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Analysis of the impact of different service L
levels on the workload of an ambulance
service provider
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Abstract

Background: Efficient transport of non-emergency patients is crucial for ambulance service providers to cope with
increased demand resulting from aging Western societies. This paper deals with the optimization of the patient
transport operations of the Red Cross of Lower Austria, which is the main provider in this state. Different quality levels
of the provided service - expressed by time windows, feasible maximum ride times and exclusive transports - are
tested and analyzed on real-life instances to show daily impacts on the provider's resources. Comparisons of the
developed solution approach to the recorded manual schedule prove its advantages. In contrast to previous work in
this field, non-static service times that depend on the combination of patients, their transport mode, the vehicle type
as well as the pickup or delivery locations are used. These service times are based on statistical analyses that have
been performed on an anonymized dataset with more than 600,000 requests.

Methods: To solve the given problem, a matheuristic solution approach was developed that deals with the exact
optimization of combinations of requests as a first stage. Subsequently, the identified combinations are used as an
input into a Tabu Search strategy, where the vehicle routing is optimized. Three representative days of the year 2012
were chosen for the four regions of Lower Austria to test five different service levels and the quality of the solution
method.

Results: For the standard scenario, the operation time of the manual schedule is reduced in the range from 14.1 % to
19.8 % for all tested instances. Even in the best service scenario, the matheuristic computes better results than the
manual schedule. The service level has a high impact on the operation time of providers. The relative savings that are
achieved by the algorithm are significantly lowered by introducing higher quality standards. The main reason is that
less feasible combinations of patients can be generated. This leads to diminished opportunities for patients to be
transported at the same time. The results indicate that the implementation of the developed matheuristic in daily
planning decisions could decrease operation times significantly.

Conclusions: Managers have to define minimum standards for the punctuality, exclusive transports and excess ride
times. This is crucial in order to find a suitable compromise between the service level and an optimized resource
management.

Keywords: Ambulance service, Patient transport, Resource management, Service levels, Dial-a-ride problem,
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Background

The costs of patient transportation and emergency res-
cue services have increased steadily over the past 23 years
in Austria. They have tripled since 1990 and, due to the
predominant demographic trend, there is a high probabil-
ity of a further increase in future [1]. In order to provide
for the needs of aging societies in industrialized countries,
efficient planning is crucial for service providers. Besides
the cost factor, there is also high pressure on paramedics.
These professionals are exposed to and experience a wide
range of health problems, e.g., injuries, infectious diseases
and post-traumatic stress symptoms [2]. Studies show that
this job is intrinsically stressful and that paramedics expe-
rience substantially higher levels of musculoskeletal pain
[3, 4]. Ambulance routing optimization can help relieve
the pressure on paramedics as well as on other resources.
Hence, the objective to minimize the sum of operation
time and overtime of the paramedics’ deployed shifts for
servicing requests was formulated in cooperation with the
Red Cross of Lower Austria. Lower Austria is the largest
state of Austria with a diverse setting of rural, suburban
and urban areas, while, topographically, it covers flat, hilly
and alpine areas. The Red Cross is the main provider of
these services in Lower Austria, as well as in other states
of Austria. In the year 2014, the Red Cross dealt with
approximately 2.9 million emergency and non-emergency
requests in Austria [5].

Paramedics operate the ambulances to deal with trans-
port requests. Improving scheduling decisions directly
affects paramedics and reduces their stress level. Cur-
rently, the scheduling is done manually. The dispatchers
are aided solely by visualizations of the current posi-
tions of vehicles and pending requests. Their dispatching
decisions depend on their experience and planning skills,
without the support of tools that are able to generate
routing and scheduling recommendations automatically.
The presented algorithm is a first step towards a decision
support system (DSS) that is aimed to help dispatch-
ers improve the quality of routing and scheduling, which
additionally leads to a reduction of overtime. Further-
more, maintaining regulated working times and manda-
tory breaks are important factors to reduce the stress
levels of paramedics.

The main aim of the paper is to quantify the implications
for the provider if certain minimum standard levels of ser-
vice are introduced. In contrast to previous work in this
field, we incorporate the use of non-static service times
that depend on the combination of patients, their trans-
port mode, the vehicle type as well as the pickup or deliv-
ery location. Furthermore, a cluster-first route-second
matheuristic for the given problem and its decomposition
step to compute feasible tasks is introduced. Ex-post anal-
yses with real-life data show the advantages of using the
algorithm.
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Outline and literature review

The underlying problem of the provider was introduced
in several meetings and later formulated. It shares mul-
tiple characteristics with problems that can be found in
Operations Research literature and is an extension of
a static multi-depot heterogeneous dial-a-ride problem
(MD-H-DARP) [6]. Static denotes that complete informa-
tion about requests and deployable shifts is assumed and
no changes to this information occur throughout the day.
The extensions made to the problem defined by [6] con-
cern mandatory breaks, as also considered in [7-9], as
well as the return policy of the provider and varying ser-
vice times at pickup or delivery locations that depend on
the transport mode, the vehicle type, the combination of
patients and the pickup or delivery locations, e.g., nursing
homes, hospitals or wards. The service times are derived
from statistical analyses. Varying service times are consid-
ered by [9], however, they solely depend on the transport
mode, which can be ambulatory or wheelchair. The return
policy of the provider is also not commonly used for these
types of problems. A vehicle must return to its predefined
depot if there is no direct consecutive request. This pol-
icy is implemented due to the fact that the main part of
the fleet is also deployed for emergency rescue services.
To conclude, our approach extends the MD-H-DARP by
using mandatory breaks, having a different return policy
and introducing non-static service times.

Due to the extensive number of publications on the
DARP, only those that share similar features with the given
problem are considered and mentioned in this paper. For
further information on the DARP as well as pickup and
delivery problems, refer to [10-12]. Most publications
contain problems with single depots, e.g., [9, 13, 14], how-
ever, in the recent years, some consider multiple depots,
e.g., [6, 7, 15, 16]. Driver related constraints concern-
ing maximum route durations and mandatory breaks are
included in [7-9, 17]. Homogeneous users were the point
of focus in most publications, e.g., [13, 18, 19], however,
there are several authors that deal with heterogeneous
cases, e.g., [6, 7, 9, 20, 21]. Solution approaches devel-
oped by the authors of these publications are as numerous
as the extensions of the DARP and contain heuristics,
metaheuristics, matheuristics and exact algorithms.

To solve the given problem of the Red Cross of Lower
Austria, a matheuristic was implemented. In accordance
with [22], it can be classified as a decomposition approach
using a cluster-first route-second strategy. The first step
is the enumeration of all combinations of patient trans-
ports that observe the given constraints. These feasible
combinations are called tasks and are identified by a
recursive depth-first search (RDFS). Subsequently, they
are combined by solving a set partitioning problem with
the objective of minimizing service time and driving time
with patients on board, i.e., transport time. This first
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stage of the proposed algorithm is computed by a similar
approach as used by [7] to transport handicapped peo-
ple in Berlin. Next, these tasks are heuristically assigned
to shifts to generate an initial solution for a Tabu Search
metaheuristic.

The algorithm is tested with real-life data from 2012.
Different scenarios are defined to solve daily instances
with up to 848 requests and 178 disposable shifts. The
results of the algorithm are compared to the manual
schedule in ex-post analyses for various service levels. A
survey on the quality of service in dial-a-ride operations
is given in [23]. The authors highlight that service quality
is defined in literature as technical quality or customer-
based quality. In [24], it is specified that “technical quality
refers to the conformity to specifications used by the
provider of the service to set a level of quality". This type of
quality is typically measurable, as it is based on objective
criteria, while customer-based quality is considered to be
more subjective. In this paper, service levels are expressed
by varying time windows, the proportion of exclusive
transports as well as varying feasible maximum ride times
and handled as constraints to generate a single solution.
In [9] a different approach was followed by incorporat-
ing similar quality measures in a multicriteria algorithm to
create a set of non-dominated solutions, i.e. a Pareto front.
In contrast, we define minimum standards through a vari-
ation of the service measures to reveal the trade-off of an
increased service level for the patient and the pressure on
the required resources of the provider. Comparisons of the
used approach to the recorded manual schedule show the
advantages of an optimized schedule.

Problem description

For the extended static MD-H-DARP, two types of
requests are given, namely patient transports and trans-
port of goods. The transport of goods includes organs,
samples, blood conserves and materials. These sub-
categories are not further distinguished concerning
their requirements, as transports of goods rarely occur.
Patient transports differ in terms of their transport
mode. Ambulant patients and patients with their own
wheelchair are transported in patient seats. In the lat-
ter case, the wheelchair is stored inside the vehicle
and the patient is transferred to the wheelchair upon
arrival. Recumbent patients have to be transported on a
stretcher. Lastly, patients can also be transported on a
carrying chair.

A heterogeneous fleet of vehicles located at several
depots is available to service the given requests. There
are two types of vehicles that differ by the number of
paramedics on board, as well as the number and trans-
port modes of patients. An auxiliary ambulance (AAM),
which is similar to an estate car, is operated by a shift
consisting of one paramedic. It has a maximum capacity
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of three ambulant patients. A patient transport ambu-
lance (PTA) is specially equipped to handle the needs
of a maximum of two patients. These patients can be
transported in a carrying chair, on a stretcher or in a
patient seat. For the PTA, any combination of two patients
is permitted except the one with two patients in need
of a stretcher. The shift of a PTA is composed of two
paramedics who perform the boarding and deboarding of
patients. Goods can be transported with both types of
vehicles.

The transport modes differ in terms of their feasible
combinations as well as their service times needed at
the pickup and delivery locations. This means that differ-
ent service times are used for various nursing homes or
hospitals and even different wards of a hospital. These ser-
vice times are based on statistical analyses of more than
600,000 requests. Due to greater efficiency, changes to ser-
vice times occur if two or three patients get picked up
from or are delivered to the same location. These changes
depend on the transport modes and whether the patients
are served at the same ward of a hospital.

Most requests can be combined with other requests,
while certain ones have to be executed individually. Exclu-
sive transports are more convenient for patients, however,
there are also medical reasons, e.g., patients with radia-
tion therapies or mental health problems. The assignment
of goods requests is done individually for both types of
vehicles, indicating that patients cannot be transported
at the same time as blood conserves, materials, samples
or organs. Combining patient transports may result in
detours for the patients on board. A requests’ maximum
exceedance of the direct ride time is depending on the
computed shortest path from the pickup to the delivery
location.

In summary, each request is specified by a transport
mode, a pickup and delivery location, a time window at
the pickup location, a maximum ride time and service
times at both locations as well as if it is an exclusive
transport.

Vehicles start at a depot at the beginning of a shift of the
assigned paramedic(s). They have to return to the depot
at the end of the shift, however, the return can be delayed
by a maximum, predefined overtime allowance. Accord-
ing to the return policy of the provider, vehicles also have
to return to the depot if idle. To comply with Austrian law
and organizational rules, breaks of 30 minutes have to be
taken between the beginning of the third and the end of
the sixth hour of a shift. Breaks can be taken at depots or
at one of the pickup or delivery locations. The number and
type of vehicles used, as well as the start and end of a shift
on a given day, is derived from the manual schedule used
by the Red Cross.

The objective (1) is to minimize the total operation time
of the deployed shifts and to penalize overtime.
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min Z(ts + 85+ ds + ws + yos) (1)

sesS

The operation time of a shift s € S includes transport
times t;, service times s; for boarding and deboarding of
patients, drive times with an empty vehicle d; as well as
wait times w;. Overtime oy are feasible as long as they are
lower than a predefined maximum, but they are not desir-
able. Thus, they are penalized by y and integrated into the
objective. Wait times may occur between the service of
two requests, while waiting is not permitted with patients
on board. As shifts, in general, must return to their depot
if idle, the following convention is used for waiting: if the
start of the next request of a shift does not leave enough
time to return to the depot and drive to the next pickup
location, the shift is allowed to wait at its current position.
After the wait time, the vehicle is driven directly to the
next pickup location.

In summary, the underlying problem has the following
constraints:

Each request has to be served.
The capacities of the vehicles have to be respected:

— An AAM can transport up to three ambulant
patients.

— A PTA has a maximum capacity of two
patients, with a maximum of one recumbent
patient on a stretcher.

The time windows at pickup locations have to be met.
Requests can be exclusive, meaning they cannot be
combined with other requests.
Maximum ride times cannot be exceeded.
The paramedics have given shifts and mandatory
breaks.

e Paramedics must return to their depots if idle.

Methods

The following section introduces the solution approach,
gives an overview of the applied statistical analy-
ses and describes the test setting of the numerical
studies.

Matheuristic approach

To solve the given problem, a matheuristic solution
approach was introduced. Figure 1 shows the imple-
mented algorithm. As a starting point, all combinations of
two patient transports are generated. Next, combinations
are eliminated if

both patients require a stretcher,
the combination would lead to a time window
violation or

e the combination violates the maximum ride time of
at least one of the patients.
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The remaining combinations can be categorized as
shown in Fig. 2. In both categories, patient i is picked up
before patient j. In the first category, patient j is delivered
before patient i, while in the second category, patient i
is delivered before patient j. After computing the feasible
combinations of two patients and, thereby, generating all
direct predecessors and successors of a patient transport,
an RDEFS is executed for PTAs and AAMs separately. The
RDES for AAMs solely uses combinations of ambulant
patients as input. In the two RDFSs, all feasible tasks are
created that comply with time windows, capacities, maxi-
mum ride times and a maximum duration of 330 minutes.
This maximum duration is set to make sure that breaks
can be taken at feasible times. Tasks are variably long
combinations of patient transports, where, at any point
in time, a minimum of one patient and a maximum of
two patients in a PTA and three patients in an AAM are
present.

In the next step, all tasks are input into the software
“Fico Xpress 7.7" to solve a set partitioning problem.
The solution indicates the optimal combination of tasks
containing all patient transports, while having an exact
minimum of transport plus service times. This optimal
combination is returned to the algorithm. Subsequently,
all exclusive transports are added.

By the use of a cheapest insertion heuristic that
includes a rejected-reinsertion operator [25], these tasks
are assigned to shifts to generate an initial solution for a
metaheuristic based on Unified Tabu Search [26]. This ini-
tial solution, as well as intermediate solutions in the Tabu
Search, are allowed to be infeasible due to violations of
time windows and maximum overtime regulations.

The objective of the metaheuristic equals Eq. (1)
reduced by the transport times Z, since these are pre-
determined by the generated tasks. The Tabu Search
applies the neighborhood operators, string relocation,
string exchange and 2-opt*, in the given order. If a solution
cannot be improved by the use of the current operator,
the subsequent operator is applied in the next iteration.
After the use of an operator a tabu status is set to the
operation’s attributes to avoid their reversal for the next
6 = (log(|shifts| * |tasks|))? iterations. The tabu dura-
tion 6 is dependent on the size of the problem and was
obtained after a number of parametrization approaches.
The tabu status of an operation can be overruled by
an aspiration criterion if the new solution has a lower
objective value than the best known solution having that
attribute. After a predefined run-time of the metaheuris-
tic, the algorithm stops and the best found solution is
returned. For the included relaxation scheme to explore
infeasible solutions, self-adjusting positive parameters o
(overtime) and 8 (time windows) are introduced. Similar
to [10] they are used in a cost function to facilitate the
exploration of the solution space. In each iteration these
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Patient transports:
all combinations
Combinations = all combinations -
2 x stretcher

Combinations = combinations -
time window violations

Combinations = combinations -
maximum ride time violations

Combinations type 1

(i+j+,j-,1-) (i+j+,i-,}-)

Combinations type 2

Generate all feasible tasksj

Solve set partitioning
problem

Optimal combination of tasks
(min. service time + transport time)

Generate initial solution:
assign tasks to shifts
Tabu
search

Solution of the problem:
daily schedule

End

Recursive depth-first search with checks for:
- Feasible tours

- Time windows

- Maximum ride time

Fig. 1 Activity diagram of the implemented algorithm. An overview of the sequence of activities from building the tasks to optimizing the schedule

parameters are modified by a factor 1 + §. If a solution is
feasible in terms of time windows, B is divided by 1 + §,
while it is multiplied by 1 + § otherwise. The same rule
applies to «. To diversify the search, a penalty factor is
added to the cost function in the same way as in [18].
Hence, for controlling the diversification the parameter
A was introduced. The parameters of the metaheuristic
were tested for the standard scenario on an average-sized
instance. Therefore, the smallest instance of Region 3
was tested with 36 test runs in order to find the best
combination of A € {0.010,0.015,0.020,0.025} and § €

Q—\ > <ﬁ%&
pog

Fig. 2 Possible combinations of two patients. Type 1 (left) and Type 2
(right) are generated to get all feasible successors and predecessors of
a request

{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. After 10° iterations
the parameter setting of § = 0.6 and A = 0.010 resulted
in the best objective value and was used for the numerical
studies. During the computation, the forward time slack
[27] of tours is computed to reduce wait times.

Statistics of service times

The statistics are based on 612,453 requests that were
performed by the Red Cross of Lower Austria in 2012.
Paramedics operate a device that is installed inside of the
vehicle to report their current status. Service times at
pickup and delivery locations are collected by time stamps
of various status updates.

The input data does not follow a normal distribution,
thus the median is used as input for the matheuristic.
In total, six different categories that follow the transport
modes were used for the calculation of service times.
Namely, they include goods, patient-owned wheelchairs,
ambulant AAMs, ambulant PTAs, recumbent stretchers
and carrying chairs.
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Medians were computed for all locations separately if
a hospital or nursing home serves as pickup or delivery
location for more than 500 times. For hospitals that were
the origin of more than 1,000 pickups or deliveries, wards
were used as units of distinction if they had more than
100 data entries. Table 1 shows the number of locations or
wards that have been considered.

To compute the changes of service time due to a com-
bination of patients, the following rules for AAMs and
PTAs have been defined together with the provider. These
are applied if more than one patient is served at the same
location.

The first step is to compute the maximum of the single
service times of the patients. Subsequently, the following
cases are distinguished:

e Same ward:

— If at least one patient is ambulant, the
maximum single service time is increased by
20 % per additional patient. The addition of
20 % is caused by an increasing administrative
effort for the other patient(s) (AAM/PTA).

— For all other combinations, i.e., none of the
patients is ambulant, 70 % of the maximum
single service time is added (PTA).

o Different ward:

— If the transport modes consist of a
combination of ambulant patients and
patients with their own wheelchair, a parallel
pickup or delivery is possible by the two
paramedics. Thus, only the maximum of the
single service times is used (PTA).

— For all other combinations of transport modes,
a sequential order of the movements of
patients is assumed (AAM/PTA).

Numerical studies

For the numerical studies, three days in 2012 were cho-
sen. These represent the day with the highest, the lowest
and a median number of requests, whereas weekends and
holidays were excluded as statistical outliers. The state of
Lower Austria is geographically divided into four regions
and this clustering is also used in the numerical studies.
In total, this leads to twelve real-life instances containing

Table 1 Number of units of distinction for median computation
[#]

Type

Wards with >
100 requests

Locations with >
1,000 requests

Locations with >
500 requests

Pickup 35 26 190
Delivery 42 29 201
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the input data of three days per region. Data of effectively
employed shifts by the provider were not available. There-
fore, the following procedure to estimate this data was
derived with input from the provider: Shifts of eight hours
were generated, with start times dependent on the first
service request of a vehicle on a certain day. If the same
vehicle appears later on the same day and after the end of
the first shift in the data, a new eight hour shift was intro-
duced. The maximum overtime of a shift are set to 120
minutes. Overtime exceeding this value lead to infeasible
solutions, while overtime below or equal to this value are
penalized by the factor y = 0.5 per minute. This factor
was chosen since overtime result in a surcharge of 50 % for
the provider.

In total, five different service levels (scenarios) were
tested on the twelve real-life instances (Table 2). The ser-
vice levels equal minimum standards that the provider
guarantees all clients. It is a managerial decision that
defines the worst case of detours, a share of exclusive
transports and pickup time window spreads. The standard
scenario is the current aim of the Red Cross of Lower Aus-
tria. It has time windows of 30 minutes, excess ride times
of 100 % and 10 % exclusive transports. Starting from
this scenario, different service levels are defined by widen-
ing or narrowing time windows, increasing or decreasing
the share of exclusive transports and allowing shorter or
longer maximum ride times. Excess ride times are added
to direct ride times to calculate the maximum ride times
of patients. To compute an excess ride time, the direct ride
time is multiplied by a varying percentage according to
the given scenario. Additionally, a lower bound of 10 min-
utes and an upper bound of 30 minutes is used for the
evaluation of excess ride times.

All tests were performed on a single workstation with
an Intel Core i7-3930K with 3.2 GHz and 64 GB RAM,
with MS-Windows 7 as the operating system. The Tabu
Search was implemented in C++ and executed with a run-
time of 10 minutes. This was defined as an acceptable wait
time for a user. Tests further showed that improvements
in solution quality diminish after this run-time.

Results

The results section is organized as follows: it starts with
an overview of parameters of the input data, gives an

Table 2 Parameters of the five tested scenarios

Scenario  TWlength [min] Excl. transports [%]  Excess ride time [%]
Excellent 20 20 60
Enhanced 25 15 80
Standard 30 10 100
Reduced 35 5 120
Bad 40 0 140
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overview on tested indicators for all instances and ends
with a detailed analysis of a representative day.

Results of the data analysis

Table 3 shows the input of the twelve test instances in
terms of number of requests and deployable shifts on the
given days in a certain region.

In Table 4, the distribution of the transport modes is
given for the four regions. In total, 60.6 % of the patients
require a carrying chair, 26.3 % are ambulant patients
and 9.4 % need a stretcher. A transport of a patient with
his or her own wheelchair is relatively seldom and the
transportation of goods is quite uncommon.

Table 5 shows the number of depots in the different
regions as well as the total number of shifts over the three
scenario days and the proportion of PTAs to AAMs. Of
note is that Region 4 only employs 10 % of AAMs, while
Region 1 and 3 employ approximately 30 % of AAMs and
have a significantly higher share of ambulant patients.

Results of all tested instances

Table 6 shows the objective values of all tested scenar-
ios. The objective value is expressed in minutes and is the
sum of operation times (transport/service/wait time and
driving empty) and overtime * 0.5 of all shifts.

For comparisons between different scenarios, the rela-
tive savings of operation time are more meaningful than
the objective values. Figure 3 shows these savings with the
operation time of the manual schedule used as reference.

The savings are highly dependent on the minimum stan-
dard ensured by the provider and differ from instance
to instance. For all instances, the savings of opera-
tion time increase with decreasing service level. The
mean of the savings over all tested instances is 16.3 %
ranging from 4.0 % (Region 2/Max/Excellent) to 23.9 %
(Region 3/Min/Bad). Savings in Region 3 and 4 follow a
comparatively narrow range, while those of Region 1 and
2 show a considerable gap between the minimum and the
maximum day. In particular, the reduction of operation
time in Region 2 depends on the day, where a maximum
difference of 9.2 % is present between the minimum and
maximum day of the excellent scenario.

Table 3 Number of requests and deployable shifts per region

and day [#]
Minimum Median Maximum
Region  Requests  Shifts  Requests  Shifts ~ Requests  Shifts
1 304 96 382 94 391 100
2 372 106 461 112 515 13
3 551 165 600 167 780 184
4 558 138 789 167 848 178
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Table 4 Number of requests per region and distribution over the
different transportation modes

Region Requests Ambulant Carrying Own Recumbent Goods
chair  wheelchair

[#] [%] [%] [%] [%] (9]

1 1,077 313 56.7 20 9.8 0.1

2 1,348 254 60.2 2.1 109 1.3

3 1,931 30.2 588 19 8.6 04
4 2,195 210 644 5.6 89 0.1
Total 6,551 26.3 60.6 32 94 04

Table 7 shows the number of chosen tasks after solv-
ing the set partitioning problem. For most of the days,
the number of requests that have been combined to tasks
in the manual schedule is relatively close to the excellent
service scenario. The main difference can be seen for the
maximum day of Region 2, where the excellent scenario
uses 41 tasks more than the manual schedule. This setting
also shows the lowest savings of all performed tests.

Other indicators of note are the total number of shifts
that execute tasks and the peak of shifts operating in
parallel (Table 8). The number of shifts shows the same
overall trend as the number of tasks, which decrease with
lower service levels, however, this is not valid for all tested
instances.

For all tested instances, the number of deployed shifts
is greatly reduced. On average, the bad service scenario
requires approximately 10 % less shifts than the excellent
service scenario. The highest reduction between these two
scenarios can be found for the medium day of Region 3
with a difference of 28 deployed shifts (21 %).

The peak of the manual schedule can be directly derived
from the data, which appears around noon. With two
exceptions (maximum day of Region 2 and Region 4),
the peak use of vehicles is lower for the excellent sce-
nario compared to the manual schedule and is generally
decreasing with the service level. The values go up to a
reduction of 24 shifts (Region 3/Bad) and show a mean
reduction of 9.6 shifts.

Table 5 Number of depots, deployable shifts and proportion of
PTAs to AAMs in the different regions

Region Depots [#] Shifts [#] PTASs [%] AAMs [%]
1 19 290 69.3 30.7
2 25 331 78.2 21.8
3 45 516 700 30.0
4 45 483 89.6 104
Total 134 1,620 774 226
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Table 6 Objective values of all 60 tested instances [min.]

Region Day Manual Excellent Enhanced Standard Reduced  Bad
Min 20,848 18,136 17,2925 164595 15943 15508
1 Med 23870 20,715 19,8885 19252 188125 18,156
Max 23,854 21,579 20,785 19,7445 18,9625 18297
Min 24,0535 20,110.5 19,303 18,628 18,257.5 17,7435
2 Med 29,7475 259295 24,5655 23430 22,6815 219775
Max 30,801 27,8795 259435 24916 243775 23,705
Min 35896 30,191 29231 27928 26,9775 263375
3 Med 37,5815 32,6975 31,263 30,169.5 29,140 28,045
Max 46,225 392515 37,5925 36,407.5 35543.5 34,7455
Min 29,8705 25,535.5 24,548 23,8845 23303 22863
4 Med 39,2435 34,751 33,057 31,782 31,020 30,296
Max 45384 3899 37,197 36346 35076 34,508

Detailed results of a representative day

To give more detailed insight, the smallest instance of
Region 3 was chosen due to its average size in relation to
the other instances. In total, there have been 165 shifts
at 39 different depots available to serve 551 requests.
After 10 minutes run-time of the algorithm, 126 shifts
have been deployed in the excellent service scenario, while
this number decreases to 108 in the bad service sce-
nario. In the manual schedule, 463 tasks were built out
of the given patient transports. The algorithm combined
more requests. The number of tasks is decreasing with
service level and ranges from 449 in the excellent ser-
vice scenario to 328 in the bad service scenario. Table 9
summarizes the detailed results, which are illustrated in
Fig. 4. The column “Overtime" contains the sum of over-
time of all deployed shifts, whereas each deployed shift
has to comply with the maximum overtime of 120 min-
utes. The total overtime of the manual schedule are also
significantly reduced for other instances in all tested sce-
narios. In Table 9, overtime are given in minutes, while
in Fig. 4 objective values are displayed and, therefore,
the overtime are multiplied by 0.5. The proportion of
the different components of the objective function is
representative for all tested instances. Service time and
transport time account for approximately 75 % in the algo-
rithmic results and around 64 % in the manual schedule.
This also indicates the potential of the algorithm as it
solves these two components of the objective to an exact
minimum.

Savings of operation time of the algorithm account for
12.4 % in the excellent service scenario and are increasing
with decreasing service quality to 23.9 % in the bad service
scenario.

Figure 5 shows the deployed and available shifts over
the course of the day. In order to improve readability,
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only the curves of the manual schedule, the excellent
and the bad service scenario are displayed. Peaks are
reached around noon, whereas the number of requested
services increases steadily around 6 a.m. and starts to fall
around 1 p.m. The time between 6 a.m. and 5 p.m,, i.e,
the area of a high number of requested services, is also
the time interval during which it is possible to combine
requests to tasks most efficiently. Hence, the main dif-
ference between the curves can be found at peak times.
The peak of the deployed shifts of the manual schedule
shows a value of 68, while it is reduced to 62 in the excel-
lent service scenario and to notably 51 for the bad service
scenario.

Discussion

The results show the potential benefits of the proposed
algorithm and a computer aided DSS for routing and
scheduling. The general aim of the provider is expressed
by the standard scenario. In this scenario the operation
time of the manual schedule is reduced in the range from
14.1 % to 19.8 % for all twelve instances tested. Large
savings could be obtained in all tested regions. Hence,
this is achievable despite differences between regions in
terms of the geography, the patients mobility and the fleet
composition.

The computed savings are highly dependent on the
applied minimum standard of the provider. Narrow time
windows and small exceedances of direct ride times lower
the potential number of combined requests and, therefore,
lead to a high amount of individual transports. Combi-
nations of patients lead to a reduction of the number of
vehicles that have to be operated in parallel, thus relieving
resources. As the provider also uses PTAs in cases of
emergencies, a lower quality standard increases the relia-
bility of having short response times for this time-critical
service.

The dependence on the scenario is also described by
[10], who state that DARPs often contain conflicting
objectives of minimizing operational costs, expressed by
operation time and maximizing quality. This negative cor-
relation between productivity and quality in dial-a-ride
services is also mentioned by [23]. As problems and objec-
tives in the literature differ from this study and compar-
isons to manual schedules are rare, findings of other stud-
ies can only be used to a limited extent to investigate the
potentials of DSS for routing and scheduling. For exam-
ple, [28] solves a DARP in a mid size US city and presents
a comparison of the used solution approach to a man-
ual schedule. A medium sized instance (357 requests/36
vehicles) is improved by 22 % and a large instance (680
requests/48 vehicles) by 12 %. By varying time windows
and maximum ride times, the medium sized instance was
used to compare different service scenarios. The impact
on the minimization of total miles driven, which was their
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Fig. 3 Relative savings of operation time. The relative savings of operation time in relation to the manual schedule for the different scenarios of all
tested instances

objective function, shows a similar trend as the variation
of operation times in this paper.

The main reason for the increase in operation time with
higher service levels is the number of tasks that are built
in the first stage of the algorithm. The lower the service

quality, the more requests can be combined to tasks. For
example, only 2,777 feasible tasks are built for the largest
instance with 848 requests under excellent service con-
ditions. Under bad service conditions, 5,918,487 feasible
tasks are used as input to the set partitioning problem for
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Table 7 Number of requests that have been combined to tasks per test instance [#]

Region Day Requests Manual Excellent Enhanced Standard Reduced Bad
Min 304 242 246 230 206 198 185

1 Med 382 311 311 292 272 251 239
Max 391 311 319 298 273 256 239

Min 372 305 303 275 252 244 228

2 Med 461 365 376 348 322 297 279
Max 515 382 423 384 351 336 315

Min 551 463 449 410 376 353 328

3 Med 600 493 485 446 404 377 351
Max 780 609 604 562 520 488 446

Min 558 467 452 421 389 370 343

4 Med 789 634 634 583 542 492 461
Max 848 669 666 618 567 522 498

the same instance. Hence, the algorithm has a larger set to
choose from, when the service level decreases. The algo-
rithm picks the set of tasks with the minimum sum of
transport and service time. This represents the main share
of the objective value. The optimization of operation times
also corresponds to a lower number of deployed shifts.
The exceptions of this trend can be explained by the fact
that minimizing the number of deployed shifts is not part
of the objective function.

In [28], a similar approach was used to build tasks,
which are referred to as mini-routes. It is stated that
combining requests to mini-routes is the main advantage
of an algorithm compared to a manual schedule, due to

the complexity of this activity. A similar conclusion is
drawn in [7], where heuristic clustering of requests was
compared to an optimal clustering approach. The find-
ings of the authors are that optimal clustering reduces
the number of requests about 10 % more than doing
so heuristically. A comparison to a manual combination
of requests is not given, however, it is valid to assume
that the heuristic used is at least as good as a manual
approach.

Conclusions
The results show that the service level determines the re-
source management of the provider. Managers define

Table 8 Total number and peak of shifts that are deployed in parallel per test instance [#]

Region Day Manual Excellent Enhanced Standard Reduced Bad
Min 96/47 77/36 71/35 70/34 67/32 69/35
1 Med 94/49 78/46 77/40 74/40 75/39 72/37
Max 100/45 84/42 79/42 76/39 75/37 70/37
Min 106/42 82/37 80/37 72/33 71/34 75/33
2 Med 112/56 89/55 90/49 87/47 88/46 84/47
Max 113/51 96/54 89/50 90/48 88/46 90/48
Min 165/68 126/62 117/59 114/54 110/51 108/51
3 Med 167/79 132/67 120/64 118/59 113/60 104/55
Max 184/91 144/79 143/74 139/73 134/72 130/74
Min 138/55 113/48 108/47 106/44 99/45 100/44
4 Med 167/79 136/75 132/74 126/70 128/65 124/66
Max 178/87 140/92 142/83 139/79 136/76 139/74
Total 1,620/749 1,297/693 1,248/654 1,211/620 1,184/603 1,165/601
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Table 9 Indicators of the five tested scenarios for Region 3/Min

Scenario  Shifts Tasks Transport Service Driving Wait Overtime
[#] [#] time time empty time [min.]

[min.] [min]  [min] [min]

Manual 165 463 15,762 7,093 10880 701 2,920
Excellent 126 449 15265 6967 7600 328 62
Enhanced 117 410 14869 6890 7,201 199 144
Standard 114 376 14,225 6845 6457 288 226
Reduced 110 353 13682 6818 6,100 187 381
Bad 108 328 13,206 6,789 6031 173 277

the minimum standards for punctuality, exclusive trans-
ports and excess ride times. Analyses as done in this
paper show the impact on the used resources, i.e., the
number of vehicles required to operate in parallel for
ambulance services. Providers have to find a suitable com-
promise between the service level for the patients and
resource management. A DSS for routing and scheduling
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that respects the given minimum standards can be
implemented to improve the quality of the dispatchers’
decisions.

In the future, it is planned to continue work on this
problem. Adding a reclustering phase to the algorithm
could be beneficial due to the broadening of the solu-
tion space. By reducing the neighborhood size through
clustering, solutions of good quality are obtained quickly.
However, after observing a stagnation of the search pro-
cess, a reclustering phase could be started to explore new
areas of the search space. The main focus will be on
the transformation of the static model into a dynamic
one. Such a model is the next step to creating and
implementing a DSS for the routing and scheduling of
ambulance services. To assess the quality of a dynamic
approach, a comparison to the solutions of the static
algorithm will be of interest. The focus of such work
will be to see to what extent not knowing all informa-
tion in advance will contribute to increasing operation
times.

Region 3 - Min
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Fig. 4 Objective value. Composition of the objective value for the different scenarios of the minimum day of Region 3
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