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Abstract
Background  Patients with renal cell carcinoma (RCC) have an elevated risk of chronic kidney disease (CKD) following 
nephrectomy. Therefore, continuous monitoring and subsequent interventions are necessary. It is recommended to 
evaluate renal function postoperatively. Therefore, a tool to predict CKD onset is essential for postoperative follow-up 
and management.

Methods  We constructed a cohort using data from eight tertiary hospitals from the Korean Renal Cell Carcinoma 
(KORCC) database. A dataset of 4389 patients with RCC was constructed for analysis from the collected data. Nine 
machine learning (ML) models were used to classify the occurrence and nonoccurrence of CKD after surgery. The final 
model was selected based on the area under the receiver operating characteristic (AUROC), and the importance of 
the variables constituting the model was confirmed using the shapley additive explanation (SHAP) value and Kaplan-
Meier survival analyses.

Results  The gradient boost algorithm was the most effective among the various ML models tested. The gradient 
boost model demonstrated superior performance with an AUROC of 0.826. The SHAP value confirmed that 
preoperative eGFR, albumin level, and tumor size had a significant impact on the occurrence of CKD after surgery.

Conclusions  We developed a model to predict CKD onset after surgery in patients with RCC. This predictive model 
is a quantitative approach to evaluate post-surgical CKD risk in patients with RCC, facilitating improved prognosis 
through personalized postoperative care.
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 Introduction
Detection of kidney cancer has improved because of 
the proliferation of imaging tests such as ultrasound 
and computed tomography. The kidney is ninth among 
the most common primary cancer sites, with renal cell 
carcinomas (RCCs) constituting approximately 90% of 
these cases [1]. Metastatic diseases affect approximately 
20–30% of those diagnosed with RCC, which eventually 
claims the lives of over 40% of these patients [1–3].

Most patients with localized RCC undergo radical or 
partial nephrectomy [4–6]. Although radical nephrec-
tomy offers excellent oncological outcomes for confined 
malignancies, it is associated with complications [7]. The 
literature features prominent concerns about the risk of 
developing chronic kidney disease (CKD) postoperatively 
following a reduction in nephron mass [8]. Individu-
als diagnosed with CKD, which is characterized by an 
estimated glomerular filtration rate (eGFR) of < 60  ml/
min/1.73 m2, frequently experience progression to kidney 
failure, complications due to diminished renal function, 
or cardiovascular disease and, in some cases, death [9, 
10].

Current guidelines from the European Association 
of Urology and American Urological Association rec-
ommend assessing renal function in patients who have 
undergone surgery for RCC [11]. Renal function in some 
patients progressively declines following nephrectomy; 
1–2% of patients who undergo this procedure ultimately 
require renal replacement therapy as a result of develop-
ing end-stage kidney disease (ESKD) [12, 13]. Hence, it is 
crucial to identify patients at an elevated risk of develop-
ing CKD following nephrectomy.

Research on leveraging machine learning (ML) has 
emerged with advances in computer technology. Cur-
rently, research on medical data for cancer prediction 
using ML is being intensively pursued [14–17]. Research 
on ML in patients with CKD is intensifying. As of 2021, 
28 studies have focused on utilizing ML for disease prog-
nosis analysis, and 21 studies have been dedicated to dis-
ease diagnostic analysis [18]. However, there is a notable 
lack of studies predicting CKD in patients who have 
undergone RCC surgery. Most existing studies target the 
general patient population or focus on utilizing ML for 
prognosis rather than CKD prediction [19–21]. Risk and 
odds ratios have been assessed in studies on CKD onset 
in RCC surgery patients using regression and survival 
analyses; however, they cannot provide direct probability 
calculations [4, 22–25]. If ML is employed, which calcu-
lates probabilities and identifies influential factors, it can 
serve as a diagnostic tool.

In this study, we assessed whether the risk factors iden-
tified in prior research are consistent in Korean patients 
with RCC. Further, we introduced an ML model that 
forecasts the likelihood of CKD based on a combination 

of these factors. As our algorithm was formulated using a 
multicenter dataset sourced from a top-tier Korean hos-
pital, it represents the features of Korean RCC patients 
without any distortion. Moreover, to our knowledge, our 
study pioneered the use of ML to predict CKD in patients 
with RCC. By employing the algorithm we crafted, 
detecting CKD in patients at an early postoperative stage 
becomes feasible, allowing for timely and appropriate 
treatment, enhancing their overall outcome.

Materials and methods
Study population
A web-based database system called the Korean Renal 
Cell Carcinoma (KORCC) was created to gather basic 
demographic and clinicopathological data on a sizable 
cohort of RCC patients in Korea. It was retrospectively 
built using data from eight hospitals from 1990 to the 
present [26]. This database was approved by the Ethics 
Committee of Seoul National University Bundang Hos-
pital (IRB No.: B1202/145 − 102). Using this database, 
we obtained data from 9598 patients with RCC, encom-
passing 214 variables. These variables comprised basic 
demographic factors such as age, sex, height, and weight 
and clinicopathological features, including clinical stage, 
pre- and post-surgical test results, and pathological stage. 
Furthermore, the outcomes were established based on 
assessing postoperative eGFR levels. CKD was defined 
as a postoperative eGFR value dropping below 60  ml/
min/1.73 m2 [23], which we designated as the outcome. 
Notably, the eGFR value referred to here was computed 
using the CKD-EPI equation. The study protocol was 
approved by the Institutional Review Board (IRB) of the 
Catholic University of Korea (IRB No. KC23ZIDI0683). 
The IRB of the Catholic University of Korea waived the 
requirement for informed consent because this study was 
retrospective, and personal information in the data were 
blinded.

Variable selection
The variable selection process was meticulously struc-
tured into three sequential phases. Initially, we focused 
on existing literature addressing postoperative CKD in 
patients with RCC, leading us to undertake a compre-
hensive meta-analysis [4, 22–25]. This study identified 
38 notable variables from the previous studies. From 
this pool, 17 were found to be compatible with our data-
set. In the second phase, rigorous statistical evaluations 
were performed to verify the authenticity of each vari-
able and monitor any missing data points. A p-value 
threshold of 0.05 was our yardstick for validation. To 
differentiate between the non-post-CKD and post-CKD 
cohorts, continuous variables underwent t-test evalua-
tions, whereas categorical counterparts were scrutinized 
using chi-squared tests, ensuring that we highlighted 
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statistically significant variances. In the last phase, with 
valuable input from urology specialists, we integrated an 
additional variable, “smoking,” culminating in a final tally 
of 12 pivotal variables for our analysis. The final variables 
included sex, smoking status, history of diabetes mellitus 
(DM), presence of hypertension (HTN), European Coop-
erative Oncology Group (ECOG) performance score, 
hemoglobin (Hb) level, creatinine level, albumin level, 
calcium level, preoperative eGFR value, tumor size, and 
tumor location.

Gender was categorized into two groups: male and 
female, and utilized as a variable in all associated 
research. Diabetes and hypertension were classified based 
on their presence or absence. Smoking status was divided 
into three categories: non-smokers, current smokers, and 
former smokers who do not currently smoke. The ECOG 
status, with scores ranging from 0 to 4, indicated physical 
activity ability; a higher score signifies greater function-
ing. The ‘Tumor Location’ variable reflects the extent of 
the tumor’s occupancy on the kidney’s surface. Variables 
such as Hb, Creatinine, Albumin, Calcium, eGFR, and 
Tumor Size were continuous, derived from test measure-
ments. All variables, with the exception of Hb, Tumor 

Size, and Tumor Location, were identified as significant 
factors in prior research [4, 22–25].

Data screening
Of the 9,598 patients with RCC, 201 who did not undergo 
surgery were excluded. Subsequently, we excluded 2,846 
patients diagnosed with CKD before surgery, 917 patients 
with preoperative eGFR levels below 60, 273 patients 
lacking postoperative eGFR readings, and 972 patients 
with missing data. Of the remaining 4389 patients, 1,076 
developed CKD post-surgery, while 3313 did not exhibit 
postoperative CKD (Fig. 1).

Data splitting and SMOTE for imbalanced datasets
We divided the data at a 7:3 ratio to train and evaluate 
our model to create two distinct datasets. Given the rela-
tively small number of patients in the post-CKD group, 
there was a potential for class imbalance. In other words, 
if trained as is, the model might heavily lean toward the 
larger no-post-CKD group, ultimately forming a model 
that predominantly predicts the no-post-CKD group. 
Techniques such as oversampling, undersampling, and 
SMOTE can be employed [27–29]. We opted for the 

Fig. 1  Data flowchart for analysis
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SMOTE method, known for its widespread use and effi-
cacy, to equalize the training data to a patient group ratio 
of 1:1 (Table 1).

Model development and validation
In this study, we evaluated the efficacy of several promi-
nent ML classifiers: kernel support vector machine 
(SVM) [30], logistic regression [31], decision tree [32], 
k-nearest neighbor (KNN) [33], random forest [34], gra-
dient boost [35], AdaBoost [34, 36], XGBoost [37], and 

LightGBM [38]. For each classifier, we derived four met-
rics: sensitivity, specificity, accuracy, F1-score, and area 
under the receiver operating characteristic (AUROC) 
[39]. The model delivering the superior performance was 
chosen based on its AUROC score, which is a crucial 
metric for assessing classifier effectiveness. All statistical 
analyses and algorithmic developments were performed 
using Python (version 3.9.7).

Using the final selected model, we examined the pri-
mary factors using the SHapley Additive exPlanations 
(SHAP) values. SHAP values serve as a representative 
element of explainable AI, offering a method to gauge 
the contribution of each variable within the model [40]. 
Thus, we could discern which variables played a signifi-
cant role in the model and whether their impact on the 
outcome was positive or negative. This study aimed to 
determine the influence of each variable.

Results
Patient characteristics
We assessed the differences in patient attributes and the 
distribution of individual variables between the post-
CKD and non-post-CKD cohorts (Table  2). A higher 
proportion of patients who developed CKD after surgery 
were male (73.4% vs. 68.2% in the non-CKD group). The 
percentage of patients with DM was 20.7% in the postop-
erative CKD group and 12.9% in the no-post-CKD group. 
Similarly, the incidences of hypertension (HTN) were 
47.9% and 34.4% in the post-CKD and non-post-CKD 
groups, respectively. These results are in line with those 
of previous research [4, 22, 24, 25]. The average eGFR val-
ues (ml/min/1.73 m2) in the no-post-CKD and post-CKD 
groups after surgery were 94.7 and 77.7, respectively. 
Additionally, the average tumor size(cm) before surgery 
was 38.6% in the no post-CKD group and 52.4 for the 
post-CKD group. This suggests that patients in the post-
CKD group had lower eGFR and larger tumor size before 
surgery. The distributions of the other variables are listed 
in Table 2.

Model performance
We applied 12 variables to nine ML models and calcu-
lated their accuracy, specificity, sensitivity, AUROC, and 
F1 scores to compare their performances. In this study, 
the final model was selected based on the AUROC value 
and F1 score, considering data imbalance, sensitivity, 
and specificity. A grid search was conducted for each 
ML model to determine the optimal hyperparameters. 
Table  3 lists each model’s intended hyperparameters. 
Using the best-selected hyperparameters, we assessed the 
degree to which each model performed; the results are 
listed in Table 4.

We assessed the performance of each ML model using 
the optimized parameters, and the results comparing the 

Table 1  Dataset distribution before to and following the SMOTE 
application

Training set (n = 3072) Test set (n = 1317)
no-post-CKD 
group,
n (%)

post-CKD 
group,
n (%)

no-post-
CKD group,
n (%)

post-CKD 
group,
n (%)

Before 2319 (75.49) 753 (24.51) 994 (75.47) 323 (24.53)
After 2319 (50.00) 2319 (50.00) 994 (75.47) 323 (24.53)

Table 2  Baseline characteristics of the patients (N = 4389)
Variable no-post-

CKD group 
(n = 3313)

post-CKD 
group 
(n = 1076)

p-
value

Sex 0.001
  Male 2260 (68.2%) 790 (73.4%)
  Female 1053 (31.8%) 286 (26.6%)
DM < 0.001
  None 2885 (87.1%) 853 (79.3%)
  DM 428 (12.9%) 223 (20.7%)
HTN < 0.001
  None 2172 (65.6%) 561 (52.1%)
  HTN 1141 (34.4%) 515 (47.9%)
Smoking 0.194
  Non-smoker 1877 (56.7%) 597 (55.5%)
  Ex-smoker 845 (25.5%) 261 (24.3%)
  Current smoker 591 (17.8%) 218 (20.3%)
ECOG < 0.001
  0 2794 (84.3%) 829 (77.0%)
  1 481 (14.5%) 221 (20.5%)
  2 31 (0.9%) 20 (1.9%)
  3 3 (0.1%) 5 (0.5%)
  4 4 (0.1%) 1 (0.1%)
Hb (g/dL) 13.8 ± 1.7 13.7 ± 1.7 0.017
Creatinine (mg/dL) 0.8 ± 0.2 1.0 ± 0.2 < 0.001
Albumin (g/dL) 4.4 ± 0.4 4.3 ± 0.4 < 0.001
Calcium (mg/dL) 9.3 ± 0.9 9.2 ± 0.6 < 0.001

eGFR (ml/min/1.73m2) 94.7 ± 15.6 77.7 ± 12.5 < 0.001

Tumor size (cm) 38.6 ± 26.8 52.4 ± 27.9 < 0.001
Tumor location < 0.001
  exophytic 1694 (51.1%) 564 (52.4%)
  mesophytic 560 (16.9%) 133 (12.4%)
  endophytic 676 (20.4%) 167 (15.5%)
  hilar 337 (10.2%) 151 (14.0%)
  unknown 46 (1.4%) 61 (5.7%)
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sensitivity, specificity, accuracy, AUROC, and F1 scores 
are presented in Table  4. Figure  2 shows the receiver 
operating characteristic (ROC) curves for the nine ML 
models. A larger area under the curve indicates a higher 
AUROC value, indicating a superior performance. Based 
on the AUROC, the Gradient boost was the top-per-
forming model. Gradient boost demonstrated a predic-
tive performance with a sensitivity of 0.594, specificity of 
0.877, accuracy of 0.808, AUROC of 0.826, and F1 score 
of 0.603.

To ascertain the significance of the performance of 
the trained models, post-hoc McNemar’s Chi-Squared 

testing was conducted [41]. The models were compared 
against the Gradient boost model, which exhibited the 
highest AUROC. This comparison was based on the pre-
diction results for the test set. It was observed that the 
Kernel SVM (p < 0.001), Logistic Regression (p < 0.001), 
Decision Tree (p < 0.001), and KNN (p < 0.001) all showed 
statistically significant differences when compared to 
the Gradient boost model. However, no significant dif-
ferences were found with the Random forest (p = 0.921), 
AdaBoost (p = 0.555), XGBoost (p = 0.935), and Light-
GBM (p = 0.793) models. These models, all belonging to 
the same family of tree-based ensemble methods, pre-
sented challenges in differentiation, leading us to verify 
the outcomes through the analysis of confusion matrices 
[42].

As depicted in Fig.  2, the performance of the Gradi-
ent boost, which showed the highest efficacy, was com-
pared with that of the Random forest, the model with 
the second-highest performance, using their respective 
confusion matrices (Fig.  3). In terms of True Negatives 
(TN), Gradient boost identifies approximately 47 more 
instances correctly compared to Random forest. How-
ever, it is observed that Gradient boost predicts 19 fewer 
True Positives (TP) than Random forest. Given that the 
primary objective is to accurately identify diseases within 
imbalanced clinical data, models with higher AUROC 
and recall values can be considered to perform better 
[43]. The recall rates for each model are 55.5% for Ran-
dom forest and 61.2% for Gradient boost, respectively. 
Consequently, it can be concluded that Gradient boost 
demonstrated superior predictive accuracy over Random 
forest.

Visualization of feature importance
SHAP was used to visually explain the variables consti-
tuting the model and verify their impact on CKD after 
surgery in patients with RCC. Figure 4 shows the SHAP 
values. The y-axis shows the importance of the model, 
with the most important variables at the top. The x-axis 
represents the exponent that responds to the effects of 
each variable. Here, the red points indicate high-risk val-
ues, and the blue points indicate low-risk values. Thus, it 
was related to the prediction that the occurrence of CKD 
after surgery would be higher when the eGFR value was 
lower, albumin was lower, tumor size was larger, calcium 
level was lower, creatinine level was lower, and Hb level 
was higher.

We conducted Kaplan-Meier (K-M) survival analyses 
for the most influential variables: eGFR, Albumin, and 
Tumor Size [25]. To facilitate a clear comparison between 
managed and unmanaged groups, we established crite-
ria based on demographic data. Specifically, eGFR was 
divided into higher and lower groups using a threshold 
of 86.2, Albumin using 4.35, and Tumor Size using 45.5. 

Table 3  Hyperparameter optimization using grid search
Algorithms Hyperparameters
Kernel SVM kernel: (linear, rbf*)

C: (0.1, 1, 10*)
gamma: (0.1*, 0.5, 1)

Logistic regression C: (0.1, 1, 10, 100*, 1000)
Decision tree max_depth: (1, 5, 10, 15*, 20)

min_samples_split: (1, 5, 10*, 15, 20)
KNN n_neighbors: (1*, 2, 3, 4, 5)
Random forest n_estimators: (10, 100, 1000, 10,000*)

max_depth: (1, 5, 10, 15, 20*)
Gradient boost n_estimators: (10, 100, 500, 1000*, 5000)

learning_rate: (0.01, 0.05*, 0.1, 0.5)
AdaBoost n_estimators: (10, 100, 500, 1000*, 5000)

learning_rate: (0.01, 0.05, 0.1, 0.5*)
XGBoost n_estimators: (10, 100*, 500, 1000, 5000)

learning_rate: (0.01, 0.05, 0.1, 0.5*)
LightGBM n_estimators: (10, 100, 500*, 1000, 5000)

learning_rate: (0.01, 0.05*, 0.1, 0.5)
* Optimal parameters obtained through a grid search

Table 4  Performance of the ML models
Model Sensitivity Specificity Accuracy AUROC F1-score
Kernel 
SVM

0.424 0.824 0.726 0.708 0.431

Lo-
gistic 
regres-
sion

0.700 0.766 0.749 0.801 0.578

Deci-
sion 
tree

0.520 0.789 0.723 0.697 0.479

KNN 0.533 0.783 0.721 0.658 0.484
Ran-
dom 
forest

0.650 0.830 0.786 0.824 0.598

Gradi-
ent 
boost

0.594 0.877 0.808 0.826 0.603

Ada-
Boost

0.560 0.878 0.800 0.818 0.579

XG-
Boost

0.529 0.863 0.781 0.809 0.543

Light-
GBM

0.536 0.863 0.783 0.815 0.547
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In Fig. 5, K-M survival curves were then drawn to ascer-
tain the actual impact of these variables on CKD devel-
opment. While the survival rate generally dropped below 
20% within a year post RCC surgery, it was observed that 
groups with an eGFR value higher than 86.2 maintained a 
survival rate above 20% for nearly two years.

Discussion
To our knowledge, this is the first study to predict post-
operative CKD in patients with RCC using an ML model, 
underlining its significance. Nephrectomy and CKD 
share a pronounced correlation [22]. Consequently, pre-
liminary research has been conducted to ascertain these 

relationships and associated risk factors using statistical 
methods [4, 8, 22–25]. However, no prior studies have 
harnessed ML techniques to predict postoperative CKD, 
primarily because of the challenge of amassing adequate 
data from a single institution for ML applications. In our 
endeavor, we analyzed data from 4389 patients with RCC 
gathered from eight top-tier hospitals in our country 
using the KORCC database. We successfully created an 
algorithm that uses 12 factors for predicting the probabil-
ity of postoperative CKD in patients with RCC. Gradient 
boost demonstrated the best performance among the 
nine models employed, with an AUROC of 0.826 and an 
f1 score of 0.603.

Fig. 3  Confusion matrix of the top models: a Random forest; b Gradient boost

 

Fig. 2  Receiver operating characteristic (ROC) curves of the ML models
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Nevertheless, a salient limitation of such ML models 
is their intricate interpretability [44]. To address this, 
we utilized the SHAP value to discern feature impor-
tance. Our results indicated that preoperative eGFR was 
the most important variable, followed by albumin level, 
tumor size, and calcium level (Fig. 4). According to prior 
studies, preoperative eGFR levels were identified as a 
significant factor in predicting postoperative CKD risk 
among patients [22–24]. Our data distribution showed a 
distinct difference in the average preoperative eGFR lev-
els between the no-post-CKD group at 94.7 and the post-
CKD group at 77.7. The results of the SHAP values also 
underscore their prominence, showing the highest sig-
nificance among the variables. Additionally, albumin and 
creatinine, which emerged as the second and fifth most 

influential variables, respectively, have been underscored 
in prior studies as contributing factors to the onset of 
postoperative CKD [22]. In our dataset, we observed that 
the average albumin level was notably lower in the post-
CKD group than in the no-post-CKD group. Conversely, 
the average creatinine levels were slightly elevated in the 
post-CKD group compared to the no-post-CKD group. 
The influence of preoperative tumor size on the occur-
rence of postoperative CKD was verified using SHAP 
values in our study. Previous research has also indicated 
that preoperative tumor sizes are notably larger in the 
post-CKD group than in the no-post-CKD group [22]. 
In line with these findings, our data showcased that the 
average tumor sizes in the no-post-CKD and post-CKD 
groups were 38.6 and 52.4 cm, respectively, highlighting 

Fig. 5  Kaplan–Meier curves for the top variables: a eGFR; b Albumin; c Tumor size

 

Fig. 4  SHAP value of the Gradient boost model
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a discernible difference. Our study highlights the signifi-
cant influence of calcium levels. While previous research 
has indicated calcium as a significant variable related to 
preoperative CKD occurrence, it did not highlight the 
same correlation with postoperative CKD onset [22]. 
Nonetheless, in our study, slightly higher calcium levels 
were observed in the no-post-CKD group than in the 
control group.

In this analysis, a preliminary examination of albumin 
and calcium levels revealed no apparent significant differ-
ence between the post-CKD group and the no-post-CKD 
group, with an average difference of merely 0.1. However, 
a deeper investigation using the t-test statistical method 
uncovered significant disparities. The influence of sam-
ple size on statistical significance becomes evident here 
[45, 46]. Despite the nominal difference in mean albumin 
levels—merely 0.1—between the two groups, the t-test 
yielded a t-value exceeding 4, indicative of a significantly 
low p-value. This outcome illustrates that the significance 
of variables cannot be adequately assessed by the differ-
ence in sample means alone. In a similar vein, calcium 
levels, despite also presenting a mean difference of 0.1, 
were found to be significant upon t-test analysis. Further-
more, the machine learning-based SHAP value analysis 
also identified albumin as a highly influential factor. This 
underscores the importance of utilizing both statistical 
and machine learning approaches to fully understand the 
subtleties in data, especially when initial observations 
might suggest otherwise [47].

Furthermore, to gain an intuitive understanding of the 
impact on CKD development, Kaplan-Meier survival 
analyses were performed on the identified variables [25]. 
This analysis particularly focused on eGFR, Albumin, 
and Tumor Size, which emerged as the most influential 
factors. It was observed that the presence or absence of 
management for these factors significantly affects the 
incidence of CKD following RCC surgery.

Our dataset mirrored the distribution characteristics 
of the risk factors identified in most previous studies. 
Another strength of our research is the utilization of data 
from eight different institutions, which helps mitigate 
potential bias. Additionally, missing values were not per-
mitted for the chosen variables. Employing missing-value 
imputation techniques for the 972 excluded patients may 
pave the way for developing a more robust model [48, 
49].

Conclusions
We developed a predictive model using ML algorithms to 
predict the onset of CKD in patients after partial or radi-
cal nephrectomy. Gradient boost exhibited the highest 
performance among the ML models, with an AUROC of 
0.826. Using this predictive model, we calculated the like-
lihood of postoperative CKD occurrence in each patient 

with RCC. Moreover, this model can improve the prog-
nosis of CKD in patients through tailored postoperative 
care and appropriate treatment.
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