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Abstract 

Background  This research aimed to develop a model for individualized treatment decision-making in inoperable 
elderly patients with esophageal squamous cell carcinoma (ESCC) using machine learning methods and multi-modal 
data.

Methods  A total of 189 inoperable elderly ESCC patients aged 65 or older who underwent concurrent chemoradio-
therapy (CCRT) or radiotherapy (RT) were included. Multi-task learning models were created using machine learning 
techniques to analyze multi-modal data, including pre-treatment CT images, clinical information, and blood test 
results. Nomograms were constructed to predict the objective response rate (ORR) and progression-free survival (PFS) 
for different treatment strategies. Optimal treatment plans were recommended based on the nomograms. Patients 
were stratified into high-risk and low-risk groups using the nomograms, and survival analysis was performed using 
Kaplan–Meier curves.

Results  The identified risk factors influencing ORR were histologic grade (HG), T stage and three radiomic features 
including original shape elongation, first-order skewness and original shape flatness, while risk factors influencing PFS 
included BMI, HG and three radiomic features including high gray-level run emphasis, first-order minimum and first-
order skewness. These risk factors were incorporated into the nomograms as independent predictive factors. PFS 
was substantially different between the low-risk group (total score ≤ 110) and the high-risk group (total score > 110) 
according to Kaplan–Meier curves (P < 0.05).

Conclusions  The developed predictive models for ORR and PFS in inoperable elderly ESCC patients provide valuable 
insights for predicting treatment efficacy and prognosis. The nomograms enable personalized treatment decision-
making and can guide optimal treatment plans for inoperable elderly ESCC patients.
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Background
Esophageal cancer, a prevalent malignancy, ranks sixth 
in global cancer mortality rates [1]. Esophageal squa-
mous cell carcinoma (ESCC) is the predominant histo-
logical type in Asian countries [2, 3]. Standard treatment 
for ESCC usually involves preoperative chemotherapy or 
chemoradiotherapy (CCRT) with planned surgery [4, 5]. 
However, advanced age or contraindications often ren-
der elderly patients unsuitable for surgical treatment. In 
cases where local advanced esophageal cancer is inoper-
able, concurrent CCRT is often considered to result in 
better survival outcomes than radiotherapy (RT) alone 
[6, 7]. Nonetheless, many elderly patients (≥ 65  years 
old) may not tolerate CCRT. Utilizing data extracted 
from the Surveillance, Epidemiology, and End Results 
(SEER) database, it is discernible that elderly individu-
als afflicted with esophageal cancer experience favorable 
outcomes when subjected to RT in comparison to their 
counterparts who do not receive such intervention, espe-
cially when the malignancy is confined to a localized or 
regional stage [8]. Furthermore, a comprehensive analy-
sis of a nationwide database evinces a prevailing trend 
wherein RT is more frequently administered to elderly 
patients [9]. Nevertheless, the extant body of evidence 
does not conclusively establish the efficacy of CCRT in 
conjunction with RT as a therapeutic modality offering 
discernable benefits for elderly ESCC patients. Relevant 
studies have provided limited evidence regarding the 
superiority of CCRT over RT [10, 11], emphasizing the 
importance of carefully selecting treatment strategies 
for elderly patients with esophageal cancer. The optimal 
treatment approach (CCRT or RT) for elderly patients 
with inoperable ESCC remains unclear in clinical prac-
tice. As population aging has led to an increasing number 
of elderly ESCC patients [12, 13], early identification of 
patients who are at a heightened risk of rapidly progress-
ing to CCRT or RT assumes paramount importance in 
formulating precise treatment strategies that can lead to 
an enhanced clinical outcome [14].

In evaluating the probability of an individual patient’s 
progression toward CCRT or RT, prior investigations 
have predominantly utilized conventional statistical 
analytical approaches. These studies have centered their 
attention on clinical parameters, including but not lim-
ited to age, gender, TNM clinical staging, and radiation 
dosage, in order to scrutinize the risk factors linked to 
diverse therapeutic alternatives [7, 15]. However, these 
clinical factors in isolation prove inadequate in compre-
hensively capturing the heterogeneity observed in clini-
cal outcomes. Assessing the individual patient’s potential 
progression probability to CCRT or RT poses a consid-
erable challenge. Preceding the commencement of treat-
ment, patients typically undergo a series of additional 

assessments, encompassing computed tomography (CT) 
scans, complete blood count examinations, liver and kid-
ney function evaluations, as well as coagulation function 
tests. These assessments yield radiomics data derived 
from CT scans and metabolomics data gleaned from 
blood analyses, which, when amalgamated with base-
line information, constitute a personalized multimodal 
dataset. Integrating these multimodal data may help to 
comprehensively assess the risks and survival benefits 
associated with CCRT and RT in nonsurgical elderly 
ESCC patients. Notably, the analysis of risk factors and 
the prediction of survival outcomes among this specific 
cohort, based on multimodal data, present formidable 
challenges to conventional statistical methodologies. In 
this context, machine learning (ML) based approaches 
[16] emerge as promising avenues, as they possess the 
capacity to effectively scrutinize multimodal data and 
unveil intricate linear or nonlinear relationships between 
risk factors and patient survival outcomes [17]. Within 
the realm of clinical practice, ML methodologies, as well 
as deep learning methods [18–20], have already demon-
strated their proficiency in the identification of pertinent 
risk factors and the provision of personalized treatment 
recommendations [21].

Our motivation is further reinforced by the promise of 
clinical multimodal ML systems to potentially surpass 
the performance of unimodal systems, capitalizing on 
the amalgamation of information from diverse routine 
data sources [22–24]. In this study, 189 cases of locally 
advanced elderly ESCC patients who were ineligible 
for surgical treatment were analyzed. ML methodolo-
gies were systematically applied to evaluate multimodal 
data acquired prior to the initiation of treatment, with 
a primary objective of discerning pivotal risk factors 
that exert influence on treatment efficacy and progno-
sis. Within this study, an innovative model denominated 
as the Combined Treatment Decision for Efficacy and 
Prognosis Nomogram (CTDEPN) was developed. This 
CTDEPN model serves as a predictive tool, enabling the 
assessment of treatment efficacy and prognosis for dis-
tinct therapeutic regimens in inoperable elderly ESCC 
patients, thereby facilitating the tailored recommenda-
tion of optimal treatment strategies.

Methods
Patients and assessment
This retrospective study has obtained approval from the 
Ethics Committee, and it has been granted an exemp-
tion from the necessity of acquiring informed con-
sent. A total of 189 cases were retrospectively enrolled 
from a cohort of inoperable elderly ESCC patients who 
received either CCRT or RT at the authors’ institu-
tion between 2013 and 2023. Of these cases, 169 were 
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obtained from the Second People’s Hospital of Hefei, 
subsequently referred to as "Institution 1," while the 
remaining 20 cases were sourced from the First Affili-
ated Hospital of Anhui Medical University, hereinafter 
referred to as "Institution 2″.The inclusion criteria were 
as follows: 1) age ≥ 65 years; 2) histologically confirmed 
esophageal squamous cell carcinoma; 3) clinical stage 
II-IV; 4) performance status (PS) score ≤ 2; 5) absence of 
any history of tumor or radiation therapy; 6) absence of 
severe concomitant medical comorbidities; 7) availabil-
ity of CT imaging data obtained within 2 weeks before 
the initiation of treatment.

The exclusion criteria consisted of the following: 1) 
age < 65  years; 2) histologically confirmed non-esoph-
ageal squamous cell carcinoma; 3) PS score > 2; 4) pres-
ence of concomitant other malignant tumors; 5) presence 
of severe concomitant medical comorbidities; 6) pres-
ence of artifacts, blurriness, errors, or disordered slices in 
the CT images.

All participants underwent comprehensive baseline 
assessments, which encompassed physical examinations, 
complete blood count, blood chemistry tests, barium 
meal examination, endoscopic biopsy, pulmonary func-
tion tests, electrocardiogram, and CT scans of the neck, 
chest, and abdomen. The CT images of the patients 
were acquired utilizing a GE Optima 16-row CT simula-
tor. The CT images were characterized by a resolution of 
512 × 512 pixels, a reconstruction layer thickness of 5 mm, 
and the acquisition sequence employed was the plain CT 
scan protocol. The data characteristics are highly variable 
depending from hospital to hospital. Therefore, to prove 
our model is valid, we extra-validate our model from 
Institution 2. Patients matched from Institution 1 were 
partitioned into distinct training and testing sets, while 
patients from Institution 2 were designated for an addi-
tional validation set. Data collection for this study contin-
ued until September 2023. The patients’ selection of this 
study was illustrated in Fig. 1.

Fig. 1  Screening of enrolled cases based on inclusion and exclusion criteria



Page 4 of 15Huang et al. BMC Medical Informatics and Decision Making          (2023) 23:237 

Treatment and follow‑up
Regarding RT, all patients underwent intensity-modu-
lated radiation therapy (IMRT), with the primary tumor 
lesion and involved lymph node regions defined as the 
gross tumor volume (GTV). The clinical tumor volume 
(CTV) encompassed a 4–8-mm expansion beyond the 
GTV in all directions and a superior–inferior exten-
sion of 3–4 cm. Throughout the treatment period, com-
plete blood count and blood biochemistry were regularly 
monitored, and a follow-up investigation was scheduled 
within 2  months after treatment completion. Patients 
who underwent follow-up assessment also received rou-
tine blood and serum biochemistry tests.

Tumor response was assessed in accordance with the 
Response Evaluation Criteria in Solid Tumors (RECIST) 
guidelines (version 1.1) [25], using physical examinations 
and CT scans. The evaluation of tumor response based 
on CT scans followed the criteria established by Conroy 
et al. [26], considering the vertical length and maximum 
transverse thickness of the tumor. Complete response 
(CR) was defined as the complete disappearance of the 
primary tumor area. Partial response (PR) was charac-
terized by a reduction of at least 30% in the sum of the 
diameters of all measurable target lesions compared to 
the baseline, sustained for a minimum of 4 weeks.

After treatment completion, patients were subjected to 
regular follow-up at intervals of 2 months during the first 
year, 3  months during the second and third years, and 
subsequently every 6  months. Disease progression was 
evaluated in accordance with RECIST criteria, consider-
ing clinical indicators, imaging examinations, or sympto-
matic signs.

Outcome measures and definitions
The primary outcome of this study was progression-free 
survival (PFS), which was defined as the duration from 
the initiation of treatment until either tumor progres-
sion, death attributable to the tumor, or the last follow-up 
date. The secondary outcome was the objective response 
rate (ORR), which represented the proportion of patients 
who achieved CR or PR two months after treatment 
completion.

Data preprocessing
The clinical features recorded for the study included age, 
sex, height, weight, body mass index (BMI), performance 
status (PS) score, lesion location, histologic grade (HG), 
clinical stage, T stage, N stage, radiation dose, pre-treat-
ment blood glucose, hemoglobin, and blood albumin 
values. The ORR and PFS data of patients were extracted 
and labeled as the targets. Afterward, the clinical fea-
tures were subjected to data encoding, data cleaning, 

normalization, and other preprocessing operations to 
obtain processed data.

The CT imaging data, acquired from patients prior 
to treatment, were stored in PNG format, with each 
image slice possessing dimensions of 512 × 512 pixels. 
Subsequently, these image slices were imported into 
the ArcMAP software to delineate the regions of inter-
est (ROI), specifically encompassing the general tumor 
and lymph node metastasis areas in esophageal cancer. 
To mitigate inter-gradient variability among evaluators, 
this study implemented a semi-automatic ROI deline-
ation approach. Deep learning techniques [27] based 
on an improved spatial pyramid model served as a pre-
liminary tool for generating ROIs, subsequent manual 
modifications and reviews by doctors are required. The 
delineated tumor areas underwent further refinement 
and scrutiny by two seasoned radiation oncologists, each 
possessing over a decade of experience. Following a con-
sensus agreement on the ROI boundaries, a senior phy-
sician with more than 15 years of professional expertise 
subsequently confirmed the final delineation of the ROIs. 
To eliminate noise interference and irrelevant areas, all 
CT image intensity values were truncated to the range 
of (-200HU, 250HU) [28], followed by normalization 
using the min–max normalization method. Ultimately, 
patients from Institution 1 were randomly allocated into 
the training and testing sets at an 8:2 ratio, while patients 
from Institution 2 were specifically designated for use as 
an additional validation set. This approach was imple-
mented to guarantee a representative distribution of 
cases for both model training and evaluation purposes.

Features extraction
In this study, we harnessed the power of the PyRadiom-
ics platform [29], a versatile open-source tool, to extract 
radiomic features from medical images. PyRadiomics, 
developed in the Python programming language, has 
gained popularity in the scientific computing community 
due to its flexibility and can be effortlessly installed on 
any system. As shown in Fig. 2 and Table 1, the radiomic 
feature extraction process began by delineating regions of 
interest (ROIs) in CT images, which served as the foun-
dation for our subsequent analyses. We utilized PyRa-
diomics to extract four distinct categories of radiomic 
features: Intensity Features, which involve direct calcu-
lations of tumor image grayscale values; Shape Features, 
typically used to quantify tumor morphology, size, and 
regularity; Texture Features, employed for quantifying 
texture patterns and tissue distribution within the tumor, 
often imperceptible to the human eye; and Wavelet Fea-
tures, aimed at extracting tumor information across dif-
ferent frequency domains.
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As the numerical values of quantified radiomic fea-
tures could exhibit significant variations across differ-
ent orders of magnitude, and the absolute differences 
between metric features could be substantial, a normal-
ization step was performed to mitigate the influence of 
features with disparate dimensions on the weighting of 
the objective function. To achieve this, the extracted 
radiomic features were subjected to Z-score standardi-
zation [30], following the formula:

where z represented the standardized value, µ denoted 
the mean value of the feature in the dataset, and σ signi-
fied the standard deviation of the values in the sample. 
This normalization procedure standardized the radiomic 
features, rendering them comparable and facilitating sub-
sequent analysis and modeling.

(1)Z =

(x − µ)

σ

Fig. 2  Radiomic feature extraction (a The regions of interest (ROI) of tumors were segmented on plain phase CT section; b The radiomic feature 
extraction process)
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The reproducibility of the extracted radiomic features 
was assessed using the interclass correlation coefficient 
(ICC) [31]. The features exhibiting an ICC value greater 
thanexceeding 0.75 were considered to demonstrate 
favorable reproducibility and robustness, which quali-
fied them for further analysis. The maximum relevance–
minimum redundancy (mRMR) method [32] was applied 
to evaluate the correlation between the features and the 
risk of recurrence. This method facilitated the identifica-
tion and elimination of redundant and irrelevant radi-
omic features, generating relevance-redundancy scores 
(mRMR scores) for each feature. Subsequently, the fea-
tures were ranked based on their scores, and the top 10% 
were selected for further analysis. These selected radi-
omic features, in conjunction with the preprocessed clin-
ical feature data, were integrated to form the multimodal 
dataset used for further analysis.

Risk factors selection
As shown in Fig. 3, a ML based approach was proposed 
in this study to identify the risk factors that significantly 
influence the ORR and PFS of inoperable elderly ESCC 
patients treated with CCRT or RT. To evaluate the impact 
of different treatment strategies on prognosis, three dis-
tinct cohorts were established within the training set: the 
overall patient cohort, the CCRT-treated patient cohort, 
and the RT-treated patient cohort.

Risk factor extraction is an iterative process which is 
controlled by the choosing of subsets and its validation. 
Firstly, a premise has been proposed that every single fea-
ture can be identified as a subset which will be sorted by 
performance score. Then, with the instruction of sorted 
result, the best subset is expanded by adding one feature 
from high to low until the current selected features’ per-
formance score becomes flatted. For each cohort, the risk 
factors influencing the ORR and PFS were extracted sep-
arately using specific methods, as outlined below:

First, comprehensive feature classification models were 
developed for inoperable elderly ESCC patients’ post-
treatment to predict both the response and progression 
of ESCC. By employing the Relief feature selection algo-
rithm [33], diverse sets of potential risk factors associated 
with ESCC response and progression were obtained from 
the multimodal data. Significant feature sets pertaining 
to ESCC response and progression were extracted based 
on the alternative feature sets, and prediction models 
were established to assess treatment efficacy and progno-
sis of ESCC, utilizing the extracted risk factors.

Second, risk factor extraction and survival predic-
tion models were developed to assess the impact of 
ORR and PFS in inoperable elderly ESCC patients’ post-
treatment. Comprehensive feature regression models 
were constructed to investigate the associations between 

treatment outcomes and various features in the patients. 
Utilizing these comprehensive feature regression models, 
surrogate feature sets for ORR and PFS following treat-
ment in the patients were generated. Subsequently, a set 
of risk factors for ORR and PFS after treatment in inoper-
able elderly ESCC patients were identified based on the 
surrogate feature sets. Prediction models for ORR and 
PFS in inoperable elderly ESCC patients after treatment 
were established for the three cohorts, leveraging the 
extracted risk factors.

Based on the difference of target tasks, Relief was used 
to the classification of ORR while Extra Trees was cho-
sen for the regression of PFS. In addition, for enhancing 
the model generalization, coefficient of determination 
R-squared was also used to valid the feature set. There 
is also an unavoidable challenge that is the uneven dis-
tribution of data in such specific task. Therefore, in the 
step of data pre-processing, SMOTE was adapted to bal-
ance the number of samples. All ML experiments were 

Fig. 3  ML method was used to screen and construct risk factors
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implemented by Python Scikit-Learn package [34], which 
a simple and efficient tool for predictive data analysis and 
data is mining.

Model evaluation
The accuracy of the PFS prediction model were evaluated 
using the coefficient of determination (R2 score), which 
measured the proportion of the variance in the depend-
ent variable that could be explained by the independent 
variables. A higher R2 score closer to 1 indicated a better 
fit of the model, while a score of zero or negative indi-
cated poor performance of the model on the dataset. 
Additionally, the performance of the ORR prediction 
model and PFS prediction model were evaluated using 
Receiver Operating Characteristic (ROC) curves and the 
Area Under the Curves (AUCs). The AUCs ranged from 
0.50 to 1.0, with a higher AUC indicating better model 
discriminative ability. The Hanley & McNeil method [35] 
was furtherly employed to assess the statistical signifi-
cance of the difference between our model’s AUC and the 
theoretical random AUC of 0.5. A p-value less than 0.05 
indicates a significant difference between them, which 
means this model has better discriminative ability of the 
model. Calibration curves were used to assess the devia-
tion between the actual and expected outcomes. A cali-
bration curve closer to the diagonal line indicated higher 
predictive accuracy.

CTDEPN construction
The CTDEPN was constructed by extracting independ-
ent risk factors using the best-performing ORR and PFS 
prediction models. Risk factors influencing ORR and PFS 
were extracted from the multimodal data for each of the 
three cohorts. The relationship between the common 
risk factors for ORR, the common risk factors for PFS, 
and different treatment methods within the training set 
was evaluated. Utilizing CTDEPN, predictions for ORR 
and PFS were calculated for each patient receiving differ-
ent treatment regimens, enabling personalized treatment 
recommendations based on the observed differences in 
ORR and PFS. The optimal cutoff value for the total score 
was determined using CTDEPN, leading to the catego-
rization of patients into high-risk and low-risk groups. 
Survival curves were generated using the K–M method 
to illustrate the outcomes of the two groups. The log-rank 
test was used to calculate the P value for hazard ratio 
(HR) estimation, with significance defined as a two-sided 
P value of < 0.05.

Results
Patients and characteristics
Baseline characteristics of patients in training set, testing 
set, and extra validation set were presented in Table  2. 

No discernable distinctions were identified between the 
three sets in relation to various demographic and clini-
cal parameters, including age, gender, body mass index 
(BMI), performance status (PS) score, overall stage, lesion 
location, histologic grade, T-stage, N-stage, clinical stage, 
radiation dosage, and treatment regimens.

Curves of calibration and validation
Multiple prediction models were constructed using ML 
techniques, and the prediction model with the best per-
formance were chosen. The ROC and calibration curves 
of the prediction model were depicted in Fig.  4. In the 
testing set, the prediction model exhibited an AUC of 
0.91, while in the extra validation set, the prediction 
model demonstrated an AUC of 0.84, indicating the 
favorable predictive performance. As shown in Fig. 4c, d, 
in our testing set, we have 22 true positive (TP) examples, 
27 true negatives (TN), 2 false positives (FP), and 5 false 
negatives (FN). In our extra validation set, we have 12 TP 
examples, 1 TN, 0 FP, and 7 FN. The Hanley & McNeil 
method demonstrated a statistically significant differ-
ence between our model’s AUC and the expected random 
AUC of 0.5, with a calculated p-value of 0.02. Through 
the application of ML method, a comprehensive analysis 
was conducted on the multimodal data of all patients in 
the training set of the ORR and PFS prediction models, 
as well as the cohorts of patients treated with CCRT and 
RT. Common risk factors influencing ORR and PFS were 
extracted from each of these three sets. These risk factors 
were ranked based on their respective influence weights, 
and the top 5 factors were selected as the ultimate deter-
minants of ORR and PFS.

CTDEPN performance
In this study, a comprehensive set of 56 features was 
extracted from the CT images. Among these, three spe-
cific features including original shape elongation (OSE), 
first-order skewness (FOS), and original shape flatness 
(OSF) demonstrated the most robust associations with 
the ORR within the training dataset. Similarly, within 
the training dataset, another trio of features including 
high gray-level run emphasis (HGLRE), first-order mini-
mum (FOM), and FOS exhibited the strongest associa-
tions with PFS. Among them, OSE quantified the shape 
of an object, with values close to 1 indicating circular-
ity. FOS measured the skewness direction of a data dis-
tribution, with positive values indicating right-skew and 
negative values indicating left-skew. OSF quantified the 
flatness of an object, with larger values indicating more 
flatness. HGLRE was a feature that highlights regions 
with high gray-level continuity in images, facilitating 
texture analysis. Areas with irregular or heterogeneous 
structures might have lower HGLRE. FOM measured 
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the minimum value within a dataset [36]. The risk fac-
tors influencing ORR in inoperable elderly ESCC patients 
selected through ML method were HG, T stage, OSE, 
FOS and OSF, while risk factors influencing PFS included 
BMI, HG, HGLRE, FOM and FOS. The R2 scores of the 

selected risk factors for the PFS prediction model were 
shown in Table 3. These risk factors were utilized in the 
subsequent construction of CTDEPN.

CTDEPN comprised two components: the ORR 
prediction model and the PFS prediction model. The 

Table 2  Comparison of baseline characteristics in training, testing and extra validation set

Characteristics Training set Testing set Extra Validation set P
(n = 135), % (n = 34), % (n = 20), %

Age (years) 0.577

   ≤ 75 78(57.8) 20(58.8) 9(45.0)

   > 75 57(42.2) 14(41.2) 11(55.0)

Sex 0.873

  Male 96(71.1) 24(70.6) 13(65.0)

  female 39(28.9) 10(29.4) 7(35.0)

BMI (kg/m2) 0.574

   < 18 29(21.5) 7(20.6) 1(5.0)

  18 ≤ X < 24 87(64.4) 22(64.7) 16(80.0)

  24 ≤ X < 28 16(11.9) 4(11.8) 2(10.0)

   ≥ 28 3(2.2) 1(2.9) 1(5.0)

  PS score (n = 135), % (n = 34), % 0.686

  0 5(3.7) 2(5.9) 2(10.0)

  1 120(88.9) 30(88.2) 17(85.0)

  2 10(7.4) 2(5.9) 1(5.0)

Lesion location 0.926

  Upper 29(21.5) 8(23.5) 4(20.0)

  Middle 81(60.0) 20(58.8) 14(70.0)

  Distal 25(18.5) 6(17.7) 2(10.0)

Histologic grade 0.928

  Well differentiated 10(7.4) 3(8.8) 1(5.0)

  Moderately differentiated 33(24.4) 9(26.5) 3(15.0)

  Poorly differentiated 17(12.6) 4(11.7) 4(20.0)

  Unknown 75(55.6) 18(53.0) 12(60.0)

T stage 0.445

  T3 53(39.2) 14(41.2) 5(25.0)

  T4 82(60.8) 20(58.8) 15(75.0)

N stage 0.751

  N0 64(47.4) 16(47.1) 11(55.0)

  N1 53(39.3) 13(38.2) 5(25.0)

  N2 18(13.3) 5(14.7) 4(20.0)

Clinical stage 0.837

  stage II 28(20.7) 7(20.6) 3(15.0)

  stage III 59(43.7) 15(44.1) 7(35.0)

  stage IV 48(35.6) 12(35.3) 10(50.0)

Radiation dose (Gy) 0.565

   < 60 85(62.9) 21(61.8) 10(50.0)

   ≥ 60 50(37.1) 13(38.2) 10(50.0)

Treatment regimens 0.128

  CCRT​ 37(27.4) 10(29.4) 10(50.0)

  RT 98(72.6) 24(70.6) 10(50.0)
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extracted risk factors were assigned scoring values for the 
two treatment options, CCRT and RT, respectively. CTD-
PEN was shown in Fig. 5, where it could be observed that 
the same risk factors are assigned different values when 
applying CCRT or RT. Notably, the total score, as well 
as the ORR, 1-year PFS rate, and 2-year PFS rate, exhib-
ited variations. Through comprehensive calculations, the 

model recommended treatment options associated with 
higher ORR and improved 1-year and 2-year PFS rates. 
When a previously untreated patient is confronted with 
the decision of opting for CCRT or RT, it becomes pos-
sible to integrate the patient’s clinical data and CT images 
into the model. This integration enables the estimation 
of the 1-year and 2-year Progression-Free Survival (PFS) 
rates following the administration of CCRT and RT treat-
ments, respectively. Subsequently, the selection of the 
treatment modality associated with a superior PFS rate 
can be recommended as the preferred course of action 
for the patient. For instance, consider an elderly patient 
with untreated moderately differentiated ESCC, T stage 
3, BMI of 20, OSE of 0.5, FOS of 1, OSF of 0.3, HGLRE of 
25, and FOM of 40. If the patient undergoes CCRT, the 
total score for ORR is 170, resulting in a 52% probabil-
ity of ORR. The total score for PFS is 128, correspond-
ing to a 1-year PFS rate of 25%. On the other hand, if the 

Fig. 4  ROC and calibration curves of prediction model in elder ESCC patients (a: ROC curves; b: calibration curves; c: confusion matrix in testing set; 
d: confusion matrix in extra validation set)

Table 3  Coefficients of different risk factors

Risk factor R2 score

HGLRE 0.697179

BMI 0.736510

FOM 0.960427

FOS 0.951633

HG 0.947236
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patient undergoes RT, the total ORR score is 140, with a 
47% probability of ORR. The total PFS score is 61, leading 
to a 1-year PFS rate of 87%. Based on these calculations, 
CTDEPN recommends RT treatment for this patient.

Curves of survival
According to the total score assigned to each patient by 
the CTDEPN, the patients were categorized into two 
groups, namely, the high-risk group (total score > 110) 
and the low-risk group (total score ≤ 110). K–M sur-
vival curves depicting the outcomes of the high-risk and 
low-risk groups are presented in Fig. 6 for the whole set, 
training set, and testing set. Between the two distinct 
risk categories, there was a sizable variation in PFS in the 
whole set and the training set (Fig. 6a, b). In the testing 
set, the median PFS in the low-risk group was longer, yet, 
the difference appeared negligible (Fig. 6c).

Discussion
Esophageal cancer is a prevalent malignancy, the inci-
dence of which has been steadily rising in the elderly 
population. While the Radiation Therapy Oncology 
Group (RTOG) 85–01 trial has demonstrated better 
prognoses in esophageal cancer patients undergoing 
definitive chemoradiotherapy than in those treated with 
radiation therapy alone [37], treatment decisions should 
not only take into account patients’ age, but also their 

functional status, risk of treatment-related morbidities, 
life expectancy, and patients’ preference [38, 39]. Careful 
selection between CCRT and RT remains vital for elderly 
individuals with unresected locally advanced ESCC [40]. 
Considering the growing aging population [41], it is 
essential to identify the risk factors that impact the ORR 
and PFS rate using multi-modal data and assess the asso-
ciation between these risk factors and different treatment 
approaches. In this study, we developed a nomogram, the 
CTDEPN, to aid in prognostic prediction and treatment 
decision-making for inoperable elderly ESCC patients. 
The CTDEPN comprises two components: ORR predic-
tion and PFS prediction. Here, by assigning scores based 
on the risk factors associated with CCRT and RT, the 
CTDEPN enabled the prediction of patient outcomes 
under different treatment regimens and provided recom-
mendations for optimal treatment approaches.

A previous study investigating machine-learning 
methods for exploring prognostic risk factors in esoph-
ageal cancer focused on extracting mRNA transcrip-
tomic data from public databases, such as The Cancer 
Genome Atlas (TCGA), to assess the predictive capa-
bility of the models for ORR or PFS [42]. Another 
study aimed to identify novel biomarkers that could 
predict treatment outcomes [43]. However, these stud-
ies were limited to patients undergoing CCRT for 
esophageal cancer and did not encompass patients 

Fig. 5  Combined Treatment Decision for Efficacy and Prognosis Nomogram (a: CCRT nomogram for ORR; b: RT nomogram for ORR; c: CCRT 
nomogram for PFS; d: RT nomogram for PFS)
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Fig. 6  Kaplan–Meier curves of patients in low and high-risk groups. (a: whole set; b: training set; c: testing set)
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receiving different treatment regimens or specifically 
focus on elderly patients. Given the impact of treat-
ment approaches on clinical outcomes, it is imperative 
to consider treatment-related factors when analyzing 
prognosis. Nevertheless, these studies could not pre-
dict patient prognosis under various treatment regi-
mens. In contrast, the CTDEPN, which integrates ORR 
prediction and PFS prediction, enabled the personal-
ized assessment of ORR and PFS in inoperable elderly 
ESCC patients under diverse treatment regimens, such 
as CCRT and RT. Hence, the CTDEPN could provide 
informed recommendations regarding the optimal 
treatment approach.

The accurate prediction of ORR and PFS in inoper-
able elderly ESCC patients is of paramount importance. 
Accurate prediction models enable the formulation of 
personalized treatment plans in clinical practice. In this 
study, multiple prediction models were developed using 
ML methods. Among these models, the ORR predic-
tion model and PFS prediction model, which exhibited 
the highest area under the curve (AUC) and calibration 
curves closest to the diagonal line, were selected. The 
AUC of the ORR prediction model is 0.80, while the AUC 
of the PFS prediction model is 0.73, indicating good pre-
dictive performance. The difference between the data 
set’s samples and the model’s predictions, or R2 score, is 
one of the performance evaluation metrics for regres-
sion-based ML models. A perfect model would have an 
R2 score of 1, whereas a score of zero or lower indicates 
poor performance on unseen datasets. In the case of the 
PFS prediction model, the R2 score was calculated as 
0.947236, indicating its high predictive accuracy.

In this study, the ORR and PFS prediction models 
were constructed to analyze patients’ multimodal data 
comprehensively and identify the risk factors influenc-
ing ORR and PFS. CTDEPN was developed to predict 
patients’ ORR and 1-year, 2-year PFS rates. The analysis 
revealed that the risk factors influencing ORR were HG, 
T stage and three radiomic features including OSE, FOS 
and OSF, while risk factors influencing PFS included 
BMI, HG and three radiomic features including HGLRE, 
FOM and FOS. In the study by Liu et  al. [44], PFS in 
ESCC patients aged ≥ 65 was associated with radiation 
duration, local recurrence, and disease-related death. The 
results of this study differ from those of Liu et al., possibly 
due to the fact that their study only analyzed clinical fea-
tures and had a relatively small sample size. Interestingly, 
our study did not reveal age to be a significant prognostic 
risk factor, consistent with previous research [45]. How-
ever, caution is still recommended when treating elderly 
patients based on other studies [46, 47].

In CTDEPN, the assignment of scores for the same 
risk factors differs depending on whether CCRT or RT is 

applied, leading to varying total scores and ORR, 1-year, 
and 2-year PFS rates. CTDEPN calculates and sug-
gests the treatment option that yields higher ORR and 
1-year/2-year PFS rates. Risk factors were assigned dis-
tinct scores within the monochromatic chart of the pre-
diction model, resulting in varying total scores and the 
subsequent prediction of 1-year and 2-year PFS rates for 
patients. When a newly diagnosed and untreated patient 
is faced with the decision between CCRT and RT, their 
clinical data and CT images can be integrated into the 
prediction model. This integration facilitates the estima-
tion of 1-year and 2-year PFS rates following CCRT and 
RT treatments, respectively. The treatment modality 
associated with a superior PFS rate can thus be recom-
mended as the preferred course of action for the patient. 
It is worth noting that there exists empirical evidence 
supporting the recommendation of CCRT for inoper-
able elderly ESCC patients, particularly those exhibiting 
low BMI, higher HG, lower HGLRE, and larger FOM and 
FOS values.

All patients were categorized into two groups accord-
ing to the total score obtained from the CTDEPN, 
namely, the high-risk group (total score > 110) and the 
low-risk group (total score ≤ 110). K–M survival curves 
were generated for the high-risk and low-risk groups 
using the overall dataset, training set, and testing set. 
A noticeable difference was observed in both the over-
all dataset and the training set, with the low-risk group 
exhibiting a significantly higher median PFS rate than 
the high-risk group. In the testing set, the low-risk group 
also displayed a higher median PFS rate than the high-
risk group, although with a less pronounced difference. 
These findings align with those of previous studies [48]. 
However, contrasting results have been reported in other 
studies where elderly ESCC patients, regardless of receiv-
ing CCRT or RT treatment, achieved longer median PFS 
durations [11]. This disparity may be attributed to the 
inclusion of early-stage patients with clinical stage I dis-
ease in those studies, while most of the patients in our 
study were at stages III and IV.

Insufficient evidence exists to substantiate the appli-
cation of CCRT or RT in the treatment of inoperable 
elderly ESCC patients, and the therapeutic significance 
of these modalities remains unclear. In the context of 
our study, it was observed that patients exhibiting lower 
BMI, lower HG, reduced HGLRE, larger FOM, and 
a greater FOS were more likely to be considered suit-
able candidates for CCRT. Nonetheless, it is imperative 
to exercise prudence and careful clinical judgment, as 
the potential risks associated with these therapies may 
outweigh the anticipated benefits depending on the 
individual patient’s condition. Therefore, taking into 
account the delicate balance between risk and benefit, 
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the strength of available evidence, and patient prefer-
ences, our findings suggest that there is only weak evi-
dence to support the recommendation of CCRT for 
inoperable elderly ESCC patients who exhibit charac-
teristics such as low BMI, low HG grade, lower HGLRE, 
larger FOM, and increased FOS.

Despite certain limitations, such as the retrospective 
nature of this study and the lack of external validation 
for the created models, the CTDEPN appears to have 
the best internal validation. Moreover, as the data were 
solely obtained from the authors’ institution, the find-
ings may not represent patients from other regions, 
and geographical variations may be present. Further 
research is necessary to confirm the findings of this 
study through external validation and the inclusion of 
data from a more diverse range of sources.

Conclusions
In the present study, a multitask nomogram that can 
noninvasively predict the efficacy and prognosis of dif-
ferent treatment options for elderly inoperable ESCC 
patients using their multi-modal data before treatment 
was developed and validated. The nomogram can rec-
ommend the optimal treatment regimen according to 
the prediction results. The CTDEPN is a noninvasive 
and valuable tool that can facilitate personalized treat-
ment and optimize management for elderly inoper-
able ESCC patients. Future research in the domain of 
machine learning-related models holds the potential to 
enable more extensive prospective investigations aimed 
at validating the model’s performance and augmenting 
its practical applicability.
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