell
proliferation in boundary regions within the nervous sys-
tem [22, 55], whereas in the absence of Hes, Mash1 and
other proneural genes are ectopically expressed in these
domains [22, 56]. In addition, an oscillatory expression

Fig. 7 The dynamics of dorsal neural tube (NT) development: transition from neural crest (NC) to definitive roof plate (RP). a Before the onset of
NC migration (left panel), presumptive RP progenitors (green) are located ventral to the premigratory NC (red). They progressively reposition
dorsally upon the onset and progression of NC emigration (middle panel, red cells outside the NT are migrating NC) until reaching their definitive
localization at the dorsal midline of the central nervous system primordium (right panel). Arrows depict the ventral to dorsal direction of cellular
relocation. For details see [12, 13]. b, c At the early NC stage, BMP signaling becomes active in the dorsal NT (+), inducing a series of BMP-
dependent genes such as Foxd3, and promoting cell-cycle progression and subsequent NC epithelial-to-mesenchymal transitions (EMT) and
delamination. As time goes on, NC cells leave the dorsal NT while RP progenitors are exposed to BMP signaling for a longer duration, perhaps
interpreted as a higher signaling level (++). This induces initial Hairy1 synthesis ventral to the progressively narrowing domain of Foxd3 (see also [12]).
At the RP stage, Hairy1-expressing cells reach the dorsal midline domain and Hairy1 inhibits expression of Alk3 receptors and further responsiveness of
RP cells to BMP signaling (−), which results in the inhibition of Foxd3 transcription, arrest of cell-cycle progression, and the end of cellular EMT,
altogether contributing to the consolidation of the definitive RP. Given that misexpression of Foxd3 close to the RP stage inhibits Hairy1, these
cross-repressive interactions may account for the spatial and temporal separation of NC and RP lineages. The arrow in c depicts a time sequence
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of Hes genes has been documented in developing neuro-
blasts. This oscillatory behavior was critical to maintain
progenitor cells in an undifferentiated state while inhi-
biting neuronal differentiation [57]. Furthermore, Hes/
Hairy genes were found to play a role in regulating cell-
cycle progression [58]. Whereas low levels of Hes1 pro-
mote cell proliferation by downregulating p21 and p27
[59], persistent and high levels of Hes1 were shown to
inhibit the cell cycle [22, 60]. Consistently, as shown
here, the advent of the RP is associated with cell-cycle
exit and the onset of Hairy1 transcription. Moreover,
Hes misexpression at the NC stage inhibited G1/S tran-
sition and NC production, suggesting that Hairy1 is
functionally involved in ending NC production and RP
formation.
An open question is what are the mechanisms that

trigger Hes1/Hairy1 expression at the RP stage. Because
both NC and RP precursors lie within a domain of high
BMP signaling that expresses Msx1/2 [18], we speculate
that it is the comparably extended exposure of the latter
to BMP that induces RP properties including Hairy1;
this might occur by translating the longer duration of
signal into a higher level of activity [44, 61] as suggested
by our caAlk3 experiments. In addition, given that
Foxd3 represses transcription of Hairy1 (our data) and
suppresses interneuron development [62], it is logical to
assume that Hairy1 transcription can only be stabilized
in RP cells when Foxd3 itself is repressed or when
Foxd3+ NC progenitors exit the NT. Our data more-
over suggest that Hairy1 itself contributes to the in-
hibition of Foxd3 mRNA, either directly or indirectly
by abrogating the responsiveness of dorsal NT cells to
BMP signaling, the latter being a positive regulator of
Foxd3 transcription [4, 16, 51]. Indeed, high levels of
BMP activity (and/or longer signal duration) might be
sufficient for inducing Hairy1 and repressing Foxd3
transcription in the dorsal NT, thus generating a
feedback network of transcriptional interactions that
consolidate RP formation (see Fig. 7).
In addition to expressing Hes/Hairy, FP and RP share

similar roles because these boundary domains act as or-
ganizing centers that secrete morphogens to pattern neur-
onal differentiation in adjacent cells. Previously, high
concentrations of the Shh morphogen, which is secreted
by the notochord, were shown to be needed in both
mouse and avian embryos to specify the ventral midline
domain as FP. Later, to complete FP differentiation, these
cells become refractory to the ligand [24, 52]. In addition,
Foxj1 is upregulated in FP cells in association with the re-
duction in Shh responsiveness, and Foxj1 alters the sensi-
tivity of cells to Shh signaling, presumably by inducing
long, motile cilia [24]. By analogy to the FP, we show here
that upon NT closure and during the NC stage, dorsal
progenitors respond to BMP, but while transiting to the

dorsal midline they downregulate Alk3 receptors, stop
responding to BMP, and similarly upregulate Foxj1,
regaining apically organized Arl13b + cilia and apico-basal
polarity. Thus, in spite of the delayed development of the
RP when compared to the FP [10], there are notable simi-
larities between the specification of both ventral and dor-
sal organizing centers. Further investigation is needed to
substantiate the mechanistic similarities between FP and
RP development by examining, for instance, whether
Foxj1 in the RP similarly alters BMP responsiveness and
cilia morphology and function.

Conclusions
By initially characterizing a set of positive and negative ac-
tivities involving regulated BMP signaling and Hes/Foxd3
interactions, our results provide novel insights into the dy-
namic events leading to the transition from the NC to the
RP phase of NT development. Four main processes are
noteworthy: first, our finding that RP progenitors initially
respond to BMP yet lose competence upon relocation to
their definitive dorsal midline position in the NT, where
they finally consolidate their identity; second, that BMP
signaling induces Hes transcription, which in turn down-
regulates BMP responsiveness, likely through modulation
of Alk3 receptor transcription; third, that downstream of
BMP, a cross-repressive interaction between Foxd3 (an
NC marker) and Hairy1 (an RP marker) accounts for the
temporal and spatial segregation of both lineages; and
fourth, that in spite of being refractory, the definitive RP
continues producing BMP, which is likely to act upon dor-
sal interneurons. The precise time-dependent activities of
BMP emanating from the early (NC stage) versus late (RP
stage) dorsal NT remain to be defined. These multiple
roles of BMP signaling indicate that its function is context
dependent and dictated by the regulatory state and com-
petence of the target cells. We also notice that RP on-
togeny bears significant resemblance to the development
of the FP, initiated by Shh signaling in the ventral NT,
both in terms of signal duration/intensity followed by re-
fractoriness. Future research should focus on unveiling
additional genes and interactions that comprise the differ-
ential molecular networks underlying the sequential func-
tions of BMP on NC, RP, and interneuron development.

Methods
Embryos
Chick (Gallus gallus) and quail (Coturnix japonica) eggs
were obtained from commercial sources (Moshav Orot
and Moshav Mata, respectively). Experiments were con-
ducted at the flank level of the axis (20–25 ss).

Expression vectors and electroporation
Expression vectors were: pCAGGS-EGFP, pCAGGS-RFP
[12], pBI-EGFP, Noggin [9], pCAB-Smad6, pCAB-dnBMPR
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[48], pBI-mHes1 (subcloned from [50]), pBI-cFoxd3
[43, 62], and pBI-caBMPR1a/Alk3 (from D. Schulte and
subcloned into pBI). To trace Hairy1 activity, a 2.5 kb
mouse Hes1 promoter driving expression of a GFP re-
porter (pHes1-promoter-GFP) was used (N. Jing [50]).
The specificity of the Hes1 reporter was previously
assessed by monitoring changes to Notch signaling [33].
To monitor BMP signaling, we implemented a BRE that
drives expression of a GFP reporter plasmid. BRE-GFP
contains two copies of two distinct and conserved ele-
ments of the binding sites for Smad4 upstream of a
minimal thymidine kinase promoter (E. Marti; [8]).
Specificity of the BMP reporter was previously veri-
fied by co-electroporation with pEFBOS-mBMP4 [33].
Both the pHes1 promoter and BRE-GFP plasmids were

electroporated along with a control RFP-encoding vec-
tor, to monitor electroporation efficiency.
DNA (2–5 mg/ml) was microinjected into the lumen of

the NT at the trunk level of the axis at specific stages as
detailed for each experiment. For hemi-NT electropora-
tions, 5 mm tungsten electrodes were placed on either
side of the embryo. For discrete electroporations into the
dorsal NT, a 5 mm tungsten electrode was inserted under
the blastoderm and a fine, 1–2 mm long electrode placed
over the dorsal NT. A square wave electroporator (BTX,
San Diego, CA, USA) was used to deliver one to three
pulses of current at 10–20 V for 10 ms.

Immunohistochemistry and in situ hybridization
Antibodies against HNK1 (CD57, BD Biosciences,
San Jose, CA, USA Cat#559048, 1:500), Arl13b (from
Tamara Caspary, 1:1000), ZO-1 (Thermo Fisher Sci-
entific, Waltham, MA USA, cat#402200, 1:100), N-
cadherin (R&D Systems, Minneapolis, MN, USA.,
cat#BTA7, 5 μg/ml), laminin (Sigma-Aldrich, St. St.
Louis, MO, USA cat#L9393,1:100), BrdU (G3G4, Devel-
opmental Studies Hybridoma bank, Iowa City, Iowa, USA
1:100), and phosphorylated Smad 1-5-8 (pSMAD, from Ed
Laufer, 1:1000) were used as previously described [9]. Cell
nuclei were visualized with Hoechst. In situ hybridization
was performed on paraffin sections as described [25]. The
following probes were employed: BMP4 [16], Foxd3 [62],
Bmpr1a/Alk3, Bmpr1b/Alk6 [63], Hairy1 [49], Id2, Id3
[33], Foxj1 [64], MafB [65], Wnt1 [4], and Gdf7 (from A.
Graham).

Data analysis and statistics
The dorsal NT domain at NC and RP stages was ana-
lyzed. At the NC stage, the expression domain of Foxd3
generally contains 8–14 (9.57 ± 1.18) nuclei, and the ex-
pression domain of MafB at the RP stage contains 10–
15 (13.5 ± 0.94) nuclei per hemi-NT. Therefore, for cell
counts and domain definition at either stage, the most
dorsal 8–10 nuclei per hemi-NT were considered.

Five to twelve embryos were analyzed per experimen-
tal treatment. For BrdU incorporation measurements,
cells in 5–20 sections per embryo were counted and
expressed as percentage of BrdU+/total GFP+ cells in
the dorsal NT.
Images were photographed using a DP70 (Olympus,

Japan) cooled charge-coupled device digital camera
mounted on a BX51 microscope (Olympus, Japan). Con-
focal sections of whole-mount preparations encompassing
their entire thickness were photographed using a Nikon
Eclipse 90i microscope with a Plan Apo 10×/0.45 dry ob-
jective (Nikon, Japan) and a D-Eclipse c1 confocal system
(Nikon, Japan) at 2.7 μm increments through the z-axis. Im-
ages were z-stacked with EZ-C1 3.90 FreeViewer software.
For figure preparation, images were exported into Photo-
shop CS6 (Adobe). If necessary, the levels of brightness and
contrast were adjusted to the entire image and images were
cropped without color correction adjustments or γ adjust-
ments. Final figures were prepared using Photoshop CS6.
Data were subjected to statistical analysis using the

nonparametric Mann-Whitney and Kruskal-Wallis tests.
All tests applied were two-tailed and a P-value ≤ 0.05
was considered significant.

Additional files

Additional file 1: Figure S1. Stage-specific expression of selected dorsal
NT markers. (A–H) In situ hybridization for Id2 (A, B), Id3 (C, D), LTK (E, F), and
Foxd3 (G, H) at NC and RP stages. Note selective expression at the NC stage
and no expression in the definitive RP. Among additional expression
patterns, both Id2/3 are transcribed ventrally to the RP, corresponding to
dorsal interneurons (B, D). (I–L) Foxj1 and Hairy1 are transcribed in the
definitive RP (J, L) but not the dorsal NT at the NC stage (I, K). Note that
both are expressed in the floor plate. (M–R) Gdf7, Wnt1, and MafB are
expressed at both stages in the dorsal NT. Bar for A ,C ,E ,G ,I ,K ,M ,O ,
Q = 40 μM; B, D, F, H, J, L, N, P, R = 70 μM. (JPG 1246 kb)

Additional file 2: Figure S2. Expression of BMP receptors in the NT.
(A–E) In situ hybridization for Bmpr1a/Alk3 (A–C) and Bmpr1b/Alk6 (D, E)
at NC (A, B, D) and RP stages (C, E). A and D depict an early NC stage
opposite epithelial somites, and B illustrates an advanced migratory
stage. Dashed lines in C and E delimit the definitive RP. Bar for A, B,
D = 60 μM; C, E = 100 μM. (JPG 186 kb)

Additional file 3: Figure S3. caBMPR1A/caAlk3 stimulates ectopic
pSMAD activity. (A–A”) Electroporation of control GFP (PBI-GFP) or
caBMPR1a-GFP-PBI (B–B”) followed by pSMAD immunostaining. Note in
A–A” that the pSMAD signal is restricted to the dorsal NT even if the
transfection attains half of the NT length. In contrast, caBMPR1a/Alk3
induces ectopic pSMAD activity in transfected cells throughout the
electroporated domain (B–B”). Bar = 50 μM. (JPG 516 kb)

Additional file 4: Figure S4. Inhibition of BMP signaling abrogates G1/
S transition in the dorsal NT but does not stimulate premature Hairy1
expression. (A–D) Transverse sections showing the NT following a 1 h
pulse of BrdU. Embryos were sacrificed 16 h after electroporation of
either control GFP (A–A”’), Noggin (B–B”’), Smad6 (C–C”’), or dnBMPR (D–
D”’). Arrowheads point to GFP+/BrdU+ cells. Arrows point to GFP+/BrdU–
cells. (E) Quantification of the mean percentages ± standard error of the
mean of BrdU+/GFP+ cells of total GFP+ cells in the dorsal NT (about 10
nuclei were counted per hemi-NT, N = 4 embryos for each treatment;
*P < 0.05). Nuclei are visualized with Hoechst (blue). (F, F’) Misexpression
of noggin-GFP (green) has no effect on the expression of Hairy
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transcripts. F’ is an overlay of noggin-GFP and Hairy1 in situ hybridization.
Bar = 40 μM. (JPG 700 kb)

Additional file 5: Figure S5. Inhibition of BMP signaling prevents
Hairy1 expression in the dorsal midline region of the NT at the RP stage.
Electroporations at the 10–15 ss of control GFP (A–A”), dnBMPR (B–B”), or
noggin (C–C”) followed by fixation at 45 ss. Note Hairy1 expression in the
GFP+ RP of the control NT and the presence of many GFP-labeled, NC-
derived cells in the DRG. In contrast, no Hairy1 signal is apparent in the
hemi-RP misexpressing dnBMPR-GFP (asterisk in B’), or in the entire RP
that received noggin/GFP (asterisk in C’). Arrows in A’, B’, and C’ point to
the RP. As expected from the known effects of BMP signaling on NC
delamination, few or no labeled NC-derived cells were observed in
peripheral targets of these embryos. DRG dorsal root ganglion, FP floor
plate, NT neural tube. Bar = 60 μM. (JPG 858 kb)
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