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Abstract 

Background  Point-of-care lung ultrasound (LUS) allows real-time patient scanning to help diagnose pleural effusion 
(PE) and plan further investigation and treatment. LUS typically requires training and experience from the clinician 
to accurately interpret the images. To address this limitation, we previously demonstrated a deep-learning model 
capable of detecting the presence of PE on LUS at an accuracy greater than 90%, when compared to an experienced 
LUS operator.

Methods  This follow-up study aimed to develop a deep-learning model to provide segmentations for PE in LUS. 
Three thousand and forty-one LUS images from twenty-four patients diagnosed with PE were selected for this study. 
Two LUS experts provided the ground truth for training by reviewing and segmenting the images. The algorithm 
was then trained using ten-fold cross-validation. Once training was completed, the algorithm segmented a separate 
subset of patients.

Results  Comparing the segmentations, we demonstrated an average Dice Similarity Coefficient (DSC) of 0.70 
between the algorithm and experts. In contrast, an average DSC of 0.61 was observed between the experts.

Conclusion  In summary, we showed that the trained algorithm achieved a comparable average DSC at PE seg-
mentation. This represents a promising step toward developing a computational tool for accurately augmenting PE 
diagnosis and treatment.
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Introduction
Pleural effusion (PE), the excessive accumulation of fluid 
in the pleural cavity, is the most common disease among 
all pleural diseases [1]. The most cited population study 
(Czech Republic) measured an incidence of 0.32 per-
cent annually for PE [2]. In patients with COVID-19, the 
overall incidence of PE was 7.3 percent [3]. While history 
taking, a physical examination remains the basis for eval-
uating patients with PE, the British Thoracic Society in its 
latest draft guideline on pleural disease [4] has included a 
recommendation on performing lung ultrasound (LUS) 
on every patient’s initial presentation and when proce-
dures involving the pleura are being performed. LUS 
provides a higher accuracy than physical examination [5] 
and chest radiography in the detection of PE [6]. How-
ever, LUS assessment typically involves a highly trained 
and experienced operator acquiring the images using a 
well-outlined protocol [7] and interpreting the images for 
pattern changes associated with lung pathology. The con-
ventional LUS assessment, therefore, requires consider-
able time and resources [8].

Beyond recognizing and identifying PE, the underly-
ing causes of PE are numerous, and an invasive proce-
dure known as thoracentesis is frequently required to 
guide differential diagnosis and treatment [4]. The LUS-
guided intervention has been shown to increase success 
at obtaining pleural fluid and, in turn, reduce the risk of 
complications such as pneumothorax [9]. This procedure 
is rapidly becoming standard patient care. To perform 
thoracentesis, recognition of the extent and location of 
the PE is critical, as a needle or catheter is introduced 
to the pleural space. A previous study from our group 
[10] implemented a deep learning (DL) based algorithm 
to detect the presence of PE on LUS. We demonstrated 
a comparable accuracy between the algorithm and the 
LUS experts [10]. This was the first step in support-
ing clinicians to identify image patterns associated with 
PE. Recognizing that LUS currently demands significant 
resources, and that LUS is highly desirable in patients 
with PE, we propose a DL-based algorithm to automati-
cally segment PE to assist clinician(s) in localizing PE in 
LUS videos for safe needle guidance during thoracente-
sis procedures, improve PE localization accuracy, and aid 
clinicians during PE volume estimation. This automated 
algorithm for segmenting PE could provide consider-
able benefits to initial differential diagnosis, subsequent 
patient safety, and improved procedural success if a more 
invasive diagnostic and treatment approach is warranted. 
The performance of the proposed algorithm was evalu-
ated using the Dice Similarity Coefficient (DSC) and the 
complementary Szymkiewicz-Simpson Overlap Similar-
ity Coefficient (OVC) against the LUS experts. The inter-
observer variability between the LUS experts’ contours 

and the algorithms’ performance on PE segmentations 
were evaluated using the DSC and OVC metrics.

This study’s central aim is to confront the current hur-
dles in developing an automated segmentation method 
for PE detection, a previously unexplored territory. Addi-
tionally, it builds upon prior work [11] by delving into the 
assessment of segmentation variations among experts. 
Existing research on LUS PE segmentation is limited, 
with only one study available, which does not perform 
segmentation on a per-patient basis where the frames 
are not divided into the training, validation and test set 
per patient. Additionally, this study relies solely on aver-
age Dice scores for the entire dataset and lacks an evalu-
ation metric that assesses the common overlapped area 
between segmentations, such as the Szymkiewicz-Simp-
son overlap coefficient.

This study aims to address these gaps by establish-
ing a comprehensive LUS scanning protocol that cov-
ers various potential lung pathologies, with a particular 
focus on addressing PE as an initial step. The deep learn-
ing approach builds on previous classification work and 
addresses the need for automated segmentation of imag-
ing patterns and artifacts in the lung that indicate PE. 
This segmentation enables the visual presentation of PE 
regions to sonographers, facilitating the diagnostic pro-
cess of fluid drainage in the lung (thoracentesis). Further-
more, it lays the foundation for potential sonographer 
image guidance in future applications and research.

Related works
The ability to segment LUS images has been explored for 
several respiratory pathologies. Most notably, Morilhat 
et al. [12] recently shared their findings from a DL-based 
algorithm (nnU-net) for PE segmentation with median 
DSC scores of 0.74 and 0.82 for two datasets consisting of 
patients from low-to-middle-income countries suspected 
of tuberculosis. The group performed an automatic DL-
based segmentation using spatial information consist-
ing of 2D pixel coordinate information as an additional 
input into their algorithm. Their algorithm performance 
was evaluated on a per-dataset basis and compared to the 
experts’ through an interobserver study. Our study dif-
fers from Morilhat et al. [12] in several aspects, including 
a different patient cohort based on an ultrasound (US) 
imaging acquisition protocol that focused on LUS pathol-
ogy identification, DSC/OVC evaluations done on a per 
patient basis using an improved clinical contouring crite-
ria, US probe settings, and a CNN (with Reg-STN) based 
algorithm.

The other studied LUS image patterns included 
COVID-19 markers [13–15] for producing an auto-
mated COVID-19 associated pathologies segmentation 
tool. Roy et  al. [14] implemented a weakly supervised 
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classification algorithm using a Spatial Transform Net-
work (STN) and a segmentation algorithm to identify 
and spatially localize pathology image patterns associ-
ated with COVID-19 markers in LUS videos, respec-
tively. In addition, Mento et  al. [13] used the same 
algorithm on new sets of COVID-19 data and applied 
a threshold technique to the experts’ and algorithm’s 
frame segmentations to improve the video-based 
agreement between the algorithm predictions and the 
experts’ ground truths. In contrast, Roshan et  al. [15] 
performed automatic segmentation of COVID-19 asso-
ciated imaging patterns using a modified U-net struc-
ture and included the OVC to further determine the 
agreement between the predicted and the ground truth 
segmentations.

Materials and methods
This study was approved by The Melbourne Health Human 
Research Ethics Committee (Australia) (28/08/2018, 
ACTRN12618001442291, HREC/66935/MH-2020) and 
was performed in accordance with the Declaration of Hel-
sinki. LUS images used in this study were acquired from 
a previous study [16]. Written informed consent was 
obtained from all participating patients [16] (Melbourne 
Health Human Research Ethics Committee approval 
HREC/18/MH/269, trial registration: http://​www.​
ANZCTR.​org.​au/​ACTRN​12618​00144​2291.​aspx).

All patients were admitted to the Royal Melbourne 
Hospital under an Internal Medicine unit with a cardi-
orespiratory-related presentation. The LUS examina-
tion was performed by an experienced physician trained 
(XC) in point-of-care US (POCUS) [16] using a Sonosite 
X-Porte portable US imaging system (Fujifilm, Bothell, 
WA, USA) with settings shown in Table 1 [17]. The exam-
ination followed a standardized iLungScan protocol (The 
University of Melbourne, Ultrasound Education Group 
[17]). Patients were positioned in a supine position, and 
six distinct lung scanning zones [18] were examined at 
least once (Fig. 1). Images were immediately reviewed for 
diagnostic accuracy and quality assurance by a second 
LUS expert (DC, AR, or CR).

A total of 51 LUS videos from 24 patients were used 
to train our automated PE segmentation algorithm. 
The algorithm was trained on approximately an equal 
number of expert 1 and expert 2 ground truths dur-
ing hyperparameter optimization. The cross-validation 
was performed on a per patient level using each expert’s 
segmentation labels and calculating the DSC/OVC 

Table 1  Ultrasound imaging system parameters [17]

Sonosite X-Porte

Probe/Transducer Phased Array

Preset Cardiac

Frequency 1-5 MHz

Acoustic working Frequency 1.72 MHz

Mechanical index 1.3

Soft-tissue thermal index 0.9

Focal optimization Gen

Default penetration depth 15 cm

Pulse Repetition 2933 Hz

Scan repetition rate 34.1 Hz

Tissue harmonic imaging On

Fig. 1  Examples of the scanning regions (viz. Right Anterior (RANT), Right Posterior Lower (RPL), Left Posterior Lower (LPL)) and the approximate 
probe placement during the image acquisition of LUS frames containing PE. ∗∗Figure created and owned by coauthors

http://www.ANZCTR.org.au/ACTRN12618001442291.aspx
http://www.ANZCTR.org.au/ACTRN12618001442291.aspx
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scores between the experts and the algorithm-predicted 
segmentation.

Dataset
The 38 PE patient dataset (detailed in Fig. 2) was obtained 
based on a six-scanning region LUS image acquisition 
protocol [17, 18] shown in Fig.  1. These six scanning 
regions include the Left Anterior (LANT), Right Ante-
rior (RANT), Left Posterior Upper (LPU), Left Posterior 

Lower (LPL), Right Posterior Upper (RPU), and Right 
Posterior Lower (RPL) regions.

The dataset from Table  2 has been further analyzed, 
according to the clinical criteria consisting of the experts’ 
(trained sonographer (MS) and trained LUS MD (AW)) 
ability to identify PE imaging patterns, which is further 
detailed in “Frame-based contouring strategy”  section. 
As a result, the number of PE patients was reduced from 
38 to 24 as shown in Fig. 2. Table 2 outlines the number 
of patients, videos and frames for each of the pathologies 
that presented alongside PE and is the dataset that is used 
to train and test our algorithm.

Table 3 shows the scanning regions and the number of 
videos/frames associated with the patient pathology dis-
tribution from Table 2. The PE dataset breakdown from 
Tables 2 and 3 show that PE patients present with mul-
tiple other pathologies (Consolidation/Collapse, APO, 
Interstitial Syndrome) other than PE. A significant rep-
resentation of the dataset contains patients with a com-
bined diagnosis of PE/Consolidation/Collapse located in 
the RPL and LPL LUS scanning regions.

Fig. 2  A flow diagram showing the pathology distribution of the original PE patients to the final training/validation/test dataset split used to train 
the algorithm

Table 2  Breakdown of PE patients during algorithm training/
testing

# Patients # Videos # Frames

Effusion 3 4 240

Collapse / Consolidation / Effusion 20 43 2561

Acute Pulmonary Oedema / Inter-
stitial Syndrome / Effusion

1 4 240

Total 24 51 3041

Table 3  The patients from Table 2 and their respective scanning region distributions shown per video and per frame

RANT RPL LPL

Effusion N/A # Video(s) 3 # Frame(s) 180 # Video(s) 1 # Frame(s) 60

Collapse / Consolidation / Effusion # Video(s) 1 # Frame(s) 60 # Video(s) 15 # Frame(s) 900 # Video(s) 27 # Frame(s) 1601

Acute Pulmonary Oedema / Interstitial Syn-
drome / Effusion

N/A # Video(s) 1 # Frame(s) 60 # Video(s) 3 # Frame(s) 180
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Pre‑processing
The anonymization and removal of unique patient iden-
tifiers on the LUS videos with imaging patterns associ-
ated with PE was done before any segmentation labels 
could be completed. The next step involved extracting 
the LUS videos from the compressed Digital Imaging 
and Communications in Medicine [19] (DICOM) image 
format using Pydicom [20] and removing overlays (e.g., 
text, watermarks, trademarks, etc.) outside the US sec-
tor. The image pixel dimensions were (0.02 · 0.02)mm . 
The original image size (960 · 720)pixels was reduced to 
(806 · 550)pixels by cropping the images to enclose the 
US sector, thus minimizing the presence of black pixels 
surrounding the relevant image information.

Clinical PE contouring methods
Following image pre-processing, two reviewers (AW 
and MS) trained in LUS were assigned LUS videos in 
DICOM format for independent image interpretation. 
The reviewers did not have knowledge of the extent of PE 
on a video or frame level before reviewing the videos. The 
reviewers used a modified version of the Labelme [21] 
program to view and outline the PE. Sixty consecutive 
frames were selected from the videos most representa-
tive of the pathology at the reviewers’ discretion. Poly-
gons were created to outline the PE on a frame-by-frame 
basis. The coordinates of the polygons were recorded in 
the open standard file format of JavaScript Object Nota-
tion [22] (JSON).

Identification of PE on LUS followed the Lung Ultra-
sound Interpretation Score protocol developed at the 
University of Melbourne Ultrasound Education Group, 
which is based on the international evidence-based LUS 
recommendations from Volpicelli et al. [23].

Figure 3 provides a visual representation of the exclu-
sion criteria used in this study. In Image A, we can 
observe an LUS frame that is not suitable for train-
ing purposes due to several reasons, primarily centered 
around poor image quality. These issues include the 
absence of discernible anatomical or pathological mark-
ers. Image A represents one of the extreme cases of an 
inconclusive frame.

On the other hand, Image B in Fig. 3 illustrates an ideal 
LUS frame or video for PE identification. Here, the clini-
cal significance lies in the clear visibility and identifica-
tion of anatomical markers such as the collapsed lung, 
pleural lining, and diaphragm, along with the presence of 
PE-associated imaging patterns.

The LUS reviewers also outlined the PE using identifi-
able anatomical features, including the diaphragm, col-
lapsed or consolidated lung, the chest wall, and the clear 
line that delineated the extent of the image sector. On 

completing one video frame, the reviewers repeated the 
same process on the subsequent frames. The same poly-
gons could be transferred from the previous frame to 
the subsequent one, accounting for the pathology being 
continuous in the consecutive frames. However, the 
reviewers were required to examine each frame closely to 
ensure the polygon delineating PE on the previous frame 
remained applicable to the following frame. Depending 
on the amount of respirophasic movement of the lung 
and effusion, the reviewers had to adjust the polygons by 
applying the same diagnostic principle.

The contours for the final training and validation sets 
consisted 50% from expert 1 and 50% from expert 2. 
However, in the testing set, each patient had contours 
created by both experts.

Frame‑based contouring strategy
After application of the clinical data exclusion criteria, 
each LUS frame containing PE imaging patterns had an 
associated contour that was used as the ground truth 
segmentation label during training and assessment of 

Fig. 3  Comparison of PE identified LUS frames, where image (A) does 
not meet the clinical criteria needed for contouring PE and image (B) 
is the ideal case for PE segmentation. The presence of PE was defined 
as an anechoic space (in red) between the parietal pleura (lining 
the chest wall in orange and diaphragm in yellow) and visceral pleura 
(lining the lung surface in green) image B, along with the collapsed 
lung tissue (in green)
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the algorithm performance. These LUS contoured frames 
were then split into training, validation and testing sets 
based on the number of patients, and were divided into 
their respective videos, frames, and scanning regions as 
shown in Table 4. These training/testing dataset splits are 
based on the standard 80/20 split [24] to balance the vari-
ance between the training and testing performance.

Deep learning model
The approach used leveraged a DL architecture that com-
bined two key components: a Convolutional Neural Net-
work (CNN) and a Spatial Transformer Network (STN) 
[14] into our framework to accurately pinpoint the pres-
ence of pulmonary pleural effusions (PE). Additionally, 
the CNN segment of our algorithm was built upon a cus-
tomized U-net architecture.

This architecture allowed us to effectively identify and 
localize PE within lung ultrasound scans, contributing 
to the diagnostic process by automating the detection of 
this pathology. The STN played a crucial role in precisely 
mapping the regions of interest, while the CNN provided 
the necessary segmentation and classification capabilities 
for accurate detection.

The algorithm was trained by minimizing the pixel-
wise categorical cross-entropy loss between the segmen-
tation generated from the clinicians’ contours (ground 
truths) and the segmentations predicted by the algorithm 
[14]. Binary semantic segmentation was used, where one 
class label is used to represent the background of the LUS 
frame (pixels that have no PE segmentation), and the sec-
ond class includes the segmentation that contains the 
image patterns associated with the PE pathology within 
a LUS frame.

Training approach
The Weights & Biases [25] framework was utilised 
to perform hyperparameter tuning based on the 

validation set performance. The optimization of these 
hyperparameters was based on the Bayesian method 
[26], where the training was based on minimizing the 
training loss while taking into consideration the valida-
tion loss, validation DSC, and training DSC curves to 
prevent overfitting (Table 5).

The validation process plays a critical role in deter-
mining the optimal hyperparameters of the algorithm 
to ensure its best performance based on training from 
a specified dataset. This process ensures the robust-
ness of these hyperparameters when the algorithm is 
subsequently tested on an independent set, which, in 
this study, consisted of 5 patients. Keeping consistency 
across the folds was crucial as it allowed for compre-
hensive testing of the algorithm’s performance, includ-
ing evaluation against the interobserver study dataset 
and additional patients.

To achieve this, a repeated 5-fold cross-validation was 
conducted for each expert, resulting in a total of 10 folds. 
In each fold, one patient and their associated videos were 
replaced in the original test set with a randomly selected, 
non-repeating patient, labeled as R from the original 
training/validation set. Subsequently, the algorithm was 
retrained using the optimal hyperparameters obtained 
during the previous validation phase.

Table 4  Distribution of PE patients following an 80/20 training/testing split that is further divided by the number of videos and frames 
used in the training, validation, and test sets

Set Type # Patients # Videos # Frames

Training 16 31 1831

RANT RPL LPL RANT RPL LPL

1 12 18 60 720 1051

Validation 3 10 610

RANT RPL LPL RANT RPL LPL

0 1 9 0 60 550

Testing 5 10 600

RANT RPL LPL RANT RPL LPL

0 6 4 0 360 240

Table 5  The hyperparameters used to train the PE segmentation 
model

Batch size 32

Batch normalization True

Dropout 0.5

Epochs 50

Learning rate (Adam) 10
−5

Loss function Binary 
Cross 
Entropy
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It’s important to note that for each fold, the original test 
set patient was integrated into the training set, and vice 
versa. This patient’s data was used alongside the ground-
truth contours provided by the respective expert associ-
ated with the test set. For example as shown in Table 6, in 
the first fold, the contours created by expert 1 for patient 
1 were utilized, and that patient was replaced with R1. 
In the sixth fold, the contours produced by expert 2 for 
patient 1 were considered, and that patient was replaced 
with R6. This entire process involved conducting a 5-fold 
repeated cross-validation for each expert, resulting in the 
evaluation of the algorithm on 5 independent and previ-
ously unseen test sets, along with the inclusion of 10 non-
repeating random patients from the training/validation 
set, totaling 15 patients assessed in total.

The network was trained on a single Nvidia Titan 
RTX GPU with 24 GB of memory installed on a work-
station running Linux with 128GB of memory. The 
GPU workstation used an Intel i9-9820X CPU with 
20 cores running at 3.30  GHz (Lambda Labs, San 
Francisco, CA, USA).

Evaluations
The trained models used a frame-based segmentation 
labelling approach and produced frame-level predic-
tions, which were evaluated against the frame-based seg-
mentation ground truths provided by the 2 independent 
experts using the DSC [27] and OVC [28] metrics. The 
same metrics were used to evaluate the ground-truth 
contours’ variability between the two experts (AW, MS) 

(i.e interobserver study) using the experts’ contours gen-
erated for the 5 patients belonging to the test set.

The DSC score measures the intersection between the 
two segmentations as the ratio between the number of 
pixels intersecting the two segmentations (multiplied by 
2) and the sum of the total number of pixels included in 
each segmentation. Thus, this metric ranges from 0 to 1, 
where ‘1’ represents a perfect match between the two 
segmentations.

The OVC score measures the overlap between 2 
finite sets or 2 segmentations, by showing how much 
(value between 0 and 1) of the smaller segmentation is 
enclosed or contained within the larger segmentation. 
This metric accounts for and is sensitive to the relative 
location of the 2 finite sets (segmentations) while the 
DSC is not. A small DSC score can result from the seg-
mentations barely intersecting/overlapping one another 
or from one segmentation being within the other when 
the size difference between them is significant. The 
OVC serves as a supplementary evaluation metric when 
combined with the DSC score and provides useful infor-
mation in our study when comparing segmentation 
masks of differing sizes.

Results
The worst to best performing average DSC scores for the 
test set are shown per fold (Table 7), per video (Table 8), 
and per patient (Table  9). Where the training of the 
algorithm (on an equal number of expert 1 and expert 
2 ground truths) has demonstrated performance on par 
with or higher than the experts’ evaluation (i.e., interob-
server study).

Figure 5 shows a representative example where there 
was a high overlap (OVC) between the segmentations 
generated, in contrast to a low DSC. The high OVC 
indicates that both experts agree on a common area 

Table 6  The generated cross-validation folds or repeated 5-fold 
cross-validation per expert, includes the patients in the training 
set (comprising the original Training (T) and Validation (V) sets) 
and the test sets. The first 5 folds (1-5) use the contours from 
expert 1, and the next 5 folds (6-10) use the contours from 
expert 2

Fold Set type Test set Expert

T : Training Patient # Ground

V : Validation Truths

1 T , V + 1 (R1,2,3,4,5) Expert 1

2 T , V + 2 (1,R2,3,4,5) Expert 1

3 T , V + 3 (1,2,R3,4,5) Expert 1

4 T , V + 4 (1,2,3,R4,5) Expert 1

5 T , V + 5 (1,2,3,4,R5) Expert 1

6 T , V + 1 (R6,2,3,4,5) Expert 2

7 T , V + 2 (1,R7,3,4,5) Expert 2

8 T , V + 3 (1,2,R8,4,5) Expert 2

9 T , V + 4 (1,2,3,R9,5) Expert 2

10 T , V + 5 (1,2,3,4,R10) Expert 2

Table 7  The average DSC scores per fold (F) between the 
algorithm’s predicted segmentations and each expert’s 
segmentation labels, ordered from worst to best DSC

F Algorithm / Expert 1 F Algorithm / Expert 2

9 0.662 +/- 0.15 8 0.656 +/- 0.14

10 0.689 +/- 0.13 10 0.669 +/- 0.14

4 0.690 +/- 0.12 5 0.692 +/- 0.11

6 0.692 +/- 0.16 2 0.693 +/- 0.13

7 0.698 +/- 0.11 3 0.695 +/- 0.10

3 0.707 +/- 0.10 7 0.710 +/- 0.12

2 0.721 +/- 0.11 4 0.712 +/- 0.15

1 0.724 +/- 0.12 6 0.747 +/- 0.10

8 0.725 +/- 0.07 1 0.757 +/- 0.10

5 0.727 +/- 0.12 9 0.768 +/- 0.09
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where PE is located, whilst there is a mismatch in the 
size of PE (and, thus, low DSC). This is further shown 
in Table 11 where video 4b is closer to the best average 
OVC score. When the segmentations are closer in size 
as in Fig.  4 and are contained within one another, the 

OVC and DSC calculation are similar (high DSC and 
OVC).

In Table 10, the OVC scores are shown from worst to 
best between the algorithm and each expert (algorithm / 
expert 1 and algorithm / expert 2).

In Table 11, the OVC scores are shown for the interob-
server study (expert 1 / expert 2) and the algorithm’s per-
formance against each expert (algorithm / expert 1 and 
algorithm / expert 2).

The algorithm’s OVC score performance per patient 
and per video in Tables  11 and  12 vs the interobserver 
study (expert 1 / expert 2) was on par overall and per-
formed higher when compared to the worst performing 
interobserver patient study (patient 2).

In Fig. 6, the segmentations overlap even for the worst 
performing OVC cases. In image A, the low OVC score 
indicates that the low DSC score is due to a slight mis-
alignment, in contrast to Fig. 5 where the segmentations 
are enclosed within each other, resulting in a high OVC 
score. OVC paired with DSC provides more information 

Table 8  The average DSC scores per video of the test patients (ranked worst to best) between the algorithm’s predicted 
segmentations and each expert ground truth segmentation labels. Each patient (P) in the test set included 2 videos labelled as a and b

P Expert 1 / Expert 2 P Algorithm / Expert 1 P Algorithm / Expert 2

4b 0.312 +/- 0.10 4b 0.564 +/- 0.02 4b 0.569 +/- 0.02

1a 0.449 +/- 0.06 2b 0.604 +/- 0.03 1a 0.573 +/- 0.04

2b 0.550 +/- 0.05 4a 0.630 +/- 0.03 1b 0.574 +/- 0.04

1b 0.563 +/- 0.08 1b 0.632 +/- 0.06 4a 0.601 +/- 0.03

5b 0.593 +/- 0.05 1a 0.649 +/- 0.06 2b 0.684 +/- 0.03

5a 0.665 +/- 0.10 5a 0.719 +/- 0.06 5b 0.776 +/- 0.02

4a 0.671 +/- 0.06 5b 0.721 +/- 0.05 5a 0.820 +/- 0.01

3b 0.743 +/- 0.04 2a 0.830 +/- 0.02 3b 0.830 +/- 0.02

2a 0.762 +/- 0.05 3b 0.860 +/- 0.03 3a 0.853 +/- 0.01

3a 0.772 +/- 0.02 3a 0.898 +/- 0.02 2a 0.864 +/- 0.02

Table 9  Average DSC scores for the 5 patients (P) in the test 
set (ranked from worst to best) are shown for the interobserver 
study (expert 1 / expert 2) and the algorithms performance 
computation (algorithm / expert 1 and algorithm / expert 2) 
against each expert

P Expert 1 / Expert 
2

P Algorithm / 
Expert 1

P Algorithm / Expert 
2

4 0.491 +/- 0.20 4 0.586 +/- 0.04 1 0.573 +/- 0.04

1 0.506 +/- 0.09 1 0.627 +/- 0.06 4 0.581 +/- 0.03

5 0.629 +/- 0.09 2 0.714 +/- 0.12 2 0.765 +/- 0.09

2 0.656 +/- 0.12 5 0.714 +/- 0.05 5 0.783 +/- 0.03

3 0.758 +/- 0.03 3 0.870 +/- 0.03 3 0.834 +/- 0.02

Fig. 4  An example of a LUS image and corresponding segmentations generated by expert 1, expert 2, and the algorithm (from left to right) 
respectively. On the bottom row, the LUS image and the segmentation are overlayed; on the top row, only segmentations are shown
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on the segmentation overlaps, whether it is an enclosure 
as in Fig. 5 or relatively minor misalignment as in Fig. 6 
(images A and B).

Discussion
Our study details a DL algorithm that achieved an aver-
age DSC between 0.57 and 0.89 at PE segmentation on 
LUS images. We demonstrated that its performance 
was comparable to the experts’ interobserver variability, 
which ranged between 0.31 and 0.77 DSC.

Interestingly, Morilhat et al. [12] proposed a DL-based 
PE segmentation model that achieved a median DSC 
of 0.74 and 0.82 on two datasets acquired using a lin-
ear and curvilinear transducer, respectively. Our study 
differs from Morilhat et  al. in several aspects. Firstly, 
our LUS dataset consisted of images acquired using a 
phased-array transducer. Secondly, most of our training 
set consisted of images from the posterior lower zone, 

Fig. 5  An example of a LUS image and corresponding segmentations generated by expert 1, expert 2 and the algorithm (from left to right), 
respectively, extracted from the worst performing video in terms of DSC (i.e., 4b from Table 8). Overlays of LUS image and segmentation are shown 
in the top row. The bottom row shows the DSC and OVC scores calculated between algorithm / expert 1, algorithm / expert 2, and expert 1 / expert 
2 segmentations

Table 10  The OVC scores for the cross-validation results shown 
per fold (F) from worst to best OVC

F Algorithm / Expert 1 F Algorithm / Expert 2

8 0.874 +/- 0.11 4 0.873 +/- 0.10

10 0.877 +/- 0.12 9 0.891 +/- 0.07

5 0.895 +/- 0.12 7 0.902 +/- 0.06

3 0.898 +/- 0.11 10 0.909 +/- 0.10

2 0.908 +/- 0.11 2 0.916 +/- 0.05

6 0.916 +/- 0.12 5 0.920 +/- 0.06

1 0.924 +/- 0.11 1 0.924 +/- 0.05

4 0.932 +/- 0.10 6 0.930 +/- 0.07

7 0.936 +/- 0.09 3 0.931 +/- 0.05

9 0.939 +/- 0.10 8 0.936 +/- 0.03

Table 11  The worst to the best average OVC scores shown for the 5 patients (P) and their respective videos (labelled a and b) in the 
test set

P Expert 1 / Expert 2 P Algorithm / Expert 1 P Algorithm / Expert 2

2b 0.624 +/- 0.10 2b 0.713 +/- 0.02 1a 0.822 +/- 0.09

4a 0.950 +/- 0.09 4a 0.743 +/- 0.02 4a 0.824 +/- 0.04

1b 0.989 +/- 0.03 1b 0.798 +/- 0.06 1b 0.862 +/- 0.09

5a 0.997 +/- 0.01 1a 0.933 +/- 0.04 5a 0.911 +/- 0.02

3a 0.998 +/- 0.01 5b 0.975 +/- 0.01 5b 0.924 +/- 0.04

1a 0.998 +/- 0.01 2a 0.982 +/- 0.01 2b 0.932 +/- 0.02

4b 0.998 +/- 0.01 3b 0.988 +/- 0.01 2a 0.952 +/- 0.03

2a 0.999 +/- 0.01 5a 0.988 +/- 0.01 4b 0.955 +/- 0.01

3b 0.999 +/- 0.01 4b 0.990 +/- 0.01 3b 0.962 +/- 0.02

5b 0.999 +/- 0.01 3a 0.991 +/- 0.01 3a 0.989 +/- 0.01
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following the iLungScan protocol [17]. The anatomical 
landmarks in the posterior lower scanning zone usually 
include the visualization of the diaphragm. The result-
ing images may differ from those taken at the BLUE-
protocol’s PLAPS-point [29] and the subcostal view. 
Thirdly, it’s worth noting that most of the pleural effu-
sions in our study exhibited a transudative (anechoic) 
appearance, primarily because our patients suffered 
from acute exacerbation of heart failure, and the effu-
sions were located in the lower posterior regions of the 
lung. This differs from the characteristics of tuberculous 
pleural effusions, which typically present as exudative 
(echogenic) in nature. However, it’s important to clarify 
that the definitive differentiation between exudative and 

transudative cases is typically based on clinical criteria 
and laboratory analysis, such as through needle aspira-
tion, rather than relying solely on ultrasound or other 
imaging modalities.

Lastly The clinical dataset employed in this study is, 
admittedly, relatively small in scale. However, despite this 
constraint, the algorithm showcased its effectiveness in 
this proof-of-concept study by outperforming the inter-
observer study. It effectively identified and localized PE 
within the LUS images.

In the future, it will be particularly interesting to com-
pare this algorithm and Morilhat et al.’s algorithm’s per-
formance on both the tuberculous PE dataset and the 
internal medicine dataset used in this study.

Regarding other common lung pathologies, a compari-
son could be made to works from Roy et  al. [14]. They 
recently demonstrated a binary DSC of 0.75 at segment-
ing COVID-19 associated pathologies, including pleural 
line abnormalities and consolidations. However, caution 
should be taken when making the comparison, given the 
heterogeneity in artifact appearance between PE and the 
features noted in the COVID-19 study. It is to be noted 
that our algorithm has been trained to address a single 
pathology, although concurrent pathologies such as lung 
collapse/consolidations and interstitial syndrome are 
common in patients with PE.

Table 12  The average OVC scores for the test patients (P) shown 
from the worst to the best patient

P Expert 1 / Expert 
2

P Algorithm / 
Expert 1

P Algorithm / Expert 
2

2 0.812 +/- 0.20 2 0.847 +/- 0.14 1 0.842 +/- 0.09

4 0.974 +/- 0.07 4 0.866 +/- 0.12 4 0.889 +/- 0.07

1 0.994 +/- 0.02 1 0.866 +/- 0.09 5 0.917 +/- 0.03

5 0.998 +/- 0.01 5 0.981 +/- 0.01 2 0.942 +/- 0.03

3 0.999 +/- 0.01 3 0.989 +/- 0.01 3 0.975 +/- 0.02

Fig. 6  An example of the corresponding segmentations from expert 1, expert 2 and the algorithm’s prediction shown overlayed over the LUS 
frame of the worst performing DSC video (i.e., 2b and 1a from Table 11). Each row (A, B, C) shows the worst performing LUS frame of the worst 
performing video for the interobserver study, algorithm / expert 1, and algorithm / expert 2 respectively
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For interobserver variability between the two LUS 
experts, we reported the lowest average DSC of 0.31 in 
video 4b (Fig. 5). Video 4b was obtained from the poste-
rior lower zone. To the right of the image were the dia-
phragm and liver. To the left and in the lower edges of 
the image, there was echogenicity suggesting the pres-
ence of either a collapsed lung, visceral pleura, or com-
plex effusion. Our investigation into the discrepancies of 
the contours generated by the two experts determined 
that Expert 1’s ground truths likely accounted for images 
from the preceding and subsequent frames to help deter-
mine the extent of the effusion, respectively. In contrast, 
Expert 2’s ground truths were probably restricted to an 
anechoic region of the highest confidence. In retro-
spect, the LUS experts likely overestimated and under-
estimated the extent of the effusion. As expected, since 
the DL algorithm was trained using the annotations of 
both experts, it was able to produce a segmentation that 
was a ‘compromise’ between the two experts. In fact, 
the automated segmentation primarily included regions 
where the two experts agreed (OVC > 0.95 for the worst 
DSC video). Most notably, the segmentation in video 4b 
excluded less-certain areas (where the boundaries of PE 
were unclear) that may be unsafe for the introduction 
of a needle or catheter during procedures such as ultra-
sound-guided thoracentesis. Given the significant con-
sequences of injuring the lung tissue or diaphragm, we 
believe our algorithm is also a step in the right direction 
for safeguarding patients with PE against iatrogenic com-
plications. The OVC alongside the DSC can be used to 
determine safe catheter placement during thoracentesis 
needle insertion.

The highest interobserver DSC reported was 0.77 (e.g 
Fig.  4), similar to that observed by Morilhat et  al. [12]. 
Other common measures of interobserver variability are 
Cohen’s kappa and Fleiss’ kappa. In a recent COVID-
19 lung study, Kumar et  al. [30] reported a moderate 
agreement in the presence (kappa = 0.49) and size of PE 
(kappa = 0.47). A similar finding was also reported in the 
paediatric population [31] (kappa = 0.44). It is evident 
that large variation exists in determining the presence of 
PE, and agreement remains challenging.

This study has several limitations. First, the study was 
conducted using LUS images from patients with car-
diopulmonary complaints in a single tertiary center. 
The images were obtained by a single operator using the 
phased-array transducer from a single manufacturer. The 
generalizability of the DL algorithm to other clinical and 
image acquisition settings is to be determined. Second, 
most of the videos were from the posterior lower scan-
ning zones. A larger sample size that includes effusions 
detected in various scanning zones, such as the posterior 
upper zone in a supine patient or anterior zone in a prone 

patient, would be beneficial. However, it’s worth noting 
that these factors don’t inherently limit the algorithm’s 
performance, as it can identify and localize imaging pat-
terns associated with PE. The variation in imaging/scan-
ning protocols primarily influences the location of PE 
within the scan, rather than the algorithm’s capability to 
identify and localize these patterns. Where PE incidents 
are primarily prevalent in unilateral cases [32, 33]. How-
ever, they can also occur bilaterally, with most cases being 
right-sided PE [34]. Notably, right-sided PE cases tend to 
feature larger effusions compared to the left side [35]. The 
most common cases of PE are attributed to heart failure 
[33]. Previous research findings indicate that the loca-
tion of PE is not an unusual finding, particularly in cases 
related to heart failure [36]. This study concentrated on 
an imaging protocol [17] where most cases of PE were 
located in the lower lung regions, and our algorithm was 
trained specifically for these scenarios. In the future, we 
intend to broaden our dataset to ensure the algorithm’s 
effectiveness in identifying this pathology in various lung 
regions.

Third, the LUS images were reviewed by two LUS 
experts retrospectively without complete knowledge of 
the clinical context. This differs from a typical POCUS 
routine, where the operator acquires and interprets the 
images to address a specific clinical question. The agree-
ment between experts may improve if the experts acquire 
and interpret the images in real-time.

The DSC score metric is the standard evaluation met-
ric for segmentation tasks in machine learning (ML). 
The challenge with the DSC score arises from the need 
for the size of ground truth and algorithm-predicted seg-
mentations to be the same or relatively similar in size. PE 
size in LUS images has shown from our study and others 
[30] that the experts often disagree on the exact size and 
boundary of PE effusion and that the DSC, at least for PE 
segmentation, is not sufficient on its own.

Future work may consider the clinical utility of the 
algorithm output against patient safety. For example, 
how often the algorithm-outlined PE segmentations are 
safe for thoracentesis needle insertion. This trained algo-
rithm will also benefit from being tested in other patient 
cohorts where PE may appear differently (for instance, 
complex PE with fibrotic materials within the pleural 
space) to increase the dataset size that could be used for 
training. Ultimately, a comprehensive tool for PE will 
likely require consideration of the pretest probability of 
the pleural effusion and assess the clinical significance of 
the effusion against the patient’s demographic informa-
tion and clinical history.

Moreover, considering the enhancement of Pleural 
Effusion (PE) segmentation for improved volume esti-
mation during thoracentesis, the natural progression 
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involves incorporating spatial information from volumet-
ric Lung Ultrasound (LUS) images into the estimation 
process. To advance the automatic PE segmentation algo-
rithm, exploration can extend to its application to three-
dimensional LUS images. Additionally, various Machine 
Learning (ML) approaches such as transformers, trans-
fer learning, reinforcement learning, and unsupervised 
learning can be harnessed to enhance LUS segmentation 
accuracy in future iterations.

As a preliminary step or alternative approach, con-
sideration can be given to a 2D image fusion technique 
inspired by Ziyan Zhang et al.’s work [37]. This technique 
involves using Gaussian pyramids to seamlessly combine 
2D data, presenting an intriguing avenue for exploration. 
Applying this method to the existing dataset could lead 
to the transformation of a 2D LUS video into a single, 
larger 2D image. This consolidated image offers a com-
prehensive view of the scanning region, effectively show-
casing the contribution of each frame. Such an approach 
could prove invaluable for conducting a more detailed 
and comprehensive analysis of the lung’s surface during 
LUS video assessments.

Conclusion
We proposed an automatic PE segmentation of LUS vid-
eos using a DL approach. When compared to experts, 
we demonstrated the algorithm’s capability of segment-
ing PE on LUS with an average DSC between 0.57 and 
0.89. We showed a DSC between 0.31 and 0.77 between 
the two experts, suggesting a significant degree of vari-
ability in PE segmentation. We observed that the algo-
rithm avoided segmenting high-risk, high-uncertainty 
regions such as potential lung tissues on LUS. These early 
results are promising for the growing field of ML assisted 
medicine.

Future focus will be on the generalizability of the algo-
rithm in other settings and datasets, addition of LUS 
experts in the interobserver study, inclusion of an inde-
pendent expert(s) to review and score algorithms seg-
mentation based on safety of ‘needle placement’ during 
PE drainage procedures (thoracentesis), testing of other 
DL approaches (transformers, transfer learning, trans-
formers, etc) for PE segmentation, and consideration of 
volumetric estimation using automated segmentation on 
three-dimensional ultrasound images.
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