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Abstract
Background & aim  Cardiovascular disease (CVD) is the most important cause of death in the world and has a 
potential impact on health care costs, this study aimed to evaluate the performance of machine learning survival 
models and determine the optimum model for predicting CVD-related mortality.

Method  In this study, the research population was all participants in Tehran Lipid and Glucose Study (TLGS) aged 
over 30 years. We used the Gradient Boosting model (GBM), Support Vector Machine (SVM), Super Learner (SL), and 
Cox proportional hazard (Cox-PH) models to predict the CVD-related mortality using 26 features. The dataset was 
randomly divided into training (80%) and testing (20%). To evaluate the performance of the methods, we used the 
Brier Score (BS), Prediction Error (PE), Concordance Index (C-index), and time-dependent Area Under the Curve 
(TD-AUC) criteria. Four different clinical models were also performed to improve the performance of the methods.

Results  Out of 9258 participants with a mean age of (SD; range) 43.74 (15.51; 20–91), 56.60% were female. The CVD 
death proportion was 2.5% (228 participants). The death proportion was significantly higher in men (67.98% M, 
32.02% F). Based on predefined selection criteria, the SL method has the best performance in predicting CVD-related 
mortality (TD-AUC > 93.50%). Among the machine learning (ML) methods, The SVM has the worst performance 
(TD-AUC = 90.13%). According to the relative effect, age, fasting blood sugar, systolic blood pressure, smoking, taking 
aspirin, diastolic blood pressure, Type 2 diabetes mellitus, hip circumference, body mss index (BMI), and triglyceride 
were identified as the most influential variables in predicting CVD-related mortality.

Conclusion  According to the results of our study, compared to the Cox-PH model, Machine Learning models 
showed promising and sometimes better performance in predicting CVD-related mortality. This finding is based on 
the analysis of a large and diverse urban population from Tehran, Iran.

Keywords  Machine learning, Cox proportional hazard, Gradient boosting model, Support vector machine, Super 
learner, Tehran lipid and glucose study, Cardiovascular disease

Optimizing cardiovascular disease mortality 
prediction: a super learner approach in the 
tehran lipid and glucose study
Parvaneh Darabi1, Safoora Gharibzadeh2*, Davood Khalili3, Mehrdad Bagherpour-Kalo4 and Leila Janani1,5*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-024-02489-0&domain=pdf&date_stamp=2024-4-15


Page 2 of 13Darabi et al. BMC Medical Informatics and Decision Making           (2024) 24:97 

Introduction
Cardiovascular disease (CVD) is a class of disorders (such 
as heart failure, stroke, coronary heart disease, myocar-
dial infarction) that affect the heart or blood vessels [1]. 
In the past few decades, CVDs, especially in undevel-
oped and developing countries, have become a major 
health threat [2, 3] by having the attribution of 32% of all 
global deaths, it has known as the leading cause of death 
worldwide [4]. A previous study shows that CVD-attrib-
utable deaths increased by at least 42% from 1990 to 2016 
(12.3  million to 17.6  million attributed deaths, respec-
tively) [5]. In terms of cost, CVD accounts for 7–21% of 
the direct and indirect costs of healthcare worldwide [6].

The rising prevalence of CVD underscores the urgency 
of identifying effective interventions to alleviate this 
global health burden. Over the decades, extensive efforts, 
exemplified by landmark studies such as the Framingham 
Heart Study, have been devoted to predicting CVD out-
comes [7]. While traditional statistical regression mod-
els have formed the backbone of risk prediction [8], the 
landscape is evolving with the growing challenges of vast 
and complex datasets. In this context, the emergence of 
machine learning (ML) methods presents a promising 
avenue for refining CVD risk prediction [9–13]. ML, as 
a computer-based approach driven by algorithms, dem-
onstrates notable efficacy in handling the intricacies of 
large datasets and has shown success in predicting vari-
ous common diseases.

Despite the rapid growth of data and the surge in the 
number of features, there is a recognized need to develop 
prediction methods that can navigate these challenges. 
The application of ML methods has gained popularity 
due to their ability to discern complex patterns in data. 
Notably, several studies have illustrated the superior 
performance of selected ML methods in predicting out-
comes across various medical domains, including post-
partum hemorrhage [14], ischemic stroke readmission 
[15], and cardiovascular risk [16]. An influential study 
by Alaa et al. introduced an auto prognosis method, 
revealing that ML methods, such as Gradient Boosting 
Machine (GBM) and neural networks, outperform tradi-
tional Cox proportional hazard (Cox-PH) models in pre-
dicting cardiovascular disease risk [10].

In light of these advancements and the existing con-
tradictions in the literature, our study aims to contribute 
to the understanding of the comparative performance of 
ML methods and Cox-PH models in prediction of CVD-
related mortality. By addressing this gap in knowledge, 
we seek to provide insights that can inform more accu-
rate risk assessments and guide decision-making in clini-
cal practice.

In Iran, CVD has a huge impact on the health sector. 
Overall, 42% of annual deaths are related to CVD [17], 
and 1159.62$ million is spent annually on related costs 

[18]. Therefore, in the present study, we aimed to evaluate 
the performance of ML survival methods and determine 
the optimum model for predicting CVD-related mortal-
ity and identify the related risk factors in the presence of 
the censoring in an Iranian population.

Methods
Data
Tehran Lipid and Glucose Study (TLGS) [19–21] is a 
population-based cohort study designed by the research 
institute for endocrine sciences, Shaheed Beheshti Uni-
versity of Medical Sciences, to assess the risk factors of 
non-communicable diseases among an urban popula-
tion under the coverage of three health centers in district 
number 13 of Tehran., Iran. This study consists of two 
major parts: 1- Determining the prevalence of cardio-
vascular disease and related risk factors (cross-sectional 
phase) and 2- Preventing the risk factors of the disease 
and improving lifestyle over the next 20 years (cohort 
phase). In total, between 1999 and 2001, 15,005 par-
ticipants, aged ≥ 3 years, were recruited by a multistage 
cluster random sampling method from the TLGS. This 
dataset consists of a combination of interviews and labo-
ratory tests for physical examinations. The interview data 
include demographic, socioeconomic, medical history, 
dietary, health-related, and physical function questions. 
All participants or their guardians signed a consent form 
before entering the study. For this study, individuals aged 
over 30 years were selected from phase 3 (2005–2008); 
these participants were followed through the subsequent 
three phases (phase 4, 2008–2011; phase 5, 2011–2014; 
phase 6, 2014–2017). For the purposes of this study, indi-
viduals were categorized as CVDs related death if they 
exhibited relevant conditions across any three consecu-
tive phases. Alive participants who were lost to follow-up 
during the final phase were excluded from analysis due to 
uncertainty regarding their status by the end of the study 
period. Ultimately, among the 9258 subjects, 228 were 
identified as having died from CVDs.

Study population
The research population is all people aged over 30 years 
in TLGS.

Variable selection
According to WHO, National Health Service, and pre-
vious studies [22–24], twenty one major factors includ-
ing age, sex, marital status, education, family history of 
stroke, smoking, physical activity, blood pressure (BP), 
total cholesterol (TC), type 2 diabetes mellitus (T2DM), 
body mass index (BMI), systolic blood pressure (SBP), 
diastolic blood pressure (DBP), weight, height,waist 
circumference, hip circumference, fasting blood sugar 
(FBS), triglyceride (TG), high-density lipoproteins (HDL) 
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are considered as important risk factors for CVD. In 
addition to these variables, we also used some medica-
tions that have affected the CVD, such as Lipid lowering 
medications, beta-blockers, anti-hypertensive drugs, cor-
ticosteroids, and aspirin.

Of the 26 variables under investigation, 24 had miss-
ing values.To enhance ML algorithms performance, we 
employed six distinct methodologies for handeling miss-
ing data: complete case analysis, mean and mode impu-
tation, amelia, mice, kNN, and missForest. Through 
a sensitivity analysis conducted, we observed that the 
missForest and MICE techniques notably improved algo-
rithm performance. In alignment with Alsaber et al. [25] 
who demonstrated the efficacy of the random forest (RF) 
approach for handling missing values in machine learning 
(ML) methodologies, we adopted the missForest method 
for missing value imputation. This approach involves uti-
lizing regression trees within a resampling framework to 
classify and impute missing data effectively [25]. Table 1 
provides further information for each variable.

Variables and outcome definition
Hypertension was defined as the SBP ≥ 140 mmHg 
or DBP ≥ 90 mmHg [26], hypertriglyceridemia was 

determined as serum TGs ≥ 200  mg/dl and Low HDL-C 
as serum HDL < 40  mg/dl [27]. BMI was categorized 
as normal weight (18.5 ≤ BMI < 25  kg/m2), overweight 
(25 ≤ BMI < 30 kg/m2), and obese (BMI ≥ 30 kg/m2) [28].

Participants free of CVD at baseline were followed 
until the occurrence of a cardiovascular event, with the 
exact date of the event considered as the date of the end-
point event. Alternatively, the follow-up continued until 
the participant’s death or until they were lost to follow-
up, whichever came first. We considered the date of the 
last patient visit or the date of death due to a non-CVD 
event as censoring events.

Variable selection strategy
To address overfitting resulting from a large number of 
covariates, particularly affecting the Cox-PH model [29], 
four distinct models were explored. In summary, the first 
model incorporates all features in their original scales, 
except for history of drug (reference model in statistical 
point of view). The second model focuses on CVD risk 
factors. The third model mirrors the second but substi-
tutes waist-to-height ratio with waist-to-hip ratio. Lastly, 
the fourth, overemphasizes cardio-metabolic risk factors. 
For further details, please refer to Table 2.

Data processing
Three steps were applied to make dataset ready for 
the analysis. Missing values were imputed using the 

Table 1  Characteristic of variables included in the study
Variable Description # of miss-

ing (%)
Age Years 0
Sex Male/Female 0
Marital status Married / Single / Divorced 4 (0.04)
Education Primary / Secondary / 

Higher
766 (8.26)

Physical Activity Low / Medium / High 416 (4.49)
Smoking Current / Past / Never 237 (2.56)
Family History of Stroke Dummy (Yes / No) 232 (2.50)
Diabetes Mellitus Dummy (Yes / No) 60 (0.65)
Type 2 Diabetes Mellitus Dummy (Yes / No) 829 (8.94)
Blood Pressure Dummy (Yes / No) 255 (2.75)
Weight Kg 631 (6.82)
Height Meter (M) 560 (6.05)
Body Mass Index Kg/M2 636 (6.86)
Hip circumference Centimeter 637 (6.87)
Waist circumference Centimeter 637 (6.87)
Systolic Blood Pressure mm HG 224 (2.42)
Diastolic Blood Pressure mmol/L 224 (2.42)
Total Cholesterol mmol/L 277 (2.99)
Fasting Blood Sugar mg/dl 283 (3.05)
Total Triglyceride mmol/L 227 (2.99)
High-Density Lipoproteins mmol/L 290 (3.13)
Lipid Lowering Drugs Dummy (0 / 1) 0 (0.00)
Beta-Blockers Dummy (0 / 1) 246 (2.65)
Antihypertensive Drug Dummy (0 / 1) 0 (0.00)
Corticosteroid Dummy (0 / 1) 239 (2.58)
Aspirin Dummy (0 / 1) 241 (2.60)

Table 2  Model building strategies
Model The feature considered
Model 1:
All variables in their original 
scales besides the history of 
drugs

Age, Sex, Smoking status, Educa-
tion, Marital Status, Family History of 
Stroke, SBP, DBP, BMI, Waist, Hip, FBS, 
TG, HDL, Physical Activity, Lipid Drug, 
Anti-Hypertension Drug, Aspirin, 
Corticosteroid.

Model 2:
Transformed variables; the 
effect of changing the continu-
ous to the discrete state of the 
features.

Age, Sex, Smoking status, Education, 
Marital Status, Family History of Stroke, 
Anti-Hypertension drug, BMI catego-
ries, Waist-to-Height Ratio, T2DM, high 
TG, low HDL, Physical Activity

Model 3:
Transformed variables; the 
effect of changing the continu-
ous to the discrete state of the 
features.

Age, Sex, Smoking status, Education, 
Marital Status, Family History of Stroke, 
Anti-Hypertension Drug, BMI catego-
ries, Waist-to-Hip Ratio, T2DM, high 
TG, low HDL, and Physical Activity

Model 4:
Cardio-metabolic risk factors 
model; reducing the number 
of features.

Age, Sex, Smoking status, Education, 
Marital Status, Family History of Stroke, 
Cardio-metabolic risk factors*

*Cardio-metabolic risk factors refer to risk factors that increase the chance of 
experiencing cardiovascular events, such as age, sex, obesity, hypertension, 
dyslipidemia (high LDL cholesterol, high triglycerides, and low HDL cholesterol), 
dysglycemia, smoking, abdominal obesity, lack of consumption of fruits and 
vegetables, and sedentary lifestyle. Abbreviation: SBP: systolic blood pressure; 
DBP: diastolic blood pressure; BMI: body mass index; FBS: fasting blood sugar; 
TG: total triglyceride; HDL: high-density lipoprotein; T2DM: type 2 diabetes 
mellitus
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missForest package [30]. In the next step, four differ-
ent models are defined above, used to select the model 
that shows the best performance. The construction of all 
models involved the utilization of a development dataset 
through a 10-fold cross-validation approach, compris-
ing 75 iterations. In each iteration, samples were selected 
randomly from the observed data using distinct seeds. 
Following the acquisition of the final models, an assess-
ment, comparison, and reporting of their predictive 
performance were conducted using test datasets. To elab-
orate on the 10-fold cross-validation process and align 
with the recommendation by Dinh et al. [24], 80% of the 
development data were allocated for training purposes, 
while the remaining 20% were reserved for validation.

After pre-processing, Cox-PH and ML methods were 
fitted based on the training data and, then, the validity of 
the methods was examined based on testing data. In the 
end, according to the model selection criteria, the opti-
mum model in predicting CVD-related mortality was 
identified.

Models

 	• Cox Proportional Hazard (Cox-PH) Model is 
a semi-parametric model which assumes that 
independent variables have an exponential effect 
on the outcome and the log-hazard rate is a linear 
function of the covariates [31].

 	• Machine learning (ML) method in general is a 
computer-based approach that, by minimizing the 
error between observed and predicted outcomes, 
can learns all nonlinear and complex interactions 
between variables through pattern recognition and 
computational learning [16]. ML methods can be 
divided into supervised learning and unsupervised 
learning. Supervised learning, with focuses on 
classification, decomposes the dataset to identify 
differences between groups and learns a function to 
predict the outcome (it generally tries to estimate 
risk prediction), but unsupervised learning seeks 
to find a pattern or structure (such as clustering or 
grouping) in the data [32]. following ML methods 
were applied in this study:

 	• Generalized Boosted Model (GBM) is an ensemble 
prediction model, that based on the classification 
and regression relationships, trains weak learners to 
the best superior result by augment each other [33]. 
GBM optimizes the loss function using gradient 
descent and constructs the model based on the 
negative gradient of the previous loss function in 
an iterative cycle. The loss function is an important 
issue in GBM since the lower value of the loss 
function indicates a higher prediction performance 
[34].

 	• Support Vector Machine (SVM) with classification 
creates a decision boundary, hyperplane, between 
two classes. After creating the hyperplane, SVM tries 
to bring this boundary as close to the class points as 
possible. The greater the estimated distance between 
these boundaries, known as support vectors, 
indicates that the model predicts the event better 
[35].

 	• Super Learner (SL) is an ensemble algorithm which 
uses cross-validation to estimate the performance of 
multiple machine learning algorithms, or the same 
algorithm with different settings. It then creates an 
optimal weighted average of those algorithms using 
the test data performance. This approach has been 
proven to be asymptotically as accurate as the best 
possible prediction method that is tested [36, 37]. 
Among the advantages of SL are improved balance of 
covariates and reduced bias in case of serious model 
misspecification for treatment assignment [38].

Machine learning algorithms play a pivotal role in clini-
cal decision-making, contributing to improved risk pre-
diction, stratification, and treatment planning for CVD 
mortality. Clinicians can capitalize on the comprehen-
sive approach of supervised learning for more accurate 
and robust predictions, facilitating enhanced risk strati-
fication and treatment planning. Additionally, the abil-
ity of GBM to discern subtle patterns and nuanced risk 
factors contributes to the precision of risk assessments. 
Ultimately, SVM predictions aid in patient stratification, 
enabling the identification of individuals at higher risk 
and the customization of interventions based on their 
specific risk profiles [39].

Dealing with multicollinearity, overfitting, and underfitting
A thorough examination of the features in the data-
set was conducted to identify any high correlations. In 
instances where multicollinearity was observed, tech-
niques such as variable scaling, dimensionality reduction, 
or, when necessary, removal of highly correlated features 
to mitigate its impact were applied. Additionally, regu-
larization techniques, such as L1 or L2 regularization, 
were considered to penalize excessively large coefficients 
and improve model stability in the presence of multi-
collinearity. Several strategies to tackle overfitting and 
underfitting were applied. First, a 10-fold cross-validation 
approach was applied during the model development 
phase to assess the model’s performance on multiple sub-
sets of the data. This helped identifying the optimal level 
of model complexity. Regularization techniques, such as 
dropout or weight decay, were also employed to prevent 
overfitting by penalizing overly complex models. Fur-
thermore, we carefully tuned hyperparameters, utilizing 
techniques like grid search or random search, to find the 
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optimal configuration that balanced model performance 
on the training and validation sets. Learning curves were 
also monitored to ensure that the model did not underfit 
the training data, and if necessary, the model’s complexity 
was adjusted to achieve a better fit.

Model selection and performance criteria
To assess the performance of survival models concor-
dance index (C-index), Brier score (BS), prediction error 
(PE), and time-dependent area under the curve (TD-
AUC) criteria were used [40–43].

C-index  is a rank-correlation measure between time 
point observations (in testing data) and predicted prob-
ability scores (in training data) [41]. This statistic, which 
is a generalized Tau-Kendall correlation method for cen-
sored data, has a range from 0 to 1. A value of 1 indicates 
a very good performance of the model in differentiating 
patients with different results (complete agreement) and 
a value of 0 indicates the inability of the model to sepa-
rate patients (no agreement) [44]. In summary, C-index is 
a measure commonly used in survival analysis to evaluate 
the predictive accuracy of a model. It assesses the model’s 
ability to correctly order the predicted survival times of 
pairs of subjects. In the context of survival analysis, sub-
jects are typically individuals or items that are followed 
over time to observe the time until a certain event occurs 
(e.g., time until failure or death).

Integrated brier score  is computed by integrating the 
Brier Score across distinct time intervals, offering a more 
accurate understanding of the model’s accuracy over the 
entire predefined timeline [45]. Brier Score is a quadratic 
score function that measures the accuracy of predictions, 
which can be calculated for survival outcomes using a 
weight function of the conditional probability of uncen-
sored observations over time [40]. BS has a range from 0 
to 1. With values greater than 0.25 indicate poor model 
performance, and lower values indicate better model pre-
diction performance [46].

Prediction error  is a loss function that quantifies the 
absolute distance between predicted and observed time 
points of participants [42]. Lower value indicate the more 
reliable results [47].

Time-dependent area under the curve  is an efficient 
tool to evaluate the accuracy of diagnostic survival mod-
els. The range of TD-AUC is from 0 to 1 for each point time 
which the value of 1 reflects the perfect accuracy of the 
model in a specific time [48]. Overall, TD-AUC provides 
a nuanced view of how well a machine learning algorithm 
discriminates between positive and negative outcomes at 
different time points during its predictive horizon.

Software and packages
In order to impute the missing data, the missForest pack-
age was used. faraway [49] and tibble [50] packages were 
used to separate the dataset into training and testing 
datasets. The survival [51] package was used to evaluate 
the specificity of follow-up time and fitting the Cox-PH 
model. GBM, SVM, and SL models were implemented 
by gbm [52], survivalsvm [53], and survSuperLearner [54] 
packages, respectively. Finally, to evaluate the perfor-
mance of the models, the C-index, BS, PE, and TD-AUC 
were calculated using the caret [55] and survAUC [56] 
packages. All analyzes were conducted in R version 4.0.6 
[57].

Results
Data
Figure 1 shows the flow diagram from raw data through 
the best model selection. Of a total of 20,457 participants, 
9274 participants met the eligibility criteria. After exclud-
ing 16 participants without any record of the outcome of 
interest, the analysis consisted of 9258 participants. To 
conduct the methods, the eligible dataset was randomly 
divided into training and validation subsets with a sample 
size of 7406 (80%) and 1852 (20%), respectively.

Characteristics of participants
Out of 9258 participants with a mean age of (SD; range) 
43.74 (15.51; 20–91), 56.6% were female. The proportion 
of CVD-related mortality was 2.5% (228 participants). 
Most of CVD-related mortality were married (83.77%), 
male (67.98%), older than 60 years (65.79%), and BMI 
greater than 30 (77.19%). The results of primary analy-
sis showed that all variables except for physical activity, 
family history of stroke, weight, height, and HDL might 
not have a potential effect on CVD-related mortality 
(P > 0.05). More details are presented in Table 3.

Variable selection and comparison of models’ prediction 
accuracy
Table  4 shows results of the selection process of four 
models based on study methods (Cox-PH, GBM, SVM, 
and SL). Accordingly, although all the models have pro-
vided favorable results, models I and III were used to 
check the efficiency of the methods. The reason for 
choosing model I was to be in alignment with other stud-
ies and the reason for choosing model III was the differ-
ence in the efficiency of SVM, so that the efficiency of 
this method has a drastic difference compared to model I 
(AUCmodelI  = 85.25 and AUCmodelIII  = 90.13).

In model I, the SL had maximum of TD-AUC (94.34%), 
followed by Cox-PH with 93.83% and GBM with 90.52%. 
The lowest TD-AUC also belonged to SVM (85.25%) (see 
Fig. 2A). This ranking remains valid for C-index (91.60%, 
90.03%, 89.76%, and 75.99%, respectively). Regarding the 
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BS and PE, SL and Cox-PH had almost the same perfor-
mance (0.011: both criteria were the same up to three 
decimal points). On the other hand, the SVM showed 
BS and PE equal to 0.014 and 0.013, respectively, had the 
lowest prediction among other methods.

In model III, SL had the highest TD-AUC (94.34%) 
and C-index (92.81%), followed by Cox-PH (TD-
AUC = 93.83%, C-index = 91.47) and GBM (TD-
AUC = 91.67%, C-index = 90.18%) (see Fig.  2B). The 
lowest TD-AUC and C-index also belonged to SVM with 
90.13% and 89.63%, respectively). Such as Model I, BS 
and PE are the same in SL and Cox-PH, and SVM has the 
highest BS and PE among other methods. In summary, 
SL (TD − AUCmodelI  = 94.34; C − indexmodelI = 91.60; 

TD − AUCmodelIII  = 93.73; C − indexmodelIII = 92.81) has 
a better ability to model risk prediction, and the intro-
duced clinical models did not have a potential impact on 
improving the learning of methods.

Figure  2 illustrates the TD-AUC (Area Under the 
Curve) plot for Models 1 and 3. As evident, up to day 
1000, all four algorithms exhibit significant fluctuations, 
with the super learner and Cox-PH demonstrating less 
variability compared to the other two algorithms. Beyond 
this point, all four algorithms stabilize in their perfor-
mance, with the SL in Model 1 showing nearly constant 
predictions. Notably, there is a noteworthy improvement 
in the predictive performance of the GBM algorithm over 
time. Specifically, at day 6000, in Model 1, it outperforms 

Fig. 1  Processing and model selection. A flow diagram visualizing the TLGS dataset
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Variables Total
(n = 9258)

Alive
(n = 9030)

Death
(n = 228)

Categorical; Count (%)
Age
  > 40
  40–60
  > 60

4082 (44.09)
3561 (38.46)
1615 (17.44)

4075 (45.13)
3490 (38.65)
1465 (16.22)

7 (3.07)
71 (31.14)
150 (65.79)

Sex
  Male
  Female

4018 (43.40)
5240 (56.60)

3863 (42.78)
5167 (57.22)

155 (67.98)
73 (32.02)

Marital Status
  Single
  Married
  Divorced

1415 (15.29)
7181 (77.60)
658 (7.11)

1412 (15.64)
6990 (77.44)
624 (6.91)

3 (1.32)
191 (83.77)
34 (14.91)

Education
  Primary
  Secondary
  Higher

2087 (24.55)
5003 (58.85)
1411 (16.60)

1997 (23.96)
4943 (59.30)
1396 (16.75)

90 (54.55)
60 (36.36)
15 (9.09)

Physical Activity
  Low
  Medium
  High

3392 (38.36)
3940 (44.56)
1511 (17.09)

3306 (38.25)
3858 (44.64)
1479 (17.11)

86 (43.00)
52 (41.00)
32 (16.00)

Smoking
  Non-smoking
  Former
  Current

7025 (77.87)
856 (9.49)
1141 (12.65)

6894 (78.32)
819 (9.30)
1089 (12.37)

131 (59.55)
37 (16.82)
52 (23.64)

Family History of Stroke
  Yes
  No

932 (10.32)
8095 (89.67)

902 (10.24)
7905 (89.76)

30 (13.64)
190 (86.36)

Type 2 diabetes mellitus
  Yes
  No

1046 (12.40)
7387 (87.60)

949 (11.54)
7274 (88.46)

97 (46.19)
113 (53.81)

High Blood pressure
  Yes
  No

1745 (19.38)
7259 (80.62)

1616 (18.39)
7169 (81.61)

129 (58.90)
90 (41.10)

BMI
  Underweight
  Normal weight
  Overweight
  Obese

161 (1.74)
2614 (28.24)
3543 (38.76)
2940 (31.76)

161 (1.78)
2562 (28.37)
3451 (38.22)
2856 (31.63)

0 (0.0)
52 (22.81)
92 (40.35)
84 (36.84)

High Triglyceride
  Yes
  No

3906 (43.48)
5077 (56.52)

3780 (43.15)
4981 (56.85)

126 (56.76)
96 (43.24)

Low High-density lipoprotein
  Yes
  No

6993 (77.96)
1977 (22.04)

6823 (77.97)
1928 (22.03)

170 (77.63)
49 (22.37)

Lipid Drug
  Yes
  No

271 (2.93)
8987 (97.07)

246 (2.72)
8784 (97.28)

25 (10.96)
203 (89.04)

Beta-Blockers
  Yes
  No

862 (9.31)
8396 (90.69)

808 (8.95)
8222 (91.05)

54 (23.68)
174 (76.32)

Anti-Hypertension Drug
  Yes
  No

692 (7.47)
8566 (92.53)

625 (6.92)
8405 (93.08)

67 (29.39)
161 (70.61)

Corticosteroid
  Yes
  No

94 (1.02)
9164 (98.98)

90 (1.00)
8940 (99.00)

4 (1.75)
224 (98.25)

Table 3  Characteristics of participants aged over 30 years in the TLJS study cohort
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Cox-PH, and in Model 3, it surpasses the performance of 
the other three algorithms.

Variable importance
We utilized Model 1 to identify the impact of variables on 
the deaths from cardiovascular diseases, where all vari-
ables were in their standard scale. Relative influence is 
commonly used in regression models and machine learn-
ing algorithms to assess the impact of individual variables 
on the outcome of interest. According to Table 5, in the 
Cox model, age, waist-to-hip ratio, smoking status, sys-
tolic blood pressure, diastolic blood pressure, 2-hour 
blood glucose, and body mass index collectively deter-
mine more than 90% of the overall impact on attributed 
deaths from cardiovascular diseases. In the GBM model, 
age, 2-hour blood glucose, systolic blood pressure, smok-
ing, aspirin use, diastolic blood pressure, and type 2 
diabetes together contribute to approximately 89% of 
the total impact on attributed deaths from cardiovascu-
lar diseases. Meanwhile, in the support vector machine 
model, only three variables—age, waist-to-hip ratio, 
and smoking status—account for more than 89% of the 
total impact on attributed deaths from cardiovascular 
diseases. Lastly, the super learner model, incorporating 
eight variables—age, systolic blood pressure, smoking, 
waist-to-hip ratio, diastolic blood pressure, 2-hour blood 
glucose, body mass index, and aspirin use—determines 
more than 84% of the overall impact on attributed deaths 
from cardiovascular diseases.

Figure  3 illustrates the Relative Influence of the top 
twelve variables in four algorithms: Cox-PH, GBM, SVM, 
and SL. In each of these algorithms, age shows the high-
est impact on predicting CVD mortality.

Discussion
In this study, we applied three distinct machine learning 
algorithms (GBM, SVM, and SL) alongside the traditional 
survival regression (Cox-PH) to predict CVD-related 
mortality in an urban population of 9258 participants 
from Tehran, Iran. To evaluate the models’ predic-
tive performance, we compared risk predictions using 
metrics such as TD-AUC, c-index, BS, and PE. From a 
clinical perspective, our analysis identified age as the 
foremost risk factor for CVD-related mortality across all 
clinical models. Additionally, our study highlighted sev-
eral crucial factors—FBS, SBP, waist-to-hip ratio, smok-
ing, aspirin, anti-hypertension drug, DBP, T2DM, Hip, 
BMI, TG, HDL, and sex—as significant contributors to 
CVD-related mortality. We compared the models’ risk 
prediction performance using TD-AUC, c-index, BS, and 
PE.

Preliminary findings demonstrated TD-AUC and 
C-index exceeding 85% and 75%, respectively, for 
all models. The SL method emerged as the optimal 
model for identifying CVD-related mortality (TD-
AUC = 94.34%; C-index = 91.60%). These results showed 
that, in TLGS, ML methods can match, and in the case 
of SL, even surpass the predictive power of the Cox-PH 
model. These finding align with various studies, sup-
porting the effectiveness of ML approaches in predict-
ing cardiovascular outcomes. For example, Hadanny et 
al. [58] compared survival prediction performance of 
Random Survival Forests and deep learning against Cox-
PH in a set of acute coronary syndrome patients. They 
obtained a c-index of 0.95, 0.80, 0.80, and 0.83 for the 
random survival forest, deep learning, multivariate Cox-
PH, and univariate Cox-PH, respectively. Heo et al., in a 
population of 2058 patients with coronary artery disease, 
showed that GBM can help identify hidden coronary 

Variables Total
(n = 9258)

Alive
(n = 9030)

Death
(n = 228)

Aspirin
  Yes
  No

550 (5.94)
8708 (94.06)

484 (5.36)
8546 (94.64)

66 (28.95)
162 (71.05)

Continuous; Mean (SD)
Age (year) 43.74 (15.51) 43.23 (15.25) 63.87 (11.77)
Weight (kg) 71.92 (13.56) 71.90 (13.58) 72.78 (12.75)
Height (cm) 162.42 (9.67) 162.45 (9.65) 161.20 (10.04)
Body mass index (kg/m2) 27.29 (4.85) 27.27 (4.86) 28.03 (4.48)
Hip circumference (cm) 101.65 (9.18) 101.68 (9.19) 100.24 (8.95)
Waist circumference (cm) 91.26 (12.58) 91.08 (12.57) 98.49 (10.46)
Systolic blood pressure (mmHg) 116.92 (18.92) 116.39 18.41) 137.99 (25.78)
Diastolic blood pressure (mmHg) 74.77 (10.71) 74.64 (10.60) 79.95 (13.52)
Cholestrrol (mg/dL) 192.02 (41.88) 191.62 (41.81) 207.86 (41.85)
Fasting blood suger (mg/dL) 98.33 (32.12) 97.45 (30.38) 132.78 (64.05)
Triglyceride (mg/dL) 160.18 (106.96) 159.59 (106.56) 183.44 (119.60)
High-density Lipoprotein (mg/dL) 39.19 (10.43) 39.22 (10.41) 38.08 (11.11)

Table 3  (continued) 
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artery disease in patients in long-term outcomes (TD-
AUC = 76.3) [59]. Alaa et al., to evaluate the effectiveness 
of the most routine ML approaches in predicting the 
risk of CVD, showed that despite the same performance 
of ML-based methods, some methods such as GBM 
can better diagnose the disease. In their study Cox-PH, 
GBM, SVM, and random forest models yielded TD-AUC 
values of 75.8, 76.9, 70.9, and 73.0, respectively [10]. In 
another study, Torres et al. by comparing the perfor-
mance of ML methods (Random Survival Forests, SVM, 
Extreme GBM) against Cox-PH in a set of 36,658 non-
metastatic breast cancer patients, showed that Extreme 

GBM performed better (c-index > 70) and other methods 
predicting survival as good as Cox-PH (c-index > 60) [60].

To delved deeper into the performance of ML meth-
ods, we utilized four different clinical models, as detailed 
in variable definition and Outcome section. The results 
indicated an insignificant effect of clinical models on 
Cox-PH, GBM, and SL performance. However, this 
adjustment notably enhanced the SVM method’s per-
formance, with clinical model III increasing TD-AUC by 
5.72 units compared to clinical model I (TD − AUCmodelI  
= 85.25; C − indexmodelI = 75.99; TD − AUCmodelIII  = 
90.13; C − indexmodelIII = 89.63). Feature selection’s 
importance is evident in several cross-sectional stud-
ies, emphasizing the need for a thoughtful approach to 
optimize model efficiency. For example, Rasheme et al. 
propose a model for feature selection in the early predic-
tion of CVD by different ML methods [61]. In terms of 
survival studies, so far, no study has specifically covered 
this issue, but Alaa et al. used two clinical models (all 
variables and 7 core variables based on the Framingham 
cohort study) in examining the performance of routine 
ML methods against Cox-PH. According to the results 
of this study, it could be said that reducing the number 
of variables does not have a significant effect on the effi-
ciency of the models [10].

The results of this study included two noteworthy 
points. First, the performance of all techniques was high 
in all models. One reason could be the small fraction of 
CVD-related mortality (228 of 9258 participants). Zhang 
et al. showed that in addition to traditional models, ML 
techniques have a high accuracy in the face of low event 
rates [62]. By creating samples with 0.12%, 10%, 20%, 
30%, 40%, and 50% event rates, they showed that the 
SVM has the most sensitivity (accuracy0.12%  = 99.88%; 
accuracy50%  = 73.23%) and the Bayesian network has the 
most insensitivity (accuracy0.12%  = 64.43%; accuracy50%  = 
70.53%) to the event rate. On the other hand, since the 
increase in data causes more knowledge of the tech-
niques [63], another reason could be due to the small 
sample size (n = 9258) and the total number of features 
(dimension = 26). According to the above reasons, even 
though the event rate in Alaa et al. [10] study is 1.5%, but 
473 features and 423,604 samples have had a significant 
impact on the results.

Second, the efficiency of all methods decreases in 
model IV compared to other clinical models. That could 
be due to overfitting in separating the dataset into train-
ing and testing data. In previous studies, it has been 
shown that the increase in potential risk factors causes 
overfitting and complexity of traditional models to obtain 
implausible results [16, 29]. On the other hand, in sur-
vival ML techniques, learning performs too long due 
to the presence of time. Too long learning is one of the 
most important factors in the formation of overlearning. 

Table 4  Four clinical models: the strategy of selecting the best 
scale of variables
Method Clinical 

Model
Integrat-
ed Brier 
Score

Pre-
dic-
tion 
Error

C-index AUC (CI)

Cox-PH 1 0.011 0.011 90.03 93.83 
(93.12–94.54)

2 0.011 0.012 90.21 93.42 
(92.71–94.13)

3 0.011 0.011 91.47 93.48 
(92.77–94.19)

4 0.011 0.012 88.06 91.97 
(91.26–92.68)

GBM 1 0.013 0.013 89.79 90.52 
(89.81–91.23)

2 0.013 0.013 90.14 91.14 
(90.43–91.85)

3 0.013 0.013 90.18 91.67 
(90.96–92.38)

4 0.013 0.013 86.52 87.25 
(86.54–87.96)

SVM 1 0.014 0.013 75.99 85.25 
(84.54–85.96)

2 0.014 0.013 89.10 90.01 
(89.30–90.72)

3 0.014 0.013 89.63 90.13 
(89.42–90.84)

4 0.014 0.013 88.95 89.95 
(89.24–90.66)

SL 1 0.011 0.011 91.60 94.34 
(93.63–95.05)

2 0.011 0.011 90.55 93.59 
(92.88–94.30)

3 0.011 0.011 92.81 93.73 
(93.02–94.44)

4 0.012 0.011 87.97 91.86 
(91.15–92.57)

Model I included Age, Sex, Smoking status, Education, Marital Status, Family 
History of Stroke, SBP, DBP, BMI, Waist, Hip, FBS, TG, HDL, Physical Activity, 
Lipid Drug, Anti-Hypertension Drug, Aspirin, Corticosteroid; Model III included 
Age, Sex, Smoking, Education, Marital Status, Family History of Stroke, Anti-
Hypertension Drug, BMI categorization, Waist-to-Hip Ratio, T2DM, high TG, 
low HDL, and Physical Activity. GBM = Gradient boosting model; SVM = support 
vector model; SL = super learner; CI confidence interval
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In fact, overlearning was apparent in testing data [64]. 
So far, no survival studies have addressed the consolida-
tion of overlearning, but Kassani et al. aimed to predict 
adolescent brain age based on multimodal sparse classi-
fication, introduced a redundant features pruning-based 
method that overcomes overlearning [65].

Strengths
This article made a significant contribution to the field 
by applying advanced Machine Learning (ML) algo-
rithm to predict Cardiovascular Disease (CVD) mor-
tality using Tehran Lipid and Glucose Study (TLGS). 
The study stood out for its novel application of ML in 
addressing the pressing health concern of CVD in Iran, 
where the disease accounted for a substantial percent-
age of annual deaths and healthcare expenditure. The 
research employed meticulous methodologies, including 
comprehensive variable selection, innovative imputa-
tion strategies for handling missing data, and a thorough 
evaluation of four distinct models. Notably, the study not 
only emphasized the technical aspects of ML but also 
underscored the clinical relevance of its findings, iden-
tifying age as a consistent risk factor and highlighting 
crucial factors such as Fasting Blood Sugar (FBS) and Sys-
tolic Blood Pressure (SBP). The article’s strength lay in its 
rigorous evaluation of predictive models and its unique 
contribution to the understanding of CVD mortality in 

Table 5  The effect of variables on prediction of deaths from 
cardiovascular diseases based on variable importance measure
Variable Cox-PH (%) GBM (%) SVM (%) SL (%)
Age 34.80 38.98 49.06 31.59
Waist-to-hip ratio 21.95 2.09 24.79 8.83
Smoking status 15.78 7.35 15.44 8.91
Systolic blood pressure 5.59 11.74 1.59 10.07
Diastolic blood pressure 5.01 3.97 1.26 8.29
Fasting blood sugar 4.13 17.52 1.17 7.31
Body mass index 3.09 1.52 0.71 5.77
Type 2 diabetes 
mellitus

1.99 3.54 0.85 3.20

Aspirin 1.06 5.75 1.08 3.64
Physical Activity 0.98 2.17 0.54 1.97
Cholesterol 0.97 1.32 0.69 1.41
Triglyceride 0.91 0.96 0.61 1.01
High-density 
lipoprotein

0.87 1.15 0.66 1.07

Sex 0.83 0.84 0.33 0.94
Lipid Drug 0.75 0.46 < 0.001 0.19
Family History of Stroke 0.54 < 0.001 0.74 2.93
Marital Status 0.38 < 0.001 0.23 1.29
Anti-Hypertension 
Drug

0.22 0.63 0.01 0.15

Education 0.13 < 0.001 0.21 0.86
Beta-Blockers 0.09 < 0.001 0.01 0.34
Corticosteroid 0.08 < 0.001 0.01 0.23

Fig. 2  Comparison of models Prediction accuracy based on TD-AUC of model I (a) and model III (b) Model I included Age, Sex, Smoking, Education, 
Marital Status, Family History of Stroke, SBP, DBP, BMI, Waist, Hip, FBS, TG, HDL, Physical Activity, Lipid Drug, Anti-Hypertension Drug, Aspirin, Corticosteroid; 
Model III included Age, Sex, Smoking, Education, Marital Status, Family History of Stroke, Anti-Hypertension Drug, BMI categorization, Waist-to-Hip Ratio, 
T2DM, high TG, low HDL, and Physical Activity
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the Iranian population, making it a valuable addition to 
the literature on cardiovascular health prediction.

Limitation
As previously mentioned, our study faced imbalanced 
data, with a minimal fraction of participants experienc-
ing CVD-related mortality (approximately 2.5%). This 
imbalance led to TD-AUC values of the methods exceed-
ing 90%. Hence, it’s crucial to assess the application of 
ML methods across diverse populations with varying 
event rates to ensure robustness and generalizability.

Furthermore, past studies have revealed correlations 
between functional factors like job stress and CVD 
occurrences. Integrating such information could provide 
a more holistic understanding of CVD outcomes within 
the TLGS (Tehran Lipid and Glucose Study).

Additionally, the ‘black-box’ complexity inherent in 
ML methods, especially in identifying linear interactions 
and independent effects on response variables in sur-
vival data, can pose challenges in interpretation due to 
potential overlearning. Bailly et al. highlighted how ML 
performance relies on the representation of the data-
set’s original distribution and interaction terms. Hence, 
there’s a pressing need to develop methods that enhance 
data visualization and streamline redundant feature.

Conclusion
Based on our analysis findings, the machine learn-
ing (ML) algorithm showed promising and occasion-
ally superior performance in detecting CVD-related 
mortality compared to the Cox proportional hazards 
(Cox-PH) model. This observation was evident in a 

Fig. 3  The top twelve variables with the highest Relative Influence on the performance of the Cox-PH, GBM, SVM, and SL algorithms. A higher value 
indicates a greater influence on prediction
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population-based study conducted among a diverse and 
sizable urban population in Tehran, Iran. Therefore, giv-
ing greater attention to ML methods could offer an auto-
mated mechanism for identifying patients who could 
benefit from preventive disease treatments.
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