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Abstract 

Background  In clinical medicine, fetal heart rate (FHR) monitoring using cardiotocography (CTG) is one of the most 
commonly used methods for assessing fetal acidosis. However, as the visual interpretation of CTG depends 
on the subjective judgment of the clinician, this has led to high inter-observer and intra-observer variability, making it 
necessary to introduce automated diagnostic techniques.

Methods  In this study, we propose a computer-aided diagnostic algorithm (Hybrid-FHR) for fetal acidosis to assist 
physicians in making objective decisions and taking timely interventions. Hybrid-FHR uses multi-modal features, 
including one-dimensional FHR signals and three types of expert features designed based on prior knowledge 
(morphological time domain, frequency domain, and nonlinear). To extract the spatiotemporal feature representation 
of one-dimensional FHR signals, we designed a multi-scale squeeze and excitation temporal convolutional network 
(SE-TCN) backbone model based on dilated causal convolution, which can effectively capture the long-term depend-
ence of FHR signals by expanding the receptive field of each layer’s convolution kernel while maintaining a relatively 
small parameter size. In addition, we proposed a cross-modal feature fusion (CMFF) method that uses multi-head 
attention mechanisms to explore the relationships between different modalities, obtaining more informative feature 
representations and improving diagnostic accuracy.

Results  Our ablation experiments show that the Hybrid-FHR outperforms traditional previous methods, with average 
accuracy, specificity, sensitivity, precision, and F1 score of 96.8, 97.5, 96, 97.5, and 96.7%, respectively.

Conclusions  Our algorithm enables automated CTG analysis, assisting healthcare professionals in the early identifica-
tion of fetal acidosis and the prompt implementation of interventions.

Keywords  Fetal heart rate, Fetal acidosis, Cardiotocography, Cross-modal feature fusion, Multi-modal, Temporal 
convolutional network, Attention mechanisms

Background
Fetal acidosis is an imbalance in the acid-base balance of 
the fetus’s body that causes the fetus’s blood to become 
too acidic [1]. Fetal acidosis caused by hypoxia can lead 

to multiple organ damage, and even death. Therefore, 
we need a safe and effective method for early detection 
of fetal acidosis to assist obstetricians in determining 
whether intervention measures during childbirth are 
required.

Cardiotocography (CTG), also known as electronic 
fetal monitoring (EFM), is a common monitoring tech-
nique wherein clinicians assess the fetal health by ana-
lyzing signals related to the Fetal Heart Rate (FHR) and 
uterine contractions (UC) obtained from CTG. While 
CTG has become the most widely employed fetal moni-
toring method [2], its utility remains a subject of debate 
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due to high interobserver (different specialists at the 
same time) and intraobserver (same specialist at differ-
ent times) variability. Furthermore, CTG may lead to an 
increase in false positives and a higher rate of planned 
deliveries [3, 4]. Consequently, there is an urgent need to 
develop an automated diagnostic technique to address 
these limitations.

Previously, researchers employed morphological 
time domain, frequency domain, and nonlinear domain 
parameters of FHR signals for feature extraction, feature 
selection, and classification. Georgieva et al. [5] extracted 
12 clinical parameter features, and researchers obtained 
a sensitivity of 60.3% and a specificity of 67.5% using a 
feedforward artificial neural network (ANN). Spilka et al. 
[6, 7] extracted a total of more than 50 features including 
the above three domain features, and used the Adaptive 
Boosting (AdaBoost) classifier and Random Forest clas-
sifier, respectively. Cömert et al. [8] used the short-time 
Fourier transform (STFT) and gray level co-occurrence 
matrix (GLCM) to extract the image-based time-fre-
quency features (IBTF) from the FHR signal. Zhao et al. 
[9] extracted 47 expert features from FHR signals and 
utilized statistical testing (ST) and PCA for dimension-
ality reduction. Pini et  al. [10] extracted 23 expert fea-
tures and applied the recursive feature elimination (RFE) 
method to select the most relevant subset of features. 
These methods rely on expert features. Although they are 
highly reliable and interpretable, feature extraction can 
be complex and limited by the quality of the signal and 
domain-specific knowledge.

In the past decade, with the development of deep 
learning (DL), numerous studies demonstrated that 
deep neural networks have a wide range of applica-
tions in healthcare [11, 12]. Compared to traditional 
machine learning (ML) methods, these algorithms can 
learn important features automatically from the origi-
nal input signal. This self-learning ability allows them to 
discover complex patterns in time series signals with-
out the need for human feature engineering. Bursa et al. 
[13] and Cömert et al. [14] conducted research on two-
dimensional convolutional neural network (2D-CNN) 
models. Bursa et al. utilized Continuous Wavelet Trans-
form (CWT) on 1-dimensional fetal heart rate signals 
and contraction signals, and authors achieved a high 
classification accuracy of 94.1%. Cömert et  al. used the 
STFT with transfer learning to analyze FHR signals. Li 
et  al. [15] used a one-dimensional convolutional neural 
network (1D-CNN) and compared it with traditional fea-
ture extraction methods, demonstrating that 1D-CNN 
outperforms traditional methods. Liang et  al. [16] pro-
posed a one-dimensional convolutional neural network - 
gated recurrent unit (1D-CNN-GRU) model, and authors 
obtained an accuracy of 95.15%. Fei et al. [17] integrated 

three signals - FHR, UC, and fetal movement (FetMov) 
- by using an embedding layer to combine the features 
at the input level. Spairani et al. [18] proposed a hybrid 
method based on neural structures, where they con-
verted FHR signals into the image domain, and research-
ers then parallelly input a set of expert features and finally 
perform decision fusion at the classification level.

However, most existing studies in FHR signal analysis 
are based on a single modality feature, which may not 
provide sufficient information to fully describe and ana-
lyze complex FHR signals. Moreover, FHR signals are 
often subject to various types of noise and interference, 
making single-modal features less stable and reliable. In 
contrast, multimodal features can capture a richer repre-
sentation of potential features, and different modalities 
may have varying importance in different scenarios. By 
fusing multimodal features, the weights of each modality 
can be learned adaptively, thereby improving the accu-
racy of diagnosis.

Based on the analysis presented, we propose a novel 
framework called Hybrid-FHR to diagnose fetal acido-
sis, assist doctors in identifying pathological fetuses, and 
reduce the rate of stillbirths. The algorithm utilizes mul-
timodal features and combines the advantages of deep 
learning with expert prior knowledge. The overall frame-
work of the Hybrid-FHR algorithm is depicted in Fig. 1.

The contributions and innovations of this study are 
listed as follows:

1.	 Our proposed fetal acidosis diagnostic framework 
(Hybrid-FHR) incorporates multimodal features and 
effectively leverages the information provided by 
various features. Through our experiments, we have 
demonstrated that our approach achieves significant 
performance gains in the diagnosis of fetal acidosis.

2.	 We designed a lightweight backbone network SE-
TCN for extracting spatio-temporal representations 
of FHR signals, which utilizes dilated casual con-
volutions to effectively enhance the global percep-
tion capability of the entire network. Furthermore, 
a cross-modal feature fusion (CMFF) method based 
on multi-head attention mechanism is proposed to 
achieve optimal weighted fusion of different modali-
ties.

3.	 We designed three types of expert features (morpho-
logical time domain, frequency domain, and nonlin-
ear) by incorporating expert prior knowledge, which 
further improved the performance of the model.

Methods
In this section, we first introduce the three types of 
expert features based on prior knowledge. Next, we elab-
orate on the SE-TCN backbone network for extracting 
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features from one-dimensional FHR signals, and finally, 
we introduce the cross-modal feature fusion (CMFF) 
approach, which uses a multi-head attention mechanism 
to adaptively weight different modal features.

Expert features module
Based on expert prior knowledge, we carefully designed 
a set of 45 features from the pre-processed FHR signals, 
including 21 morphological time domain, 14 frequency 
domain, and 10 nonlinear features. The specific formulas 
and details of these parameters can be found in (Addi-
tional  files  1, 2, 3). These 45 features were processed 
through two layers of linear projection to obtain the 
expert latent representation tensor, denoted as Ze.

A.	Morphological time domain

In this study, we calculated several morphological time 
domain characteristics following the International Fed-
eration of Gynecology and Obstetrics (FIGO) guidelines 
[19], including baseline (BL), number of accelerations 
(nACC), and number of decelerations (nDEC).

Time domain characteristics are mainly derived 
from the fetal heart rate variability (FHRV), which 
is the variability of the heartbeat cycle variation. To 
analyze the HRV, we must convert the FHR to RR 

(heartbeat-by-heartbeat) interval sequences with the fol-
lowing conversion equation:

The time difference between two consecutive RR inter-
vals is called NN, which is calculated as follows:

In this study, we have referred to commonly used 
parameters for adult HRV and calculated various statis-
tical measures to analyze the fetal heart rate variability 
signal in the time domain. These measures include basic 
parameters such as the maximum, minimum, mean, 
median, standard deviation, kurtosis, and skewness of 
the RR interval. Other parameters include the standard 
deviation of NN (SDNN), the root mean square of suc-
cessive differences of RR intervals (RMSSD), NN50, and 
pNN50, which determine the number and percentage 
of NN that differ by more than 50 ms. Short-term vari-
ability and long-term variability (STV and LTV [20]), the 
triangular index (Tri [21]), and the triangular interpola-
tion of the NN interval histogram (TINN [22]) were also 
calculated.

The morphological time domain features of the FHR 
are therefore as follows:

(1)RR =
60000

FHR

(2)NN = diff (RR)

Fig. 1  Overview of proposed method (Hybrid-FHR)
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Morphological time domain: {mean_baseline, max_
baseline, min_baseline, std_baseline, nACC, nDEC, 
max_rr, min_rr, mean_rr, median_rr, std_rr, skew_rr, 
kurt_rr, SDNN, RMSSD, NN50, pNN50, STV, LTV, 
Tri, TINN}.

B.	 Frequency domain

The spectral analysis of FHRV examines changes in 
the fetal autonomic nervous system (ANS) activity 
[23], which can be observed in the periodic changes in 
FHRV. We followed the suggestion in [24] to divide the 
frequency range into four bands: very low frequency 
(VLF, 0–0.03 Hz), low frequency (LF, 0.03–0.15 Hz), 
medium frequency (MF, 0.15–0.5 Hz), and high fre-
quency (HF, 0.5–1 Hz).

We used the Fast Fourier Transform (FFT) to convert 
the signal into the frequency domain and divided it into 
four frequency bands. We extracted the power spectral 
density, power spectral ratio, peak frequency, and total 
power spectral density of each frequency band. We also 
calculated the LF/(MF + HF) energy ratio. Therefore, 
the frequency domain features of FHR are as follows:

Frequence Domain: {rr_VLF, rr_LF, rr_MF, rr_HF, 
rr_Total_Power, rr_percent_VLF, rr_percent_LF, rr_
percent_MF, rr_percent_HF, rr_peak_VLF, rr_peak_LF, 
rr_peak_MF, rr_peak_HF, rr_ratio,}.

C.	Nonlinear

In recent years, nonlinear measurements for study-
ing FHR kinetics have become increasingly available 
and have shown promising results [25–27]. We per-
form nonlinear feature extraction using the NeuroKit2 
library in Python. The nonlinear methods used in this 
study include Poincare plot parameters [28], approxi-
mate entropy (ApEn, [29]), sample entropy (SampEn, 
[29]), Shannon entropy (ShannEn, [30]), fuzzy entropy 
(FuzzyEn, [29]), Lempel-Ziv complexity index (LZC, 

[31]), fractal dimension (FD, [32]), and Hurst index 
(Hurst, [33]), as follows:

Nonlinear: {SD1, SD2, SD_Ration, ApEn, SampEn, 
ShannEn, FuzzyEn, LZC, FD, Hurst}.

Where SD1 and SD2 represent the short-axis and long-
axis deviations of the Poincare plot, respectively, and SD_
Ratio represents the ratio of the two.

Signal backbone
This paper proposes a SE-TCN backbone network to 
extract latent feature representations of FHR signals. The 
network comprises a Multi-scale Depthwise Separable 
Convolution (MDSC) module and five SE-TCNBlocks. 
Table  1 presents the detailed hyperparameter settings 
and output dimensions of each layer of the proposed sig-
nal backbone.

A.	MDSC

Assuming that Xs ∈ ℝB × N × C is a whole representation of a 
set of continuous one-dimensional FHR signals, where sub-
script s is an abbreviation for signal, and ℝ denotes the real 
numbers set, B represents the batchsize, N represents the 
signal length, and C represents the number of channels.

Before the FHR signal passes through the SE-TCN-
Blocks, we designed a MDSC module for capturing 
signal features at different scales. In MDSC, we adopt 
depthwise separable convolution (DSC [34]) to replace 
ordinary convolution. DSC decomposes the convolution 
operation into depthwise convolution and pointwise con-
volution. The former performs convolution only on each 
input channel, while the latter performs convolution on 
the output channels. Compared to ordinary convolution, 
DSC can effectively reduce the number of parameters 
and computation, thereby improving model efficiency.

MDSC combines multiple DSCs of different scales. 
Different-sized convolution kernels move along the 
one-dimensional direction to extract features from the 
entire signal, gradually obtaining features that can fully 

Table 1  The detailed hyperparameter settings and output dimensions of each layer of the SE-TCN

B Batchsize

Layer Output shape Kernel size Stride Padding Dilation factor Activation

Input B × 7200 × 1 – – – –

MDSC B × 7200 × 64 [1, 3, 5, 7] 1 Same 1 ReLu

SE-TCNBlock1 B × 2400 × 64 15 3 Casual 2 ReLu

SE-TCNBlock2 B × 2400 × 64 15 1 Casual 4 ReLu

SE-TCNBlock3 B × 800 × 128 15 3 Casual 8 ReLu

SE-TCNBlock4 B × 800 × 128 15 1 Casual 16 ReLu

SE-TCNBlock5 B × 400 × 256 15 2 Casual 32 ReLu
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represent the sequence in a locally-aware manner. The 
four different channels of convolution kernels in MDSC 
have sizes of 1, 3, 5, and 7, with dilation factors of 1 and 
channel numbers of 16. Finally, by fusing the outputs of 
different convolution kernel channels, a tensor with a 
channel number of 64 is obtained.

B.	 SE-TCNBlock

The 1D convolution method is often used for feature 
extraction in time series data. For long-series problems 
such as FHR signals, the normal convolutional approach 
(dilation factors d = 1) is prone to phenomena such as gra-
dient disappearance, which is not satisfactory. To increase 
the long time dependence of the network and to improve 
its ability to reach into the past for prediction, a temporal 
convolutional network (TCN) was proposed [35, 36].

TCN combines causal with dilated convolution, and Fig. 2 
depicts the dilated causal convolution with dilation factors 
d = 1, 2, 3 and a convolution kernel size k = 3. The output at 
a certain moment is only related to the current and the past 
moments, using a zero-padding approach with the number 
of paddings per layer equal to d × (k ‐ 1). Furthermore, the 
receptive field size (RFS) of the network increases exponen-
tially with the number of layers. For a one-dimensional time 
series X and a convolution kernel w of size k, the dilated 
convolution can be expressed as follows:

Where Y(t) represents the t-th element in the out-
put sequence, ∗d denotes the convolution operator with 

(3)Y (t) = (X∗dw)(t) =

k−1

i=0

w(i) · X(t − d · i)

dilation factors d, and w(i) is the weights of convolution 
kernel w.

As shown in Fig.  3, we use the residual connection 
[37] in SE-TCNBlock to effectively train the deep neural 
network, which alleviates the gradient disappearance 
problem to some extent. Each SE-TCNBlock contains 
two channels, where the main channel of the residual 
connection contains two dilated causal convolution lay-
ers, and each convolution layer is activated after using 
batch normalization [38] and a rectified linear unit 
(ReLU) [39]. The dropout rate is set to 0.1, the dilated 
convolution factor d in the SE-TCNBlock is equal to 
2L, where L = (1, 2, 3, 4, 5), and the RFS of the network is 
exponentially related to the number of layers, which is 
computed as follows:

Therefore, we enhance the RFS of the network by 
choosing a larger convolution kernel size k, increasing 
the dilation factor d or the number of the network lay-
ers L.

The sub-channel of the residual connection includes a 
downsampled convolutional layer with a convolutional 
kernel size of 1 (1 × 1 Conv) and an SEBlock.

SEBlock is a channel-wise attention mechanism mod-
ule within SENet [40], that aims to capture the interde-
pendencies of each channel in the feature map.

To capture dependencies between different lengths 
and time steps, this network employs varying dilation 
factors within each SE-TCNBlock. The blocks are hier-
archically connected, with the output of each block 

(4)RFS = 1+ 2 · (k − 1) ·

5
∑

i=1

di

Fig. 2  A Dilated Causal Convolution with dilation factors d = 1, 2, 3 and kernel size k = 3
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feeding into the input of the next. The final output of 
the last SE-TCNBlock is the signal latent representa-
tion tensor denoted as Zs, which represents the feature-
extracted representation of the original signal.

Cross‑modal feature fusion
The ordinary feature fusion approach can be divided 
into two types: early fusion and late fusion, depending 
on where the fusion occurs. Early Fusion or Feature-
level Fusion, combines features from different modalities 
at the input level to obtain a richer representation. Late 

Fusion or Decision-level Fusion, involves using different 
models to extract features from different modalities and 
then integrating the prediction results of these models at 
the decision level.

Both early fusion and late fusion have their advantages 
and limitations. Early fusion can provide a holistic rep-
resentation of information from different modalities but 
may not effectively capture the relationships between fea-
tures. Late fusion, on the other hand, can model the rela-
tionships between features more flexibly but may require 
more computational resources and time.

In the CMFF module presented in Fig. 4, a multi-head 
attention mechanism [41] is utilized to measure the simi-
larity between the latent representation tensors of the 
signal (denoted as Zs) and the expert (denoted as Ze). The 
purpose of this module is to fuse the features from differ-
ent modalities and capture the cross-modal interactions 
for improved performance in the given task.

In the multi-head attention mechanism, each repre-
sentation tensor is linearly projected to a set of vectors 
with different semantics, denoted as Qi = Zi ∗W

Qi , 
Ki = Zi ∗W

Ki , and Vi = Zi ∗W
Vi . where i ∈ {e, s}, WQi , 

WKi , and WVi denote the query matrix, key matrix and 
value matrix respectively. Then, these vectors are divided 
into 8 attention heads, and each head performs self-
attention calculation independently. The weight matrices 
of each head are then concatenated together. Finally, the 
output tensor of the multi-headed attention mechanism 
is computed as follows:

where WOi denotes the output weight matrix. In hea-
di

n, the superscript n belongs to the set {1, 2, …, 8} and 
indicates the number of attention heads, the subscript i 
belongs to the set {e, s}.

We denote the outputs of Ze and Zs after multi-headed 
self-attention (intra-modal) as Ze

’ and Zs
’ respectively. We 

then calculate the cosine similarity between Ze
’ and Zs

’, and 
normalize them using the softmax function to obtain the 
cross-modal attention score (CMAS, inter-modal). Next, we 
weight the output of the multi-headed self-attention with 

(5)MultiHeadAttention(Qi,Ki,Vi) = Concat
(

headi
1, . . . , headi

8
)

WOi , i ∈ {e, s}

(6)

headi
n
= softmax

(

Qi
n
(

Ki
n
)T

√

dmodel

)

Vi
n
, i ∈ {e, s}, dmodel = 32

(7)
softmax(xi) =

exp (xi)
n
∑

j=1

exp
(

xj
)

Fig. 3  The internal structure of SE-TCNBlock
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the CMAS to obtain a weighted representation denoted as 
Weighted _ Zi

’, i ∈ {e, s}. We also apply global average pooling 
(GAP) and global maximum pooling (GMP) on the weighted 
representation Weighted _ Zi

’, and concatenate the result-
ing vectors to obtain a 512-dimensional tensor denoted as 
Pi ∈ ℝB ∗512, i ∈ {e, s}. Finally, we concatenate Pe and Ps, result-
ing in a multimodal fusion latent representation tensor 
denoted as Zm ∈ ℝB ∗1024. This fusion tensor contains infor-
mation from both Ze and Zs, combined through the CMAS 
and the pooling operations, which can be further used for 
downstream tasks or analyses.
Zm(m is an abbreviation for multimodal) is calculated 

as follows:

(8)cosine_similarity
(

Ze
’,Zs

’
)

=
Ze

’ · Zs
’

∣

∣

∣
Ze

’
∣

∣

∣

∣

∣

∣
Zs
’
∣

∣

∣

(9)CMAS = softmax
(

cosine_similarity
(

Ze
’,Zs

’
))

Overall, the CMFF module combines the strengths of 
different modalities and captures their complementary 
information, which can improve the performance of sub-
sequent classification tasks (as discussed in Experiment 
three).

Results
In this section, we conducted three main experi-
ments. Firstly, we performed hyperparameter analy-
sis by tuning the hyperparameters of the model to 
study their impact on the experimental results. Sec-
ondly, we compared different signal backbone models 

(10)Weighted_Zi
’ = CMAS · Zi

’, i ∈ {e, s}

(11)
Pi = concat

(

GAP
(

Weighted_Zi
’
)

,GMP
(

Weighted_Zi
’
))

, i ∈ {e, s}

(12)Zm = concat(Pe,Ps)

Fig. 4  The internal structure of CMFF
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to investigate their performance differences in the 
cross-modal feature fusion task. Finally, we con-
ducted ablation experiments by comparing the per-
formance of single-modal and multi-modal inputs to 
validate the effectiveness of the CMFF method. The 
results confirmed that our proposed model achieved 
the best accuracy (96.8%).

Experimental setup
Dataset
The data used in this study were obtained from CTU-
UHB [42, 43], a database of CTG recordings, contain-
ing a total of 552 samples with a sampling frequency 
of 4 Hz. Each CTG recording contains a set of FHR 
signals and a set of UC signals. In order to accurately 
assess intrauterine fetal acidosis, it is crucial to inte-
grate these signals with clinical indicators. One such 
indicator is the neonatal umbilical artery pH, which 
serves as one of the gold standards for evaluating the 
presence of acidosis in the intrauterine environment. 
The lower the pH value, the more severe the fetal 
hypoxia. Different clinical doctors or research insti-
tutions may use different pH thresholds to determine 
whether the fetus is hypoxic, depending on their 
clinical experience and actual situation. We referred 
to the most commonly used criteria for delineation at 
this stage [8, 13, 14, 16, 26] and used 7.15 as a thresh-
old value, with a pH value below 7.15 considered 
pathological and one greater than or equal to 7.15 
considered normal, yielding a total of 447 normal and 
105 pathological records. The distribution of pH val-
ues in the umbilical artery of newborns in the dataset 
is shown in Fig. 5.

Data preprocessing
Noises during recording may disrupt the FHR signal, 
compromising its quality and impacting diagnostic tasks. 
Additionally, the imbalance between positive and nega-
tive samples poses a challenge, requiring data augmenta-
tion to increase the number of pathological samples. To 
overcome the challenges mentioned above, we adopted 
the preprocessing and data augmentation methods pre-
viously proposed by our group [44, 45] to enhance the 
original signal, and the denoised signal is shown in Fig. 6. 
Firstly, to ensure high integrity and quality of the signals 
used, signals of effective lengths below 10,000 (severely 
incomplete) were discarded and a total of 524 samples 
(pathological: 95, normal: 429) were used. Secondly, 
noise disturbances such as missing values are removed 
using a mini-batch-based minimized sparse dictionary 
learning approach [43], and all 524 records had an effec-
tive length greater than or equal to 10,000. Thirdly, since 
fetal distress mainly occurs before delivery, we focused 
on the last 30 minutes of each sample in our experi-
ments, which corresponds to a sample length of 7200 
(4 Hz). Finally, the pathological FHR signals were syn-
thesized using a Generative Adversarial Network (GAN) 
[45] to make the sample distribution balanced. GAN is 
used only for the training set, and the information in the 
test set is not used to synthesize data samples; therefore, 
the evaluation process is reliable and generalized.

Evaluation
We first randomly sampled 444 samples (pathological: 
55, normal: 389) from the original 524 samples for train-
ing, and used 80 samples (pathological: 40, normal: 40) 

Fig. 5  The distribution of the neonatal umbilical artery pH
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for testing. Next, we used GAN for data augmentation on 
the training set to balance the positive and negative sam-
ples (pathological: 389, normal: 389). During the training 
process, we further divided the training set into train-
ing and validation sets using 5-fold cross-validation, and 
evaluated the model on the original test set. The average 
of the predictions from 5-fold cross-validation was used 
as the final prediction result. We calculated several met-
rics including accuracy (Acc), precision (Pre), sensitivity 
(Sen), specificity (Spe), and F1-Score (F1).

Experiment one: Hyperparameter optimization
To achieve optimal model performance, we conducted 
a thorough analysis of different hyperparameter settings 
and their impact on classification results. Our experi-
mental findings revealed that the kernel size in the SE-
TCNBlock and the number of heads in the multi-headed 
attention mechanism significantly influenced the classifi-
cation performance, as illustrated in Fig. 7. The remain-
ing hyperparameters were set to their default values, as 
follows: the cross-entropy loss function and the Adam 
optimizer [46] were utilized in the training process. The 
batch size was set to 16, and the training duration was 
configured for 120 epochs, with early stopping [47]. The 
learning rate strategy employed cosine annealing with an 
initial learning rate of 2.5e-4 and a decay factor set to 0.8.

When the kernel size was increased from 3 to 15, a 
remarkable improvement in F1 scores was observed 
for both the validation set and the test set, indicat-
ing superior performance. However, when the kernel 
size was further increased to 19, a slight drop in the F1 
score for the validation set and a more significant drop 
to 0.93 for the test set were observed, implying that 
larger kernel sizes may not always yield better results. 
Similarly, increasing num_heads from 4 to 8 resulted 
in a successive improvement in F1 scores for both the 
validation and test sets, suggesting that incorporating 
more attentional heads can enhance the model’s per-
formance. Nevertheless, when num_heads continued 
to increase to 16, a slight decrease in the F1 score for 
the validation set and a more substantial drop to 0.92 
for the test set were observed. This suggests that exces-
sively large num_heads may lead to over-complexity and 
overfitting, ultimately negatively impacting the model’s 
performance.

In summary, the experimental results suggest that 
a moderate kernel size and num_heads may help to 
improve the performance of the model, but too large a 
kernel size and num_heads may have a negative impact 
on performance. Therefore, in this paper we set the ker-
nel size and num_heads to 15 and 8 respectively.

Fig. 6  Comparison of original signal (Top) and denoised (Bottom) signal. Outliers and missing values are removed from FHR signals using 
a mini-batch-based minimized sparse dictionary learning approach



Page 10 of 15Zhao et al. BMC Medical Informatics and Decision Making           (2024) 24:19 

Experiment two: comparing different signal backbone
In order to substantiate the superiority of the SE-
TCN model, Experiment two involved a meticu-
lous comparison of various Signal Backbone models, 
including ResNet18, ResNext18, Inception, VGG16, 
SE-ResNet18, and SE-ResNext18. Notably, we exclu-
sively replaced the signal backbone component while 
keeping the expert feature module and cross-modal 
feature fusion module unchanged. Moreover, con-
sistent datasets were employed for training and 

testing, and identical hyperparameter settings, were 
utilized to ensure utmost fairness and reliability of the 
experiments.

Figure  8 represents the average accuracy curves of 
different signal backbone models on the validation set 
during the training process, while Fig.  9 depicts the 
average accuracy of different signal backbone models 
on the test set. The experimental results clearly dem-
onstrate that the SE-TCN model exhibits a significant 
advantage, achieving an average accuracy of 0.968 on 

Fig. 7  Effect of different kernel sizes (left) and num_heads (right) on the model

Fig. 8  The comparison results of the Accuracy of different Signal Backbone models on the validation set
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the test set, compared to the accuracy range of 0.7725 
to 0.89 for other models. Notably, the SE-TCN model 
surpasses the SE-ResNet18 and SE-ResNext18 mod-
els by 7.5 and 20.2% in terms of accuracy, respectively. 
This indicates that the SE-TCN model excels in feature 
extraction and cross-modal fusion, resulting in a note-
worthy improvement in model accuracy. Furthermore, 
the SE-TCN model boasts a smaller total number of 
parameters, totaling at 3.09 M, which makes it more 
lightweight compared to other models.

In summary, the SE-TCN model holds promising poten-
tial for applications in multi-modal signal processing 
tasks, as it demonstrates high accuracy while minimizing 
the number of parameters, making it a favorable choice 
for a high-performance and low-complexity model.

Experiment three: ablation experiments
In Experiment three, we conducted ablation experiments 
to thoroughly investigate the effects of different com-
ponents in the Hybrid-FHR architecture. Specifically, 
we compared the performance of (1) using only expert 
features, (2) using only the signal backbone model (SE-
TCN), and (3) using the complete Hybrid-FHR archi-
tecture. Furthermore, to demonstrate the importance 
of the proposed CMFF module, we compared early and 
late fusion approaches. In early fusion, the expert latent 
representation tensor and signal latent representation 
tensor are fused through simple concatenation. In late 
fusion, the two different modality tensors are each passed 
through their respective classification heads and then 
fused with a 1:1 decision weight.

Fig. 9  The boxplots of the accuracy of different Signal Backbone models on the test set. The numbers in brackets on the x-axis indicate the total 
number of parameters for each signal backbone model. SD stands for standard deviation

Table 2  Performance comparison of different modal features and different fusion methods

Method Acc% Spe% Sen% Pre% F1%

Morphological time domain features only 79.3 76 82.5 77.5 79.9

Frequency domain features only 80.8 77.5 84 78.9 81.4

Nonlinear features only 75.5 80.5 70.5 78.3 74.2

All expert features 86.8 83.5 90.0 84.5 87.1

Signal features only 92.0 95.0 89.0 94.7 91.8

Early fusion (concatenation fusion) 93.5 97.0 90.0 96.8 93.3

Late fusion (decision-level fusion) 95.8 96.0 95.5 96.0 95.7

Hybrid-FHR
(Expert features + Signal features + CMFF)

96.8 97.5 96.0 97.5 96.7



Page 12 of 15Zhao et al. BMC Medical Informatics and Decision Making           (2024) 24:19 

According to the results of ablation experiments 
(Table 2), when considering only a single type of expert 
features, the order of the three expert feature types 
is: frequency domain > morphological time domain > 
nonlinear. The performance of single-modal features 
decreased to a certain extent compared to using the com-
plete Hybrid-FHR architecture. When using all expert 
features, the accuracy decreased by 10 to 86.8% com-
pared to the complete architecture, and when using sig-
nal features, the accuracy decreased by 4.8 to 92.0%. This 
indicates that the fusion of multimodal information is of 
great significance for improving the diagnostic accuracy 
and efficiency in medical diagnosis. Furthermore, in the 
comparison of different fusion methods, the late fusion 
performed slightly better than the early fusion, but still 
lower than our proposed CMFF method. This indicates 
that the CMFF method can better fuse different modal 

information and improve the classification performance 
of the model.

In Table 3, we compared the generalization error of the 
model in two scenarios: with and without expert features. 
we can see that the generalization error of the model is 
reduced from 4.9 to 3% after incorporating the expert 
features. This indicates that incorporating expert features 
helps to reduce the generalization error of the model and 
prevents the risk of overfitting.

We plotted a t-distribution stochastic neighbor embed-
ding (t-SNE) to visualize the output of each layer, as shown 
in Fig. 10. Initially, the raw data distribution appears scat-
tered and lacks clear decision boundaries. However, as 
the network undergoes successive layers of feature extrac-
tion, the t-SNE plot gradually reveals distinct and separa-
ble clusters. This suggests that the network progressively 
learns and captures informative representations, leading to 
more discriminative features. Remarkably, the fusion latent 
representation output by CMFF forms visually distinct and 
well-separated clusters in the t-SNE plot. These evident 
clusters showcase the ability of CMFF to accurately cap-
ture and differentiate underlying patterns within the data.

Discussion
Table  4 offers a comprehensive overview of the various 
approaches proposed by researchers over the last few 
decades for fetal acidosis diagnosis. As show in Table  4 

Table 3  Comparison of generalization error with and without 
expert features

Method Train Acc% Test Acc% Generalization 
error%

Without expert features 96.9 92.0 4.9

With expert features 99.8 96.8 3

Fig. 10  The Visualization Output of each Layer in the Hybrid-FHR using t-SNE
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Most of the existing studies use only single modal fea-
tures (e.g., expert features, or 1D signal features).

To ensure fairness, we only compared algorithms [1, 
16, 26] that utilized the CTU-UHB dataset and employed 
a pH threshold of 7.15 as the division criterion. We can 
draw several conclusions from Table  4. Firstly, our algo-
rithm outperforms the state-of-the-art algorithms 
reported in previous literature, achieving the best per-
formance on five different metrics. Secondly, comparing 
[16, 26], algorithms based on 1D signal features perform 
much better than algorithms based on expert features, 
demonstrating the advantage of DL over traditional ML 
methods. Thirdly, we notice some similarities between 
our approach and [1], which also incorporates expert 
features that are fused with 1D signal features. Neverthe-
less, it is worth noting that [1] employs a simple 1D-CNN 
model for extracting 1D signal features, followed by a late 
fusion at the decision level. In contrast, we utilized the SE-
TCN as backbone network, which boasts superior long 
sequence signal feature extraction capabilities compared 
to conventional CNNs. Additionally, we introduced the 
CMFF module at the feature level, which explicitly models 
the correlation and difference between different modali-
ties and further improves the classification effect.

In this work, we present an intelligent analysis algo-
rithm Hybrid-FHR for diagnosing fetal acidosis. This 
algorithm can be integrated into clinical practice to aid 
obstetricians in making accurate medical decisions by 
considering the extracted expert feature parameters 
and the final predicted probability results. Based on the 
experimental results, we draw the following conclusions: 
(a.) Multimodal features lead to better classification 
results than using signal features or expert features alone. 
(b.) SE-TCN can effectively extract complex features from 
FHR signals, and outperforms six different baseline mod-
els in terms of convergence speed and parameter size. (c.) 

Both late fusion and early fusion methods achieve satis-
factory results, but they are still inferior to our proposed 
CMFF method in terms of accuracy.

Our algorithm in obstetrics and perinatal care holds sig-
nificant practical implications by providing accurate and 
timely assessments of fetal distress. It facilitates early iden-
tification, leading to timely clinical interventions and pre-
venting complications for both the mother and fetus. The 
algorithm reduces the diagnostic burden on healthcare 
professionals, automating aspects of diagnosis and allow-
ing them to focus on critical patient care. Additionally, its 
computational nature makes it suitable for telemedicine 
applications, enabling remote monitoring and diagno-
sis, especially in areas with limited access to specialized 
healthcare facilities. In conclusion, our fetal distress diag-
nosis algorithm has the potential to enhance diagnostic 
efficiency, accuracy, and timeliness, positively impacting 
patient outcomes and overall perinatal care quality.

Conclusions
In this study, we propose a novel artificial intelligence 
algorithm called Hybrid-FHR for fetal acidosis diag-
nosis using multimodal features of the FHR signal. Our 
algorithm consists of three key components. First, we 
designed the SE-TCN backbone network to extract 
one-dimensional spatiotemporal representations from 
the FHR signal. Second, we incorporated three types of 
expert features including morphological time domain, 
frequency domain, and nonlinear parameters based on 
expert prior knowledge. Finally, we developed a cross-
modal feature fusion (CMFF) method, which employs a 
multi-headed attention mechanism for fusing signal rep-
resentations with expert feature representations.

We evaluate our algorithm against six baseline models 
and two fusion approaches on a publicly available data-
set of FHR recordings. Our results demonstrate that 

Table 4  Comparison of different algorithms for fetal acidosis diagnosis

AdaBoost Adaptive Boosting, GRU​ gated recurrent units, SVM support vector machine

Reference Method Database Division criterion Performance%

[1] Expert +1D-CNN CTU-UHB pH < 7.15 Sen: 75.23; Spe: 70.82

[5] Expert + PCA + ANN Private pH < 7.1 Sen:60.3; Spe:67.5

[6] Expert + RELIEF + AdaBoost CTU-UHB pH < 7.05 Sen:64.1; Spe:65.2

[7] Expert + Random Forest CTU-UHB Expert annotation Sen:72.41; Spe:78.4

[16] 1D-CNN-GRU​ CTU-UHB pH < 7.15 Acc: 95.15; Sen: 96.20
Spe: 94.09; Pre: 94.21

[26] Expert + SVM / Naive Bayes CTU-UHB pH < 7.15 Sen: 73.4 / 72.3;
Spe: 76.3 / 75.6

Current work Hybrid-FHR
(Expert + SE-TCN + CMFF)

CTU-UHB pH < 7.15 Acc: 96.8; Sen: 96.0
Spe: 97.5; Pre: 97.5
F1: 96.7
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Hybrid-FHR outperforms the existing methods in terms 
of accuracy (96.8%) and efficiency. With the increasing 
number of publicly available datasets, we will apply the 
algorithm proposed in this study to different datasets to 
increase the robustness and generalizability of the model, 
while considering interpretable analysis to help clinicians 
make more objective and accurate decisions.
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