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Background: Floating Catchment Area (FCA) metrics provide a comprehensive measure of potential spatial accessibility
to health care services and are often used to identify geographic disparities in health care access. An unexplored aspect
of FCA metrics is whether they can be useful in predicting where people actually seek care. This research addresses this
question by examining the utility of FCA metrics for predicting patient utilization patterns, the flows of patients from their

Methods: Using more than one million inpatient hospital visits in Michigan, we calculated expected utilization patterns
from Zip Codes to hospitals using four FCA metrics and two traditional metrics (simple distance and a Huff model) and
compared them to observed utilization patterns. Because all of the accessibility metrics rely on the specification of a
distance decay function and its associated parameters, we conducted a sensitivity analysis to evaluate their effects on

Results: We found that the Three Step FCA (3SFCA) and Modified Two Step FCA (M2SFCA) were the most effective metrics
for predicting utilization patterns, correctly predicting the destination hospital for nearly 74% of hospital visits in Michigan.
These two metrics were also the least sensitive to changes to the distance decay functions and parameter settings.

Conclusions: Overall, this research demonstrates that FCA metrics can provide reasonable predictions of patient utilization
patterns and FCA utilization models could be considered as a substitute when utilization pattern data are unavailable.

Keywords: Spatial accessibility, Access to health care, Health care use, Utilization patterns, Hospitalizations,

Background

Much of the recent geographic research regarding access to
health care has focused on examinations of potential access
to services, rather than on realized access or utilization of
health care services [1]. As defined by Aday and Anderson
[2], potential access may be considered as a measure of the
potential for entry into the health care system or a
characterization of the level of opportunity provided by the
health care delivery system. Conversely, realized access is a
measure of actual utilization of a health care service, such
that any barriers to the use of services have been overcome
and access has been achieved. Penchansky and Thomas [3]
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further examined the concept of potential access, providing
five distinct dimensions of access, which Khan [4] later cat-
egorized into spatial components (accessibility and avail-
ability) and aspatial components (affordability, acceptability,
and accommodation).

The fusion of accessibility (distance to services) and
availability (volume of services) has been termed spatial
accessibility [5]. The Floating Catchment Area (FCA)
family of metrics simultaneously integrate the three
essential components required to measure potential
spatial accessibility: supply of services, potential demand
for services, and distance separating supply and demand
locations. Much of the recent FCA-related research has
focused on methodological improvements to the metrics
(e.g., [6-8]) or using the metrics to map and identify dis-
parities in health care accessibility (e.g., [9-11]).
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Less effort has been dedicated to understanding how
potential spatial accessibility affects health care
utilization. While there certainly are exceptions to this
statement (e.g., [12-15]), the emphasis of potential
spatial accessibility research has largely remained on
“potential”. Ngui and Apparcio [16] note the complex
nature of incorporating potential and realized informa-
tion within a single study design, which may be one
factor limiting research in this area. However, this deficit
could simply be a result of differences in data availabi-
lity; detailed health care utilization data is not always
readily available to researchers due to privacy concerns,
while health care facility locations and geographic popu-
lation data are relatively easy to obtain.

People who live in the same region may utilize care at
numerous facilities. Data representing the number of
people residing in each region who use health care at mul-
tiple facilities are referred to as utilization patterns or pa-
tient flows. For a study area partitioned into n regions
based on people’s residence and having m facilities located
within it, utilization patterns are expressed as an n x m
Origin-Destination (OD) matrix with the matrix entries
containing the number of visits or volume of use for resi-
dents of each region at each facility. Previous research on
health care utilization patterns has generally been explana-
tory in nature, focusing on identifying whether population
and facility characteristics, as well as distance, affect where
people receive care (e.g., [17-23]); less emphasis has been
placed on developing models that provide accurate predic-
tions of patient utilization patterns.

In this research, we evaluated the potential utility of
using measures of spatial accessibility, namely FCA met-
rics, to predict spatial patterns of health care utilization.
Interestingly, the FCA metrics contain the requisite
information to predict utilization patterns; however, they
have yet to be evaluated in this capacity. We tested four
FCA metrics, the Enhanced Two Step FCA (E2SFCA,
[24]), the Modified 2SFCA (M2SFCA, [25]), the Three
Step FCA (3SFCA, [26]), and a Huff-modified version of
the 3SFCA (abbreviated H3SFCA for this work, [27]).
Two traditional spatial accessibility approaches are im-
plemented for comparative purposes: a simple distance-
based approach and a Huff Model [28]. Each measure is
highly dependent on the definition of a distance decay
function and its parameter values. Thus, for each metric,
we implemented four different distance decay functions,
each having four parameter settings, to test for how
characterization of distance decay affects the predictive
accuracy of the metrics. Our approach produced a total
of 96 outputs (6 metrics x 4 decay functions x4 para-
meter settings) that were compared against observed
utilization patterns. We also examined one single metric,
decay function, and parameter setting combination in
detail to demonstrate the general nature of where the
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predictions were most and least accurate to better
understand the spatial distribution of predictive accuracy
and factors that may have influenced it.

Methods

Input data and preprocessing

Our case study was conducted using inpatient hospitali-
zations and hospitals in the state of Michigan (US). We
evaluate all general acute care hospitalizations over an
entire year in the state, as this is a nonspecialized, rela-
tively common type of care. Michigan makes an ideal
case study for several reasons, 1) as the largest state (by
area) in the eastern United States, its nearly 10 million
residents live in a wide range of representative commu-
nities, from large urban cores and suburbs to rural and
wilderness areas, 2) the geographic distribution of
acute-care hospitals is spatially heterogeneous, leading
to large variations in potential spatial accessibility, and
3) much of the state’s borders, along the Great Lakes
and Canada, are effectively impassable for hospital
service users, lessening the effects of study boundaries
on models developed there.

Location and attribute data for hospitals in Michigan
were acquired from the Michigan Department of Health
and Human Services (MDHHS). The hospital attribute
information was used to subset the data to only
acute care hospitals offering emergency room ser-
vices (n =133) in an effort to remove hospitals providing
only highly-specialized services that would be expected to
draw patients under their own unique circumstances. The
hospitalization utilization data was drawn from the 2014
Michigan Inpatient Database (MIDB), a hospital discharge
database that contains, among other attributes, the resi-
dential location of the patient (at the Zip Code level) and
hospital visited for each inpatient hospitalization in the
state (including Michigan residents visiting Michigan hos-
pitals, Michigan residents who visited out of state hospi-
tals, and out-of-state residents who visited Michigan
hospitals). Zip Codes were used as the spatial population
unit, as this is the most resolved location information in
the MIDB. The patient discharges were subset to include
only in-state residents visiting in-state hospitals, hereto-
fore referred to as in-state visits (n =1,063,721). Three
hospitals did not report utilization data, thus were
removed from the hospital data layer and analysis. One
Zip Code had no in-state visits, thus was removed from
the analysis.

A roads database was acquired from the state of
Michigan Open Data Portal (http://gis-michigan.openda-
ta.arcgis.com) and subsequently converted to a vehicular
travel network as described in Delamater et al. [29]. A Zip
Code polygon layer was downloaded from ESRI (https://
www.arcgis.com/home/item.html?id=8d2012a2016e484-
dafaac0451f9aea24) and subset to Zip Codes in Michigan.
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A small number of manual adjustments were required to
ensure the Zip Code layer matched the utilization data.
US Census block polygons were downloaded from the
Michigan Open Data Portal and converted to a point layer,
with each point representing the geographic centroid of
its corresponding Census block polygon. The total popula-
tion in 2010 for each block was downloaded from the US
Census (https://www2.census.gov) and joined to the
spatial point layer. The block population points were then
spatially joined to the Zip Code polygons and used to
create the population-weighted centroid (PWC) each Zip
Code, as well as to calculate the total population of each
Zip Code.

Using the travel network, we constructed an OD
matrix containing the estimated travel time from all
Zip Code PWCs to all the acute care hospitals in
Michigan. The travel time data were used to subset
the hospitalization data to include only visits to hos-
pitals that were less than or equal to 90 min from the
patients’ residential addresses. This step was required
to remove visits that most likely occurred while the
patients were away from their residence or visits that
required a type of health care service that was not
available in their local region. The visits data were ag-
gregated (summed) by Zip Code and hospital and
stored in an OD matrix with the Zip Codes as ori-
gins, the hospitals as destinations, and the number of
visits (counts) as the entries. One Zip Code was re-
moved from the analysis at this stage because its resi-
dents had no visits to a hospital within 90 min of the
Zip Code. The final observed utilization patterns OD
matrix contained 1,034,492 inpatient hospital visits
(97.3% of all in-state visits), occurring at 130 hospitals
and originating from 907 Zip Codes. Of the 25,795
potential unique OD pairs meeting the 90-min travel
time threshold, 13,242 had at least one patient visit.

Using the visits OD matrix, we calculated the Rele-
vance Index (RI) values, which normalizes for differ-
ences in the total number of visits among Zip Codes
[30]. The RI is calculated by dividing the number of
visits by residents of the Zip Code i to each hospital
j (Vi) by the total number of visits to all hospitals
for that Zip Code (V)):

Vi.j
Vi

RI;; = (1)

This calculation produces a set of proportion values
(scaled from O to 1) that sums to one for each Zip
Code and represents normalized utilization patterns.
The RI values for two example Zip Codes are mapped
using a population perspective in Fig. 1 to illustrate
this concept, showing one Zip Code with a large pro-
portion of visits occurring at a single facility and
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another Zip Code with visits more evenly dispersed
across multiple facilities.

FCA metrics
The basic framework for all floating catchment area met-
rics is based on a gravity model that integrates supply, de-
mand, and distance simultaneously [31, 32]. The history of
these metrics and their formulation has been extensively
published in previous work (e.g., [25]) thus is only briefly
summarized here. While a number of FCA metrics could
have been evaluated, the following summary is limited to
those used in this analysis, which were chosen because
they require a similar set of data to calculate: the location
of potential demand (population counts), the location of
facilities and their supply, and measures of the distance
separating supply and demand locations, and have similar
underlying assumptions in their formulation: a single
travel mode, invariant distance thresholds or catchment
sizes, and total population as potential demand.

The first step in the E2SFCA is to calculate the supply
to demand ratio for each facility j (D;) by dividing the
supply (S)) by the potential demand (P)):

Sj

Dji=———"—F——
Zie[d,; ,<d]P iWi,

(2)

In this calculation, P; is the distance-weighted sum of
the population falling within a specified threshold distance
(d) of facility j, P; is the population at unit i, and W; is the
weight assigned to distance d,; based on a specified dis-
tance decay function. Common distance decay functions
and their representation as weights can be found in Kwan
[33] and Delamater [25], while the particular threshold
distance parameter is often chosen based on the popula-
tion distribution within the study region (higher threshold
distances include more remote populations). The second
step in the E2SFCA is to calculate the distance-weighted
sum of the supply to demand ratios falling within the
threshold distance of each population unit i:

A= Zje[d,;/<d]DiWi’j (3)

where A; is the E2SFCA value.

The M2SFCA builds on the E2SFCA, but integrates an
additional weight term in the formulation to account for
the suboptimal distribution of supply locations. The first
step is to calculate the supply to demand ratios for each
facility and population unit combination (D )):

SiWi,

Diﬁj _
Zie [d: j<d] PiWi;

(4)

where the rest of the terms are defined exactly as in
the ESFCA. The second step in the M2SFCA is also the
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same as the E2SFCA, but the single facility supply to
demand ratio is replaced by facility/unit value (D;):

A= Zje[di,,‘<d]Di’jWi’j (5)

The 3SFCA and H3SFCA both attempt to account for
competition among facilities by adding an additional
step to the E2SFCA formulation. The first step in each
metric is to first calculate a selection weight (G), which
defines the probability that a particular facility will be
selected for use by a population. In the 3SFCA, G;; for a
population unit i and facility j pairing is defined as:

Wi

G ="+
Y jeldi <d] W

(6)

The G term is simply based on distance (expressed as
W) in the 3SFCA. The H3SFCA integrates a Huff Model
to calculate G by incorporating both distance and supply
in the formulation:

SiW,
Gi,i = Z / g‘W (7)
jeldij<d]2i " i

The second and third steps of the 3SFCA and
H3SFCA are the same as the two steps in the E2SFCA
with the addition of the G term:

Sj

D; =
2iefar<d| PiWiiGij

and

A= Z je[di‘}_d]D;‘Wi,jGi,i

©)

An interesting facet of all FCA-based metrics is that the
final step includes, for each population unit i, a summa-
tion of the supply to demand ratios for the set of facilities
falling within the threshold distance, d. Hence, prior to
this step, each FCA metric contains disaggregated infor-
mation regarding the spatial accessibility that is provided
by each facility for that population unit; however, given
that the ultimate goal of the FCA metrics is to capture an
overall measure of spatial accessibility for population
units, this information is summed to calculate the final A;
value for each (ie., Egs. 3, 5, and 9). Notably, the partial
accessibility provided by each facility can be reconceptua-
lized such that it describes the probability that people liv-
ing in population unit i will visit facility j (p;), such that:

A

pha.) (10)

bij= A,

In this formulation, normalizing each partial accessi-
bility value (A;;) by the total accessibility for the unit
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(A)) results in sets of p;; values that will always sum to
one for each population unit and thus can be used to
predict or estimate the proportion of each population
unit that will use each facility. It is also important to
note the connection between the RI values (Eq. 1) and
the predicted probabilities from the partial spatial acces-
sibility calculation in Eq. 10. The actual utilization pat-
terns measured by RI values are directly comparable
with the predicted utilization patterns based on spatial
accessibility and represented as p values. This potentially
highly valuable property of all FCA-based metrics has
not been examined in previous research.

Potential spatial accessibility was calculated using four
FCA metrics, the E2SFCA, M2SFCA, 3SFCA, and
H3SFCA, using the number of hospital beds at each
hospital as the measure of supply (S), the total popu-
lation of each Zip Code as the potential demand (P), and
the travel time from the PWC of each Zip Code to each
hospital as the distance measure (d). The potential
spatial accessibility values were converted to predicted
probabilities of use per Eq. 10. We also calculated a sim-
ple distance-based measure of accessibility (DIST) using
the selection weight formula from the 3SFCA (Eq. 6)
and a simple Huff-based measure of accessibility (HUFF)
using the selection weight formula from the H3SFCA
(Eq. 7) for comparative purposes. The distance- and
Huff-based accessibility values were also converted to
predicted probabilities using Eq. 10.

Distance decay functions

The FCA-, distance-, and Huff-based accessibility mea-
sures all require a threshold distance and a distance
decay function. The threshold distance is the distance at
which a facility is no longer considered accessible, which
was set at 90 min to mirror the constraints placed on
the hospital utilization data. The choice of the particular
distance decay function and its parameter value(s) can
have a large effect on the resulting accessibility scores,
as this governs the conversion of measured distances (d)
to weight values (W). As a sensitivity analysis, we calcu-
lated the metrics and corresponding predicted probabi-
lities of utilization using four different decay functions,
with each function having four unique parameter
settings. The four functions were the Downward Log
Logistic (DLL), Gaussian (GAUS), Exponential (EXP),
and Logistic Cumulative Distance Function (LCDF),
which have been used in similar work [7, 25, 33].

The parameter settings we used for each function
cover a broad range of potential distance decay relation-
ships. The processes used to generate the parameter set-
tings is summarized here and detailed in the
Additional file 1. The first set of parameter values for
the decay functions was based on an estimate of distance
decay if each person in the state uses their nearest
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facility (MIN) and estimated by fitting the function to
the data of the minimum distance to a facility. The next
set of parameter values was based on the observed dis-
tance decay observed in the hospitalization data (HOSP)
and estimated by fitting the function to the observed
hospital utilization data. The third set of parameter
values (MOD) was calculated by taking the mean of the
parameter values of MIN and HOSP, which represents
“moderate” distance decay. The fourth set of parameter
values (HIGH) was calculated by adding the difference
between the second and third set of values back to the
third set of values. The HIGH set of values represents a
“high miss” when estimating the observed distance decay
behavior. The distance decay weights for the four func-
tions, along with the formulas and four parameter
settings, are presented in Fig. 2. As the figure shows, the
four parameter settings cover a broad range of potential
decay relationships for each function. While some of the
function-parameter combinations fit the observed
utilization data (e.g., DLL-HOSP), the combinations also
include both functional forms and parameters settings
that are very different from the observed distance decay.
This range of both accurate and inaccurate combina-
tions is important to evaluate, because the true distance
decay relationship is generally not known when calculat-
ing potential spatial accessibility since utilization data
are not available.

To illustrate the differences in the predicted probabi-
lities of use among the six metrics, they are mapped for
a single example Zip Code in Fig. 3 (using the DLL func-
tion and HOSP parameter setting). Example figures show-
ing the differences in predicted probabilities due to
changes in the distance decay function and the decay func-
tion’s parameter settings can be found in Additional file 1.

Comparison with observed utilization patterns

We assessed how well the six spatial accessibility met-
rics predicted observed hospital utilization patterns
from the perspective of both the number of visits
(counts) and the proportion of visits (RI values). This
distinction was important because the overall accur-
acy of the predicted utilization patterns could be in-
fluenced by the different number of hospital visits
that originate from each Zip Code; for example, a 5%
error on 100 visits is 5 visits, whereas a 5% error on
1000 visits is 50 visits. By computing accuracy based
on both absolute and normalized utilization patterns,
we captured two related but distinctive properties of
each spatial accessibility metric’s ability to predict
utilization patterns. We also assessed the accuracy of
assigning every patient to their nearest facility, as this
approach is often used [15] and provides a useful
benchmark to evaluate the predictive accuracy of the
spatial accessibility metrics.
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Fig. 2 Weight values and formulas for the distance decay functions. The four function forms are a) Downward Log Logistic (DLL), b) Gaussian
(GAUS), ©) Exponential (EXP), and d) Logistic Cumulative Distance Function (LCDF). The four parameter settings for each function are MIN (black),
MOD (green), HOSP (red), HIGH (blue). The observed distance decay from the hospital utilization data are plotted as grey circles for reference

Because the potential spatial accessibility metrics only
produced probabilities of utilizing each facility (Eq. 10),
we generated predicted visit counts from each Zip Code
to each facility by multiplying the total number of
hospital visits for each Zip Code by the predicted pro-
bability values. As such, the total number of predicted
hospital visits for each Zip Code was apportioned to fa-
cilities based on the probabilities of utilization gathered
from each spatial accessibility metric.

To assess the accuracy of each spatial accessibility
metric, we first calculated the percent of patient visits
that were correctly predicted. For each Zip Code, the
observed number of visits to each facility was sub-
tracted from the predicted number of visits to calcu-
late the prediction error. This resulted in a prediction
error matrix containing both under and over predic-
tions (negative and positive values) that summed to 0
because of the bound nature of visits. For example, if
a single hospital visit was mistakenly assigned to Hos-
pital A instead of Hospital B, this mistake would be
recorded in the prediction error matrix as +1 error

at Hospital A and -1 error at Hospital B. Hence, to
calculate the percent correct based on counts, we first
summed all of the positive prediction errors in the
matrix, and then subtracted this sum from the total
number of visits in the state. This calculation pro-
duced the number of visits that were correctly pre-
dicted, which was divided by the total number of
visits to calculate the statewide percent of visits from
each Zip Code to each Hospital that were correctly
predicted. This calculation was performed for each
spatial accessibility metric, decay function, parameter
setting combination. An example of this calculation is
provided in Additional file 1.

To calculate the percent correct based on the propor-
tion of visits, we first used the above approach to calcu-
late the percent correct for each Zip Code separately.
Then, we calculated the mean percent correct over all
Zip Codes. As such, this second measure of accuracy
does not weigh by the differing number of visits origin-
ating from each Zip Code and therefore represents each
spatial accessibility metric, decay function, parameter
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Fig. 3 Predicted probabilities of hospital utilization for an example Zip Code. The example Zip Code is shaded dark. The probabilities were
calculated using the six potential spatial accessibility metrics with a constant decay function (DLL) and set of parameters (HOSP)

setting combination’s ability to predict normalized
utilization patterns (RI values). Additional file 1 also
contains an example of this calculation.

We performed a detailed analysis for a single
metric, decay function, and parameter combination
to better understand the spatial distribution of the
errors of prediction and their potential causes. Not-
ably, we wanted to understand whether the number
of facilities in the local region or the distribution of
utilization among facilities (e.g., see Fig. 1) affected
the ability of the metrics to predict patterns of
utilization for each Zip Code. We tabulated the
number of facilities within 90 min of each Zip Code.
We calculated the Shannon Evenness Index (E, [34,
35]) using the observed RI values of hospitals within
90 min of each Zip Code as a measure of the even-
ness of use across facilities. Potential E values range
from O (all utilization at a single facility) to 1 (per-
fectly even distribution of utilization across multiple
facilities).

Results
The percent of visits correctly predicted based on counts
for each spatial accessibility metric, decay function, and
parameter combination are found in Table 1. The most
accurate metric-function-parameter combinations were
the  3SFCA-DLL-MOD  (73.88%  correct) and
M2SFCA-DLL-MOD (73.84%), which were followed
closely by the E2SFCA-LCDF-MIN (71.71%). The most
accurate combinations for the three other metrics were
each under 65%. The accuracy of the nearest facility
approach was 38.9%, which nearly all metric-function--
parameter combinations largely outperformed. The sen-
sitivity test of the metrics to the decay functions and
parameter settings also provided interesting findings.
Notably, the range of the percent correct for the 3SFCA,
M2SFCA, and H3SFCA were each less than 16% (less
sensitive), while the E2SFCA, DIST, and HUFF metrics
each had a range greater than 25% (more sensitive).
Table 2 contains the percent of visits correctly pre-
dicted based on proportions for each metric-function-
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Table 1 Percent of hospital visits (based on counts) correctly
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Table 2 Percent of hospital visits (based on proportions)

predicted correctly predicted

METRIC, FUNCTION MIN MOD HOSP HIGH METRIC, FUNCTION MIN MOD HOSP HIGH
E2SFCA, DLL 67.10 60.62 5391 48.05 E2SFCA, DLL 64.17 61.55 57.67 53.60
E2SFCA, GAUS 6843 68.78 66.87 64.81 E2SFCA, GAUS 57.15 61.15 63.18 64.22
E2SFCA, EXP 67.59 62.69 54.67 43.88 E2SFCA, EXP 66.14 64.53 59.85 5145
E2SFCA, LCDF 7117 65.11 56.72 5041 E2SFCA, LCDF 63.62 65.57 6143 56.95
M2SFCA, DLL 7111 73.84 71.72 66.47 M2SFCA, DLL 64.75 68.08 68.90 66.88
M2SFCA, GAUS 62.03 68.59 69.56 69.15 M2SFCA, GAUS 52.33 57.52 60.27 62.16
M2SFCA, EXP 7246 72.81 69.91 5859 M2SFCA, EXP 64.31 67.03 68.53 63.28
M2SFCA, LCDF 67.82 7249 7047 66.31 M2SFCA, LCDF 57.82 6545 68.23 67.66
3SFCA, DLL 71.62 73.88 71.58 66.52 3SFCA, DLL 64.60 67.05 67.65 65.99
3SFCA, GAUS 6244 69.02 70.08 69.68 3SFCA, GAUS 52.66 58.12 60.96 62.75
3SFCA, EXP 7314 73.19 70.01 58.88 3SFCA, EXP 64.82 66.96 68.10 63.10
3SFCA, LCDF 6845 73.02 70.63 66.54 3SFCA, LCDF 5857 65.70 6793 67.35
H3SFCA, DLL 61.83 60.79 57.51 52.27 H3SFCA, DLL 57.18 57.23 55.92 53.09
H3SFCA, GAUS 56.87 5893 58.75 58.01 H3SFCA, GAUS 50.10 53.14 54.59 55.54
H3SFCA, EXP 61.15 60.12 56.23 46.29 H3SFCA, EXP 57.28 57.78 56.56 50.55
H3SFCA, LCDF 59.95 60.36 57.12 5265 H3SFCA, LCDF 54.04 5743 57.11 54.95
DIST, DLL 57.78 51.08 4443 38.90 DIST, DLL 53.65 49.99 45.76 41.75
DIST, GAUS 6249 6213 59.23 56.30 DIST, GAUS 53.61 56.03 56.21 55.63
DIST, EXP 5843 53.19 45.02 3497 DIST, EXP 56.28 5342 47.82 39.50
DIST, LCDF 63.92 55.79 47.05 4097 DIST, LCDF 57.46 55.18 49.57 44.90
HUFF, DLL 46.68 40.85 3581 31.64 HUFF, DLL 44.99 4144 3792 34.66
HUFF, GAUS 53.98 51.74 48.82 45.89 HUFF, GAUS 49.23 49.88 49.28 48.19
HUFF, EXP 4749 4261 36.24 28.69 HUFF, EXP 48.15 4488 39.78 3297
HUFF, LCDF 53.31 4491 37.77 3323 HUFF, LCDF 51.10 46.80 4134 37.34

Legend: The spatial accessibility metric and decay function are in the rows and
the decay functions’ parameter settings are in the columns. The highest
accuracy combination for each metric is in bold text

parameter combination. Notably, the maximum values
in Table 2 all are lower than the corresponding count-
based results in Table 1, signaling that, in general, the
accuracy of the spatial accessibility metrics was influ-
enced by the raw count of visits. The M2SFCA, 3SFCA,
and E2SFCA were again the most accurate in predicting
utilization patterns. Interestingly though, the decay-par-
ameter combinations with the most accurate results were
not the same as the count-based results. The
M2SFCA-DLL-HOSP (68.9% correct) and 3SFCA-EXP-
HOSP (68.1%) were the most accurate in predicting nor-
malized patterns of utilization, followed by the
E2SFCA-EXP-MIN (66.14%). The H3SFCA, DIST, and
HUFF metrics were lower in this measure of accuracy as
well, having maximums of 57.78, 57.46, and 51.1% correct
respectively. The nearest facility approach had an accuracy
of 39.8% correct and, overall, the spatial accessibility met-
rics outperformed this approach. The sensitivity of the met-
rics to variations in the distance decay function and

Legend: The spatial accessibility metric and decay function are in the rows and
the decay functions’ parameter settings are in the columns. The highest
accuracy combination for each metric is in bold text

parameter was quite different using the normalized
utilization patterns. The least sensitive metric was the
H3SFCA with a range of only 7.68%, although all combi-
nations were quite low in accuracy comparatively. The
range of the other metrics was between 14.69 and 18.14%,
which was similar to the count-based results.

The percent of hospital visits correctly predicted by
the M2SFCA-DLL-HOSP combination is mapped by Zip
Code in Fig. 4. This combination was chosen because it
was the best predictor of normalized utilization patterns
and third highest predictor of the count-based utilization
patterns. Using this metric, the minimum percent cor-
rectly predicted for any Zip Code was 10.9%, while the
maximum was 99.9% (after removing a Zip Code with
only a single hospital within 90 min because it was 100%
correctly predicted). The map shows that there was high
heterogeneity throughout the state, as this metric was
very accurate in some regions and quite inaccurate in
others.
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Figure 5a shows the number of hospitals within 90
min of each Zip Code and Fig. 5b shows the Shannon’s
Evenness Index values based on observed utilization pat-
terns. The concentration of hospitals in the southeast
portion of Michigan is apparent, which is where much
of the state’s population resides. The places with the
highest number of hospitals within 90 min are located in
the region between metro Detroit, Lansing, Ann Arbor,
and Saginaw. The most obvious pattern in the evenness
map are the low values (indicating utilization largely oc-
curs at a single or very few facilities) found in and
around population centers in the southern part of the
state, which have a small number of large hospitals and
the low values in and around the larger, regional hospi-
tals found throughout the northern part of the state.
High values of evenness are found in many of the
regions located “in between” population centers, indi-
cating utilization is distributed among multiple hospitals.

The percent of hospital visits correctly predicted using
the M2SFCA-DLL-HOSP combination is plotted against
the number of hospitals within 90 min of each Zip Code
in Fig. 6a and against the Shannon Evenness Index
values in Fig. 6b. The plots do not provide strong

evidence of a systematic effect on the M2SFCA’s ability
to predict patterns of utilization based on the potential
number of hospitals or the evenness of utilization across
hospitals. Interestingly, the greatest range in predictive
accuracy is found at the lower end of the distribution of
both variables. This is a somewhat counterintuitive find-
ing in that fewer hospitals nearby and more concen-
trated utilization across hospitals could be considered a
less complex scenario (than evenly distributed hospital
visits across numerous hospitals) to attempt to predict.

Discussion

The results of the analysis demonstrate that the disag-
gregated information contained within FCA metrics
serves as a viable model for predicting geographic
utilization patterns when this information is unavailable,
as is often the case. Numerous metric-function-param-
eter combinations were able to correctly predict over
70% of all inpatient hospital visits occurring within 90
min for an entire state over a single calendar year, which
is quite remarkable given that the case study included
predicting more than a million hospital visits across
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more than 25,000 potential origin destination pairs. All
of the FCA metrics provided substantial gains in predict-
ive accuracy over the simple nearest facility approach.
Specifically, the E2SFCA, 3SFCA, and M2SFCA pro-
duced the most accurate predictions using count-based
and normalized utilization patterns.

Our results suggest that FCA metrics have potential
for use in estimating where people go to receive health
care in the absence of detailed utilization data and as an
alternative to the assumption that people use the nearest
facility. This information can be useful in a number of
circumstances. First, it can be directly applied for plan-
ning purposes; specifically, if some regions are expected
to need a higher volume of services in the future, esti-
mated utilization patterns could be used to predict
which facilities may require more resources to meet that
future demand.

Another potential use is to use utilization pattern esti-
mates in understanding health outcomes as they relate
to where people are receiving health services. A com-
mon issue faced in health services research is how to ac-
count for variations in facility quality or other aspects of
service provision when examining population-level
utilization and health outcomes. For this purpose, the
estimated utilization patterns can be integrated within
an analysis to assign facility-level information to popula-
tions based on the estimated proportion of people using
each facility.

Another circumstance in which our findings may be
useful is when a researcher has utilization data at the
facility-level, but does not have information about the
residential location of the people who visited each facil-
ity. Whereas our work focused on predicting the destin-
ation aspect of utilization patterns, the approach could
be reconfigured to predict patient origins. While this
would require further analysis and evaluation of this
modified approach, it has the potential to provide
valuable estimates of where patients originated in the
absence of this information. Specifically, it might be used
by facilities to better understand the underlying popula-
tion from which their patient base is drawn.

The results of the sensitivity analysis showed that
the accuracy of the predictions for all metrics was af-
fected by the choice of the particular distance decay
function and its parameters. A known limitation of
spatial accessibility metrics that use distance decay in
their formulation is that the output will vary given
changes to the decay function or parameter settings
[24, 36, 37]. Further, there is often little guidance
from prior research to justify using one function or
parameter setting over another. It is difficult to disen-
tangle the reasons why some of the metrics were
more affected by the variations in distance decay than
others because the decay function, its parameters, and
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the metric’s formulation all are working simultan-
eously to characterize spatial accessibility. Because
most researchers will not have access to observed
data that can be used to evaluate the accuracy of
utilization predictions made using spatial accessibility
metrics, we suggest caution in using FCA metrics for
predicting utilization patterns without considering this
limitation. However, an important takeaway from the
sensitivity analysis is that many of the metrics’ predic-
tions were more accurate when the distance decay
function parameter(s) resulted in a stronger decay ef-
fect. The MIN parameter set generally produced more
accurate results than the HIGH parameter set (high
miss) in both the count-based and normalized predic-
tions for a number of metrics. This finding is import-
ant because the MIN parameter set does not require
any utilization data to be estimated; it only requires
population counts (and locations), facility locations,
and the distance separating people and facilities,
which are the same inputs needed to calculate an
FCA metric and can be readily obtained for many
study areas. Another noteworthy result is that the
HOSP parameter set, which was derived directly from
the utilization data, did not always provide the most
accurate results. This suggests that knowing the glo-
bally averaged distance decay parameter set may not
capture local variations in this relationship.

While the state-level accuracy of the M2SFCA-DLL-
HOSP combination was quite high, the detailed analysis
(e.g., the map in Fig. 4) showed that there was a large
variation in the predictive accuracy of local patterns of
utilization. We evaluated whether this was a function of
the number of hospitals near each Zip Code or the even-
ness of utilization across multiple hospitals and did not
find any strong evidence of a systematic relationship
(Fig. 6). The variation in predictive accuracy is likely due
to non-spatial local factors (both population- and
facility-level) that influence where people seek health
care, which are generally not considered in spatial acces-
sibility models such as FCA metrics that largely ignore
differences among populations (e.g., treated equally in
the potential demand step), facilities (e.g., treated equally
in the supply step), and distance decay behavior (use of
a single distance decay parameter for the entire model).
While this simplification offers computational advan-
tages in a model of “potential” spatial accessibility, it
may not be entirely appropriate for predicting local pat-
terns of realized utilization. Further research is needed
to better understand why spatial accessibility did or did
not provide accurate predictions in some locations.
Another future research direction would be too leverage
this information (local predictive accuracy) in an effort
to better understand and potentially improve health care
delivery in a study area. A possible example includes



Delamater et al. BMC Health Services Research (2019) 19:144

identifying regions where residents are traveling
further than expected to access services and exami-
ning whether this may be due to non-spatial barriers
to accessing care, such as whether the nearby facilities
offers the services required to meet the needs of the
population.

Limitations

While this research did shed light on the overall po-
tential of using FCA metrics to predict utilization pat-
terns, it does have limitations. First, the case study
only considered acute care hospitalizations in a single
state in the US. The predictive power of FCA metrics,
along with other empirical findings of this study, are
surely rooted within the context of Michigan’s health
care system and the socioeconomic, cultural, and geo-
graphic context of the communities this system
serves. Whether FCA metrics can predict utilization
patterns for other health care services or in other US
states or in other countries with highly different
health care systems remains unknown but does
present an avenue for further exploration.

A second limitation of this work was the omission of
other factors known to influence where and how far
patients travel to receive hospital care in the US, inclu-
ding their ability to travel (mobility), their health insur-
ance status, different travel modes available (e.g., public
transit and personal vehicles), the services provided at
each hospital, the perceived or measured quality of the
hospitals, doctor admitting privileges, and others. These
omissions were part of the research design for this work,
as our aim was to evaluate the utility of a relatively
naive, oft-encountered, and easy to implement model
(FCA metrics) to predict use. As such, understanding
how these other factors influence patient utilization pat-
terns and whether they interact with potential spatial
accessibility is an important opportunity for future
research. Specifically, determining whether these factors
played a role in the geographic variation in the predic-
tive ability of the FCA metrics may potentially uncover
how other aspects of potential access to care affect
where people utilize facilities.

A third limitation of the analysis was the use of the
number of bed licenses as a proxy for supply in the
spatial accessibility metrics. While this measure is
often used, it does not always capture a facility’s ac-
tual supply or ability to provide care (e.g., if beds are
not in use due to understaffing). In our study, we
attempted to use as little auxiliary information as
possible to mimic the conditions researchers would
generally face when attempting to estimate utilization
patterns from publicly-available facility data. Another
data-related limitation is that three hospitals were
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excluded from the analysis, as was one Zip Code, due
to lack of data; however, the missing data from these
facilities and Zip Code represent a miniscule fraction
of the statewide hospitalization and we do not believe
this had any effect on our results.

Another limitation is that our analysis demonstrated
that the predictive accuracy of the FCA metrics was sen-
sitive to the particular metric, distance decay function,
and the decay function parameters. Thus, we are not
able to provide a definitive answer to which combination
should be used in other circumstances, especially when
researchers do not have the observed data to evaluate
the accuracy of the predictions. While this does restrict
the overall usefulness of this approach, we are encour-
aged that all four FCA metrics were much more accur-
ate than assuming people visited their nearest facility, an
approach that is oft-employed in these types of scenar-
ios. Furthermore, the MIN distance decay parameter set
performed quite well across metrics and decay functions.
This is important because this parameter set is based on
the distance from populations to facilities and does not
require any additional data beyond what is necessary to
calculate the FCA metrics. Thus, this parameter set does
not require utilization data and can be calculated in any
scenario when the location of people and facilities are
known.

Conclusions

The goal of this research was to provide a starting point
to begin rectifying Higgs' [1] assertion that the geo-
graphic aspects of health care research have largely fa-
vored potential access to care, rather than actual
utilization of care. Our work focused on building a
bridge between measures of potential spatial accessibility
and observed geographic utilization patterns, showing
that FCA metrics are able to provide reasonable predic-
tions of these patterns. Using acute care hospital visits in
Michigan, a number of the metrics evaluated were able
to predict the correct destination hospital for more than
70% of the state’s roughly one million hospitalizations in
2014. This research also began exploring the local nature
of the predictive ability, finding that the number of hos-
pitals within 90 min of each region and the evenness of
the region’s hospital visits across facilities did not appear
to systematically affect the predictions. While our work
did provide interesting results regarding the relationship
between access to and utilization of health care, it also
generated a number of important questions that deserve
further exploration. In particular, additional exploration
for different health care services and in different region
would help to determine the range of predictive capacity
for FCA metrics and the generalizability of findings from
this empirical study.
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FCA: Floating catchment area; GAUS: Gaussian distance decay function;
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