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Abstract 

Background  The exponential growth of digital healthcare data is fueling the development of Knowledge Discovery 
in Databases (KDD). Extracting temporal relationships between medical events is essential to reveal hidden patterns 
that can help physicians find optimal treatments, diagnose illnesses, detect drug adverse reactions, and more. This 
paper presents an approach for the extraction of patient evolution patterns from electronic health records written 
in Catalan and/or Spanish.

Methods  We propose a robust formulation for extracting Temporal Association Rules (TARs) that goes beyond sim-
ple rule extraction by considering the sequence of multiple visits. Our highly configurable algorithm leverages this 
formulation to extract Temporal Association Rules from sequences of medical instances. We can generate rules 
in the desired format, content, and temporal factors while accounting for different levels of abstraction of medical 
instances. To demonstrate the effectiveness of our methodology, we applied it to extract patient evolution patterns 
from clinical histories of multimorbid patients suffering from heart disease and stroke who visited Primary Care Cent-
ers (CAP) in Catalonia. Our main objective is to uncover complex rules with multiple temporal steps, that comprise 
a set of medical instances.

Results  As we are working with real-world, error-prone data, we propose a process of validation of the results 
by expert practitioners in primary care. Despite our limited dataset, the high percentage of patterns deemed correct 
and relevant by the experts is promising. The insights gained from these patterns can inform preventive measures 
and help detect risk factors, ultimately leading to better treatments and outcomes for patients.

Conclusion  Our algorithm successfully extracted a set of meaningful and relevant temporal patterns, especially 
for the specific type of multimorbid patients considered. These patterns were evaluated by experts and demonstrated 
the ability to predict risk factors that are commonly associated with certain diseases. Moreover, the average time gap 
between the occurrence of medical events provided critical insight into the term of these risk factors. This information 
holds significant value in the context of primary healthcare and preventive medicine, highlighting the potential of our 
method to serve as a valuable medical tool.
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Background
The increasing adoption of Electronic Health Records 
(EHRs) in healthcare systems offers the potential for 
leveraging large amounts of health data to improve the 
efficiency and accuracy of medical practitioners. To 
support clinical diagnosis, prevention, and administra-
tive decision-making, healthcare professionals can ben-
efit from data mining technologies [1] and/or machine 
learning techniques [2]. These techniques can be used 
to model information from multiple data sources, such 
as images [3, 4], DNA sequences [5] or structured and 
unstructured textual data. In particular, automatic 
analysis of EHRs can be essential for identifying pat-
terns, preventing errors, improving quality, reducing 
costs, and saving time for healthcare services. Several 
studies have already demonstrated the potential of data 
mining techniques to extract valuable insights from 
EHRs [6, 7].

In the context of medical diagnosis, understanding the 
interaction between medical instances during a patient 
visit is crucial for early detection and prevention of new 
diseases. However, research on the temporal relation-
ships between these instances is lacking. Therefore, our 
goal in this work is to explore the possibility of modelling 
patient evolution patterns based on their clinical histo-
ries, to identify interesting associations such as drug side 
effects, recurrent chronic symptoms, and co-occurring 
diagnoses. By doing so, we hope to improve the medical 
tools available to physicians and ultimately provide more 
personalized patient care.

EHRs are essential sources of temporal information 
that provide a comprehensive understanding of health-
care events. To extract implicit, non-trivial, and poten-
tially useful abstract information from large collections 
of temporal data, temporal data mining techniques have 
been explored [8]. Our approach focuses on one of these 
techniques, namely temporal association rules  [9–16]. 
We aim to develop a new variant of temporal association 
rule that incorporates our formulae for computing the 
associated measures of support and confidence. Further-
more, we will propose two variants of a new algorithm 
for mining these temporal association rules.

Although our framework will be general, in this article 
we will focus on its application to knowledge discovery 
for risk prediction and disease diagnosis in multimorbid 
patients. These patients are often affected by multiple 
disorders and symptomatologies, making them a preva-
lent issue in certain clinical contexts, such as primary 
care. Despite their prevalence, the treatment of multi-
morbid patients has not been extensively studied. To 
address this research gap, we aim to develop a robust 
framework for extracting temporal association rules from 
multi-attribute data.

Temporal association rules are a type of sequential pat-
tern mining that aims to identify associations between 
events that occur in a particular temporal order. By 
analyzing the timing and sequence of events, temporal 
association rules can provide valuable insights into the 
underlying relationships between different health con-
ditions or symptoms. Our approach will focus on the 
temporal aspect of the data, which will be used as an 
input parameter and obtained as part of the results. We 
will also incorporate the ability to express healthcare 
instances at different levels of abstraction, allowing us to 
extract patterns with different degrees of generalization1. 
Our ultimate goal is to develop a comprehensive frame-
work for extracting these rules from multi-attribute data 
in order to improve our understanding of the complex 
relationships between health conditions.

Association rule mining is a data mining technique that 
aims to discover relationships, patterns, or rules among 
variables in a dataset. The origins of association rule 
mining can be traced back to the Apriori algorithm [17]. 
Since then, several extensions have been developed for 
different purposes  [18], such as sequential pattern min-
ing [19] which aims to identify patterns of ordered events 
in a dataset by finding frequent sequences of itemsets. 
An example of such an extension is the Generalized 
Sequential Pattern (GSP) algorithm [20]. The problem of 
learning rules from time series data, where the anteced-
ent tends to appear in conjunction with the consequent 
according to certain time constraints, is called temporal 
association rule mining.

A temporal association rule (TAR) is a type of tempo-
ral relationship that describes a connection between an 
antecedent and a consequent. Although temporal pattern 
mining in general (and temporal association rule min-
ing in particular) has received considerable attention in 
recent years, one of the main problems in this area is the 
lack of visibility of most of the work, as there is no stand-
ard terminology to refer to. Different formulations of 
TARs can be found in the literature, each with different 
approaches to computing support and confidence, and 
each introducing the temporal component in different 
ways, making it difficult to find and compare proposals 
and studies in this area.

Mooney and Roddick [21] describes several sequen-
tial pattern mining approaches, including tempo-
ral sequences and more specifically TARs. These 
approaches extract patterns with only one antecedent 
and one consequent. Eventually, the antecedent may 
consist of several sequential elements, but there is no 

1  Throughout this work, we will use the terms patterns and rules inter-
changeably to refer to the concept of temporal association rules.
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way to detail temporal constraints among them. How-
ever, our algorithm has been designed to extract rules 
with different numbers of temporal steps (allowing a 
different interval [t1, t2] for each step), attributes and 
levels of concept abstraction.

Furthermore, a comprehensive overview of the dif-
ferent methods for temporal association rule mining 
is provided in [9]. The work proposes a taxonomy in 
which they classify the existing approaches at a first 
level into two categories, based on the use of the time 
variable: (1) “time as implied component”, those that 
use temporally ordered datasets to discover temporal 
constraints, and (2) “time as integral component” those 
that integrate the time variable as another attribute of 
the data and analyze the temporal aspects in which the 
rules occur. According to their definition, our method-
ology would be a hybrid belonging to both first-level 
categories, “time as implied” (with second-level cat-
egory “sequential”) and “time as integral component” 
(with second-level category “time-interval”). This is so 
because, on the one hand, the time variable provides 
order and temporal constraints to the EHR database, 
and on the other hand it is also used as a parameter in 
the process of pattern extraction (in the form of time 
gaps). The article also describes a large number of 
applications in the areas of medicine and healthcare 
(such as [22–25]). However, none of them is directly 
comparable to our approach, as they only belong to one 
of the categories in the taxonomy.

In [10] and [11], an algorithm for the extraction of 
temporal association rules is presented, which deals 
with complex temporal patterns, represented through 
the formalism of Temporal Abstractions. This algo-
rithm allows dealing both with events with a certain 
time duration and with events that occur at a single 
moment in time.

In their paper, Zhan et al. [12] present a more general-
ized form of temporal association rules. These extended 
temporal association rules take the form of an implica-
tion X1

t1
⇒ X2

t2
⇒ ...

tp−1
⇒ Xp with p ≥ 2 , where each ti 

is a time constraint. In addition, a modified formulation 
for computing support and confidence for these rules is 
defined. Furthermore, the authors introduce another form 
of temporal association rules, X1

T1
⇒ X2

T2
⇒ ...

Tp−1
⇒ Xp , 

where Ti = ti1 , ti2  are time intervals with ti1 < ti2 . They 
use these definitions to propose a fast algorithm for min-
ing temporal association rules, which they test on both 
synthetic and real datasets, demonstrating excellent per-
formance. Our work is based on a combination of ideas 
from [10] and [12]. By leveraging these insights, we aim to 
advance the application of temporal association rules and 
develop more effective methods for knowledge discovery.

Methods
Electronic health record (EHR) dataset
Our dataset contains information on patient visits at Pri-
mary Care Centers (CAP) in Catalonia. This dataset has 
been provided by IDIAP JGol [26] and consists of EHRs 
of multimorbid patients visited between 2010 and 2016. 
In our case, a multimorbid patient is a patient whose 
medical history includes at least one of the following 
symptoms, which must have occurred when the patient 
was over 50 years of age:

•	 Transient ischaemic attack
•	 Haemorrhagic strokes
•	 Ischaemic strokes
•	 Other types of strokes
•	 Stroke-related sequelae
•	 Lung cancer
•	 Colorectal cancer
•	 Acute myocardial infarction
•	 Exitus

Our EHRs, written in Catalan and/or Spanish, are com-
posed of four sections: reason for the consultation, medi-
cal examination, evaluation and medical treatment plan. 
These EHRs were manually annotated and represented in a 
graph format (Fig. 1) with four types of nodes: Body part, 
Diagnosis, Drug, and Sign or symptom. These nodes will 
represent our healthcare instances. In addition, six types of 
relationship were annotated: before, causality_of, coOccur, 
cotreated_with, located_in, and substituted_by. The “Appen-
dix” contains a detailed description of node properties (or 
attributes) and relationships. As the corpus has been manu-
ally annotated, it may contain some inconsistencies. Indeed, 
the manual generation of high quality annotated medical 
records for such complex concepts and relationships has 
been particularly challenging, highlighting the need for fur-
ther development of resources for annotating EHRs.

The IDIAP dataset contains information about 320 
patients making a total of 72,257 healthcare instances, 
distributed as shown in Table 1. We focus on two node 
attributes, the code associated with each node and the 
raw_text, which is the description that the practitioner 
entered for each medical instance. The table shows the 
number of different codes, the number of different text 
descriptions, and the total number of instances for each 
type of node. There are a total of 14,330 visits. Each 
patient attended an average of 44.78 visits during these 
six years, with a standard deviation of 34.83. The patient 
with the most visits had 205 visits and the patient with 
the fewest visits had only 1 visit. Visits have an average 
of 5.04 healthcare instances. The mean time between 
two consecutive visits for a patient is 42.83 days and the 



Page 4 of 15Ageno et al. BMC Medical Informatics and Decision Making          (2023) 23:189 

standard deviation is 86.29 days, with a minimum of 
1 day and a maximum of 2,005 days (5.5 years). These 
annotated EHRs have been imported into a Neo4J  [27] 
database, from which the information can be extracted.

Data preparation
The first stage of data preprocessing consisted of the 
filtering of the annotations according to the time and 

certainty attributes (see “Appendix”). The following pre-
processing steps were applied to the raw_text attribute: 
case folding, stopword removal and string distance. The 
latter means that for those raw_text values that have 
more than three characters, we grouped all the values 
that had a Levenshtein distance equal to or less than two. 
Furthermore, some mistyped codes were corrected.

Table  2 shows the number of different values for the 
attributes code and raw_text after preprocessing. Despite 
this preprocessing, we can see that our dataset is quite 
limited. The number of different healthcare instances is 
still large with respect to the number of visits, so the fre-
quency of occurrence of each medical instance is small. 
This may imply low supports for the associations, which 
we will try to increase through generalization.

Different levels of generalization can be applied to each 
type of code, except for the Body part nodes (see “Appen-
dix” for a description of the levels). The use of raw_text 
was discarded because the small size of the dataset did 
not allow sufficient generalization. Table 2 shows the high 
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Fig. 1  Data model of IDIAP dataset

Table 1  Distribution of healthcare instances and their attributes 
before preprocessing

Node type Codes Raw_texts Instances

Body part 601 5184 14452

Diagnosis 1193 6429 15593

Drug 796 3742 18338

Sign or symptom 249 10455 23874

Total 2839 25810 72257



Page 5 of 15Ageno et al. BMC Medical Informatics and Decision Making          (2023) 23:189 	

variability of the raw texts compared to the number of 
occurrences. In this work, we have decided to use a level 
of generalization where we use level 2 for Diagnosis, level 5 
for Drug and level 2 for Sign or symptom. We consider that 
these levels provide a good compromise between interpret-
ability and generalization. When we refer to a code level, 
we specify the maximum code level allowed. However, if a 
given node does not provide the specified level, its maxi-
mum level of generalization will be used.

Temporal association rules formulation
In this section, we will present the formulation for comput-
ing our temporal association rules. As mentioned above, 
this formulation is an extension of the one defined in [12].

Let J  be a set of healthcare instances, denoted by 
I1, I2, . . . , Im . Let D be a set of temporal transactions, where 
each transaction (Si, ti) corresponds to a healthcare visit 
Si attended at time ti . First, we define temporal associa-
tion rules of the form X t

⇒ Y  , where X ⊂ J  , Y ⊂ J  and t 
is a unit of time (in our context, days). These rules imply 
that a time gap of t has elapsed between an occurrence of 
instances X and an occurrence of instances Y. Unlike con-
ventional association rules, X ∩ Y need not necessarily be ∅ , 
since it makes sense for the same healthcare events to con-
tinue to occur after some time.

Let

where Si is a visit at time (day) i. Then

where p is a patient, Si is a visit at time i, and t is a time 
interval (or temporal gap) measured in days. This func-
tion returns a value of 1 if, at time i, the patient p has 
healthcare instances X, and at time i + t , the same patient 
p has instances Y. Otherwise, the function returns a value 

g
p
Si
: P(J ) → {0, 1}

g
p
Si
(X) =

{

1 if Si exists and contains X for patient p
0 else

g
p
Si ,t

: P(J )2 → {0, 1}

g
p
Si ,t

(X ,Y ) = min
(

g
p
Si
(X), g

p
Si+t

(Y )

)

of 0. In our formulation, the parameter ∅ simply indicates 
the occurrence of a visit at the given time. For example, 
g
p
Si ,t

(X , ∅) is equal to 1 if, for a given patient p, Si exists 
and contains X, and there is a visit Si+t.

Let

ht is the count support for X, Y. The inner sum accounts 
for the number of times the patient p presents X at time 
i and Y at time i + t . The outer sum is done to take into 
account all the patients. This formula is used to compute 
the support and confidence of temporal association rules 
X t
⇒ Y .
Furthermore, we extend these temporal associa-

tion rules to deal with time intervals. These rules are 
expressed as X T

⇒ Y  , where T = [t1, t2](t1 < t2) . We 
denote t1 as min_gap and t2 as max_gap . Then:

hT is the count support for X, Y. The inner sum accounts 
for the number of times that a patient p presents X at time 
i and Y at time i + t in a set of visits Si . The min function 
ensures that, in case the association X T

⇒ Y  exists, it is 
counted only once for each consequent. The summation 
∑

Si∈D
 takes into account all visits of a patient, while the 

outer summation accounts for all patients. Using these 
formulae, we can define our version of the following 
measures:

In particular, rulesRespectConsequent (Eq. 3) is a new 
measure requested by the experts during the evaluation 

ht : P(J )2 → N, ht(X ,Y ) =
∑

p

∑

Si∈D

g
p
Si ,t

(X ,Y )

hT : P(J )2 → N

hT (X ,Y ) =
∑

p

∑

Si∈D

min

(

∑

t∈T

g
p
Si ,t

(X ,Y ), 1

)

(1)support (X
T
⇒ Y ) =

hT (X ,Y )

hT (∅, ∅)

(2)confidence (X
T
⇒ Y ) =

hT (X ,Y )

hT (X , ∅)

(3)rulesRespectConsequent (X
T
⇒ Y ) =

hT (X ,Y )

hT (∅,Y )

(4)lift (X
T
⇒ Y ) =

support(X ,Y )

support(X ,∅) · support(∅,Y )

(5)

leverage (X
T
⇒ Y ) = support(X ,Y )

− support(X , ∅) · support(∅,Y )

Table 2  Distribution of healthcare instances and their attributes 
after preprocessing

Node type Codes Raw_texts Instances

Body part 601 4103 14452

Diagnosis 1158 4003 15012

Drug 792 1930 18086

Sign or symptom 225 8138 22835

Total 2776 18174 70385
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phase (see “Results” section). It denotes the number 
of medical cases that feature the antecedents in the 
elapsed gap, out of all the cases that present the conse-
quent. The rest are widely known measures.

When applying the previous formulation to auto-
matically infer patterns that help to understand the 
clinical conditions of multimorbid patients, we faced 
a dilemma. On the one hand, temporal association 
rules could reflect recurrent patterns presented by the 
patients, extracted as the repetition of medical events 
frequently presented by any patient. The rationale of 
this implementation is consistent with the conven-
tional Apriori algorithm, which does not distinguish 
the agent presenting the patterns, so this approach will 
be referred to as apriori-like. On the other hand, 
temporal association rules may reflect patterns that fre-
quently occur among patients, ignoring the repetition 
of healthcare events within each patient. This approach 
aims to generate common rules that are present in the 
clinical data and might be more useful for providing 
information about conventional (non-multimorbid) 
patients, so it will be referred to as patient-ori-
ented. The previous formulation needs to be adapted 
to these two approaches, though it is not included here 
to make the text more readable.

The formulations presented here can be extended 
to cases where a sequence of antecedents or tem-
poral steps leads to a given consequent. The result-
ing temporal association rules have the form 
X1

T1
⇒ X2

T2
⇒ · · ·

Tn
⇒ Xn , where each X represents either 

a single instance of a diagnosis, drug, body part, symp-
tom or sign or a combination of these. In this nota-
tion, the arrows represent a time interval between each 
sequence of events, or different healthcare visits occur-
ring at different times. These temporal steps can be 
time specific (t) or intervals (T).

The resulting formulation is a modification of the one 
presented in [12]. Let t = (t1, · · · , tq−1)

The computation of the support count function 
changes according to the version. For the apriori-
like approach:

g
p
Si ,t

: P(J )q → {0, 1}

g
p
Si ,t

(X1,X2, ...,Xq) =

min

(

g
p
Si
(X1), g

p
Si+t1

(X2), ..., g
p
Si+t1+...+tq−1

(Xq)

)

(6)
h
p
t : P(J )q → N

h
p
t (X1,X2, ...,Xq) =

∑

Si∈D

g
p
Si ,t

(X1,X2, ...,Xq)

And for the patient-oriented approach:

Summing up for all the patients:

Then, the rule indicators can be computed with the 
same formulae for both versions:

The previous formulation is also extended to deal with 
time intervals, although we will not go into the details here.

Temporal association rules extraction
Using the previous formulation, we have developed two 
algorithms for mining temporal association rules using 
both apriori-like and patient-oriented 
approaches. These algorithms are based on the work 
of  [10] and  [12]. Both algorithms leverage pre-computed 
data structures based on the generalization levels of 
healthcare instances. These algorithms also take as input 
the minimum support and confidence required (minsup 
and minconf) and a list of n time intervals [T1,T2 · · ·Tn] 
whose length represents the maximum number of tem-
poral steps to be considered for the rules.

Both algorithms share a common structure, but the 
main difference between them lies in the counting meth-
odology. The apriori-like approach counts all con-
secutive events that satisfy temporal constraints, while 
the patient-oriented approach counts patients that 
satisfy temporal constraints across their visits. In particu-
lar, if the same set of consecutive events satisfies the con-
dition ai

T1
⇒ aj in one patient multiple times, it is counted 

only once. The differences between the two algorithms 
are implemented in the code by calculating support 
and confidence differently, as described in the formula-
tions. In addition, a new variable, minSup_Apriori, is 

(7)

h
p
t : P(J )q → N

h
p
t (X1,X2, ...,Xq) = min





�

Si∈D

g
p
Si ,t

(X1,X2, ...,Xq), 1





(8)ht(X1,X2, ...,Xq) =
∑

P

h
p
t (X1,X2, ...,Xq)

support(X1
t1
⇒ X2...

tq−1

⇒ Xq) =
ht(X1,X2, ...,Xq)

ht(∅, ...,∅)

confidence(X1
t1
⇒ X2...

tq−1

⇒ Xq) =
ht(X1,X2, ...,Xq)

ht(X1,X2, ...,Xq−1,∅)

rulesRespectConsequent(X1
t1
⇒ X2...

tq−1

⇒ Xq) =
ht(X1,X2, ...,Xq)

ht(∅, ...,Xq)

lift(X1
t1
⇒ X2...

tq−1

⇒ Xq) =
ht(X1,X2, ...,Xq)

ht(X1,X2, ...,Xq−1,∅) ∗ ht(∅, ...,Xq)

leverage(X1
t1
⇒ X2...

tq−1

⇒ Xq) = ht(X1,X2, ...,Xq)

− ht(X1,X2, ...,Xq−1,∅) ∗ ht(∅, ...,Xq)
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introduced to take into account the minimum support 
of the previous time steps. This variable is a percentage 
value. Figure  2 provides a brief description of the steps 
involved in the algorithm.

The algorithms return a list of rules along with their 
corresponding metrics: support, confidence, lift, lev-
erage, and rulesRespectConsequent. Furthermore, the 
average time gap between each successive event of the 
rules is computed. For apriori-like, the average 

time gap is calculated by taking the average of all the 
time gaps that meet the thresholds for the specific step. 
For patient-oriented, it is calculated by taking 
the average of a list, where each item is the average of 
the time gaps satisfying the thresholds presented by a 
patient.

By providing all these parameters, we aimed to design 
a highly adaptable code, not only in terms of support and 
confidence measures but also to allow the extraction of 

Fig. 2  Flow diagram of the temporal association rule mining algorithm. Pink ovals represent intermediate item sets ( F1 ) and sets of rules ( Fk and Rk)
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rules with different numbers of temporal steps, differ-
ent time gaps and different levels of abstraction for each 
instance. The aim is to provide a powerful tool for gener-
ating rule sets that can be applied across various domains 
and applications. The source code of the algorithms is 
available at [28].

Results and discussion
A good diagnosis must take into account the patient’s 
medical history. As mentioned in the “Background” sec-
tion, we have tested our framework mainly to obtain pat-
terns to help in diagnosis or to detect risk factors that 
may somehow derive certain diseases. Since there is no 
gold standard of valid patterns, the evaluation of the 
obtained results in clinical practice is usually based on 
the interpretation by domain experts, who may consider 
various criteria to assess their quality, relevance, and clin-
ical significance. It’s important to note that these criteria 
may vary depending on the specific clinical context, dis-
ease area, or research objectives.

In our work, the evaluation of the generated patterns 
was carried out by three experts, experienced primary 
care physicians from IDIAP [26]. As the usefulness 
of a pattern ultimately depends on the experts’ abil-
ity to apply it or integrate it into the decision-making 
process, we conducted initial test evaluations using a 
small set of patterns. After the preliminary evaluation 
process, the authors and the experts agreed on two 
specific criteria:

•	 Correctness: Experts assess whether the patterns 
align with known clinical knowledge, established 
medical guidelines, or domain expertise. Patterns are 
intuitive and logically consistent. Experts consider 
whether the patterns are easy to understand and pro-
vide clear insights into patient characteristics, dis-
ease trajectories, risk factors, treatment effectiveness 
or other relevant clinical factors. They also assess 
whether the patterns can effectively predict future 
events, disease progression, treatment response, or 
adverse outcomes.

•	 Relevance: Experts assess whether the patterns 
reflect meaningful associations or dependencies 
that have practical utility for patient care, disease 
progression, treatment response or other clinical 
outcomes. They assess whether the patterns can 
contribute to improved diagnosis, prognosis, treat-
ment selection, risk assessment or patient moni-
toring. Therefore, experts may consider a pattern 
that does not represent known medical knowledge 
to be relevant.

We then worked together to develop a set of labels to 
assess both criteria. These labels allow us to determine 
the level of agreement among experts on our findings. 
The labels for Correctness evaluation can be defined as 
follows:

•	 Totally incorrect: The rule is completely wrong or 
contradicts medical knowledge.

•	 Totally correct: The rule is completely right and 
aligns with medical knowledge.

•	 Partially correct (temporal facet): The rule is cor-
rect, but any of the temporal gaps between anteced-
ents and consequent are not the expected ones.

•	 Partially correct (clinical facet): The rule is par-
tially correct due to the absence or excess of any 
antecedent.

•	 Partially correct (both facets): The rule is partially 
correct due to the absence or excess of any anteced-
ent and the inappropriateness of any of the time gaps.

In terms of Relevance, the rules have been sorted accord-
ing to the following classes:

•	 Not relevant: The rule is considered worthless (it 
presents no significant clinical relevance).

•	 Relevant and known: The rule has significant clini-
cal relevance, and it is a well-known implication 
(common knowledge among experts).

•	 Relevant and unknown: The rule has significant 
clinical relevance and should be studied further, as it 
is not a well-known implication.

It is important to emphasize that we are not looking for 
strict cause-effect relationships here but for patterns of 
behaviour. This means that there can be any kind of rela-
tionship between antecedents and consequent.

We generated several packs of rules, each representing 
different parameterizations. Due to the large number of 
combinations of parameter values, we fixed some of them 
and focused on testing both approaches (apriori-
like and patient-oriented) under the following 
time constraints, which were agreed upon by the experts. 
For simplicity, the same time constraints were applied to 
each of the several possible temporal steps of the rules:

•	 Shortest-term rules: medical events that take place 
within 1 to 10 days (39% of the visits in our test set 
occurred within this interval).

•	 Short-term rules: medical events that occur within 5 
to 30 days (45% of the visits).

•	 Mid-term rules: medical events that take place within 
20 to 90 days (33% of the visits).
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•	 Long-term rules: medical events that occur within 60 
to 120 days (11% of the visits).

These packs of rules were individually annotated by the 
experts using the previous labels. Then they came to a 
common agreement. The experts have emphasized that 
the relevance of the patterns depends heavily on the 
time gaps. It is very different to be diagnosed with a cold 
than it is to be diagnosed with a malignant neoplasm. 
If a patient has a cold, it may be relevant to know what 
happened 3-15 days before, but in the case of malignant 
neoplasm, we would like to consider what happened, for 
instance, in the last 30-300 days.

Nevertheless, these executions still produce hundreds 
of rules, depending on the values of the parameters min_
sup and min_conf. To filter these rules for each min_gap 
- max_gap parameterization, the first selection criterion 
was that they had to contain more than one temporal 
step, since having multiple temporal steps is essential for 
testing our methodology. These resulting multi-step rules 
were sorted according to lift and then rulesRespectConse-
quent values, and the top 20 were selected2. Lift measures 
the ratio of the confidence of the rule to the expected 
confidence of the rule (Eq.  (45)). Overall, lift quantifies 
the degree of association between the elements on the 
antecedents and the consequent of a rule, and higher val-
ues of lift indicate stronger association. In this work, the 
sorting criterion for the rules was chosen on the basis of 
the lift, and in the case of ties, the frequency of occur-
rence would prevail.

The minimum support for each pack was adjusted 
based on the chosen approach and time gap. Initially, we 
started with values around 5% and gradually decreased 
them to obtain rules with more temporal steps. For 
instance, the minimum minSup was set to 0.5% to gen-
erate 3-step rules for the shortest-term time gap of the 
apriori-like approach. As for minConf, it was set at 
a high level with a minimum value of 80%.

After each pack was independently annotated by the 
three experts, we assessed the agreement achieved. 
Since the classification categories are not ordinal and 
three annotators were involved, we decided to use Fleiss’ 
Kappa measure  [29]. The results obtained (see Table 3), 
highlight the subjectivity and difficulty of the evaluation 
process. According to the standard interpretation  [30], 
positive values below 0.2 would be considered as a “slight 
agreement”. However, we would have expected a higher 

(at least “fair”) agreement, that would have indicated 
that these patterns corresponded to common medical 
knowledge among physicians. There may be two reasons 
for these figures. On the one hand, the small volume of 
data might produce patterns that reproduce less fre-
quent phenomena (uncommon behaviour in the experts’ 
knowledge), which may justify the inconsistency among 
the experts. On the other hand, the experts complained 
that the codes were too general, which made the evalu-
ation harder. They also pointed out that, in many cases, 
healthcare instances are findings that you discover when 
performing other examinations. This is coherent with our 
interpretation of our rules as patterns of behaviour rather 
than strict cause-effect relationships.

Tables  4 and 5 show respectively a summary of the 
percentages of Correctness and Relevance in the anno-
tated packs after the expert consensus. The results 
depend strongly on the approach. For apriori-like, 
regarding Correctness, we can see that two-thirds of the 
patterns are considered correct, indicating that our algo-
rithm is extracting sound data. However, the patient-
oriented approach performs worse. One explanation 
for this positive tendency towards the apriori-like 
method stems from the dataset used for the pattern 
extraction, which consisted of multimorbid patients 
whose visits present recurrent medical conditions 
and are therefore more suitable for apriori-like 

Table 3  Fleiss’ Kappa agreement among experts

Approach Correctness Relevance

apriori-like 0.105 0.038

patient-oriented 0.119 0.002

Table 4  Summary of Correctness results after consensus

Correctness

Incorrect Correct Par-Temp Par-Clinic Par-Both

apriori-like

  Shortest-term 25 65 10 0 0

  Short-term 35 60 5 0 0

  Mid-term 50 45 5 0 0

  Long-term 10 80 10 0 0

  Global 30 62.5 7.5 0 0

patient-oriented

  Shortest-term 50 45 0 5 0

  Short-term 45 35 10 10 0

  Mid-term 45 35 10 10 0

  Long-term 43.3 23.3 16.6 10 6.6

  Global 45.82 34.57 9.15 8.75 1.65

2  In addition, those rules containing sign or symptom with ICPC-3 code 
AS99 (‘Other specified general symptoms, complaints and abnormal find-
ings’) and rules containing ICD-10 code Z76.8 (‘Persons encountering health 
services in other specified circumstances’) were filtered for being too general.
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characteristics. The difference between the approaches 
is particularly relevant for long-term patterns, probably 
because the shortage of data is more critical when cap-
turing long-term phenomena.

As to Relevance consensus, the percentage of relevant 
known rules is greater for apriori-like. Once more, 
it seems that this approach works better at finding well-
known associations in this particular dataset. However, 
the “Relevant and unknown” category seems to be an 
issue: there are no patterns at all. Prior to consensus, a 
few cases were annotated by the experts with this cat-
egory, but it did not appear anymore after agreement. 
This is unfortunate, since we considered it a very interest-
ing tag. We hypothesize that this happened because the 
experts found it difficult to annotate cases as relevant, 
especially those that were frequent but did not conform 
to conventional patterns.

Table  6 shows the relationship between correctness and 
relevance. As expected, most of the cases are either totally 
correct and relevant-known or incorrect and non-relevant.

Tables 7 and 8, present, for each approach, an example 
of a correct and relevant rule per time gap, as agreed by 
the three experts. As mentioned above, the average time 
gap value is expressed in days3. For the sake of clarity, 
healthcare instances have been represented using the tex-
tual descriptions of their codes.

As shown in Table 7, the first two patterns are exam-
ples of combinations of typical short-term symptoms 
associated with respiratory disorders, especially at cer-
tain times of the year. The third pattern is an example of 

a very general symptom combined with a body part that 
provides specific information about the location of the 
symptom, in this case indicating a chronic osteoarticular 
pain such as arthrosis. The last pattern is an example of 
the long-term development of multi-pathology patients 
with severe chronic cardiac and respiratory pathologies.

Regarding Table 8, the first pattern is an example of a 
short-term respiratory infection context, which includes 
fever and is treated with paracetamol. The second pat-
tern shows a combination of symptoms from patients 
with both respiratory and cardiac conditions. The third 
pattern could be an example of a possible mid-term side 
effect, where a respiratory infection treated with paracet-
amol results in symptoms in the skin and skin append-
ages. Finally, the last pattern is an example of risk factors 
typically associated with certain diseases in the long 
term, in this case possibly patients suffering from paraly-
sis due to HCV or degenerative neurological diseases.

Although some of the patterns in both tables may seem 
obvious, we consider that they are still interesting as they 
not only confirm known risk factors, but also provide 
specific information about the time gap between ante-
cedents and consequent. As mentioned above, the avail-
ability of more EHRs should allow our methodology to 
provide more specific patterns.

Albeit we are not including all the rules of the packs in 
this article, we would like to illustrate some phenomena 
with specific examples. For instance, the agreement in 
Table  3 showed that some results are not easy to inter-
pret. Equation  (9) shows an example of a patient-
oriented pattern that was annotated differently by the 
experts in both Correctness and Relevancy aspects. One 
of the physicians found no relationship between ante-
cedents and consequent, the second one mentioned that 

Table 5  Summary of Relevance results after consensus

Relevance

No-Rel Rel-Known Rel-
Unknown

apriori-like

    Shortest-term 35 65 0

    Short-term 70 30 0

    Mid-term 70 30 0

    Long-term 10 90 0

    Global 46.25 53.75 0

patient-oriented

    Shortest-term 50 50 0

    Short-term 60 40 0

    Mid-term 45 55 0

    Long-term 63.3 36.6 0

    Global 64.57 35.4 0

Table 6  Correctness versus relevance percentages

Relevance

 Correctness Not Relevant Relevant

apriori-like

    Incorrect 30 3

    Correct 21 39

    Par-Temporal 0 7

    Par-Clinical 0 0

    Par-Both 0 0

patient-oriented

    Incorrect 44.5 1

    Correct 0 33

    Par-Temporal 4.5 6

    Par-Clinical 4.5 4.5

    Par-Both 2 0

3  We represent them with equations in which the number appearing above 
the arrows represents the time constraint parameter (TC), i.e. the average 
time (in days) between temporal steps.
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there was a clear relationship between them, while the 
third physician stated that both fever and lack of oxygen 
might cause neurological disturbances (for example con-
vulsions). Eventually, by consensus, it was agreed that the 
rule was Partially Correct (clinical facet) and Rel-Known 
(Relevant and known).

Equation  (10) shows another example of an aprio-
rilike pattern with disagreement among the experts: 
while one saw no relationship, another one thought that 
limitation in movement might lead to weight gain or, 
conversely, severe pain might lead to anorexia and weight 
loss. The third expert saw a debatable relationship. How-
ever, the consensus reached was that the pattern was 
not correct nor relevant. We consider Eqs.  (9) and (10) 
as good examples of the intricacy and subjectivity of the 
evaluation process.

Equation  (11) shows an example of a patient-ori-
ented pattern that was annotated by the experts as Rel-
Known and as Par-Temporal (Partially correct for the 
Temporal facet). They argued that the time elapsed among 
the medical events (in this case, all of the type symptom) 
was longer than expected, though it is indeed very often 
found indicating cases of complicated respiratory infections. 
This is an example of how our system can refute conven-
tional knowledge and indicate that certain events may have 
a longer time frame to consider for prevention purposes.

(9)Fever
5

=⇒ Shortness of breath/dyspnoea
5

=⇒

Neurological symptom/complt. other

(10)
Pain general/multiple sites

16
=⇒ Pain

general/multiple sites
16
=⇒

Endocrine/met./sympt/complt other

As noted above, some of the patterns were consid-
ered novel, i.e. Relevant Unknown, by some physicians in 
the individual ratings, although this assessment did not 
appear in the final consensus. For example, patient-
oriented Eq. (12), which had a high value of the rules-
RespectConsequent measure (20%), was considered a 
correct and Rel-Known pattern in the consensus. How-
ever, in the previous evaluations and during the con-
sensus, two experts commented that they were hesitant 
about the correctness, but that if this relationship was 
considered correct, it would be novel to think that 20% 
of patients who have generalized pain and subsequently 
some neurological symptom would end up with a diagno-
sis of malignant neoplasm.

Finally, Eq.  (13) shows another example of a possible 
evolution of symptoms that were categorized as Relevant 
Unknown by one physician. This patient-oriented 
pattern may capture a novel set of long-term risk factors 
typical of a patient with multiple pathologies that evolve 
in hypertension.

(11)
Fever

79
=⇒ Pain general/multiple sites

86
=⇒

Cough, Respiratory symptom/complaint other
86
=⇒ Shortness of breath/dyspnoea

(12)
Pain general/multiple sites

15
=⇒ Neurological

symptom/complt. other
16
=⇒ Malignant

neoplasms

(13)

Cough, Respiratory symptom/complaint other
83
=⇒ Paracetamol

87
=⇒ Cardiovascular

sympt/complt other, Entire limb
87
=⇒ Essential

(primary) hypertension

Table 7  Apriori-like’s correct and relevant pattern samples, grouped by time constraint type

Respiratory symptom/complaint other 5
=⇒ Cough 6

=⇒ Respiratory symptom/complaint other 6
=⇒ Respiratory symptom/complaint other 4

=⇒ Throat 
symptom/complaint

Respiratory symptom/complaint other 16
=⇒ Cough 16

=⇒ Respiratory symptom/complaint other, Acute nasopharyngitis [common cold]

Entire limb 47
=⇒ Musculoskeletal sympt/complt other 45

=⇒ Pain general/multiple sites

Entire thorax 96
=⇒ Angina pectoris 88

=⇒ Pain respiratory system, Entire thorax

Table 8  Patient-oriented’s correct and relevant pattern samples, grouped by time constraint type

Shortness of breath/dyspnoea 5
=⇒ Fever 5

=⇒ Paracetamol

Respiratory symptom/complaint other 16
=⇒ Pain general/multiple sites 16

=⇒ Cardiovascular sympt/complt other 16
=⇒ Shortness of breath/dyspnoea

Respiratory symptom/complaint other 43
=⇒ Paracetamol 45

=⇒ Skin symptom/complaint other

Psychological symptom/complt other 79
=⇒ Pain general/multiple sites 87

=⇒ Musculoskeletal sympt/complt other, Neurological symptom/complt. other
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In this section, we have just discussed some results. 
We are aware that our rules show low support, espe-
cially for long-term time gaps, as our data set only 
spans 6 years and these phenomena are more difficult 
to extract. Obtaining sequential patterns with high 
support from real-world healthcare data is generally 
difficult. For this reason, many researchers set a low 
minimum support. In our case, this situation is exac-
erbated by the limited dataset we analyzed, which 
consisted of the EHRs of only 320 patients with multi-
morbidity. To obtain more robust results, it is essential 
to have more extensive clinical data, both in terms of 
longer EHRs and a larger number of patients.

Generalizability
In this work, we have focused on a very specific type of 
patient. However, it is certainly possible to use the same 
algorithms to mine temporal association rules from 
health records of different patient cohorts or with other 
medical conditions. In fact, the strength of our method 
lies in the possibility of extracting patterns from any 
patient population, provided a few considerations are 
taken into account:

•	 Dataset characteristics: The input dataset must con-
tain electronic health records with the specific for-
mat, coding system and attributes to ensure compat-
ibility with the algorithm. Therefore, depending on 
the specific patient population or medical conditions, 
performing additional data preprocessing steps may 
be required. This could involve handling missing val-
ues, normalizing or standardizing data, mapping dif-
ferent coding systems, or adapting the data represen-
tation to meet the requirements of the algorithm.

•	 Algorithm selection and parameter tuning: The same 
algorithm may require different parameter settings 
when applied to different datasets. It is important to 
carefully adjust the parameters to optimize the per-
formance and quality of the temporal association 
rules discovered. Considerations include the mini-
mum support threshold, the minimum confidence 
threshold, the number of time intervals (and the defi-
nition of each interval with a minimum and maxi-
mum time gap), and the appropriate approach (apri-
ori or patient-oriented).

•	 Medical domain expertise: When applying our algo-
rithm to different patient cohorts, it is crucial to 
involve experts in that specific domain. They can 
provide valuable insights and domain-specific knowl-
edge to guide data preprocessing, algorithm selection 
and parameter tuning. Experts can also help validate 
the discovered temporal association rules and assess 
their clinical relevance and correctness.

By considering these aspects, our algorithm can be 
adapted to mine temporal association rules from health 
records of different patient populations or with other med-
ical conditions. However, it is important to note that the 
results and interpretations may differ due to variations in 
the data and domain-specific factors. Therefore, thorough 
analysis, validation, and collaboration with domain experts 
are key to obtaining meaningful and actionable insights.

Conclusions
A highly flexible temporal association rule mining algo-
rithm, accompanied by a sound formulation for TARs, 
has been presented. The algorithm has been designed to 
be highly parameterizable, not only in terms of support 
and confidence measures but also in its ability to extract 
rules with different numbers of temporal steps (each one 
eventually with different time intervals [ t1 , t2]), attributes 
and levels of concept abstraction.

Using this algorithm, we have successfully extracted 
temporal association rules that help in the diagnosis and 
risk prediction of multimorbid patients. To achieve this, 
certain parameters were fixed, such as the use of codes as 
attributes, a fixed level of code generalization, and a min-
imum of 2 temporal steps in the rules. We experimented 
with different values for other parameters such as sup-
port, confidence, and time intervals. We aim to establish 
a strong basis for the future development of a robust rule 
extraction tool. Furthermore, due to the adaptability of 
our approach, it can be easily applied to the extraction of 
temporal association rules in various other domains.

In addition, our work proposes two different 
approaches, each with a unique rationale, allowing the 
choice of the one that best suits the medical dataset 
and the desired pattern application. The first approach 
is specifically designed for multimorbid patient data-
sets (though it might be tested with other patient types). 
On the other hand, the second approach is designed 
for conventional datasets and aims to extract rules that 
are common to patients. In this way, users can choose 
the approach that suits their specific needs and dataset 
characteristics.

We implemented a comprehensive evaluation pro-
cess for the rules obtained. This process involved defin-
ing a set of evaluation criteria, agreed by three experts, 
covering both correctness and relevance. However, the 
practical evaluation proved to be challenging as it was 
heavily influenced by each expert’s experience and inter-
pretation. To overcome this challenge, we conducted a 
subsequent consensus step and evaluated Fleiss’ Kappa 
agreement. The results demonstrated the subjectivity of 
the assessment process.

This evaluation process concluded that the implemen-
tations were able to retrieve correct and relevant rules. 
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The apriori-like approach was found to be more 
accurate in terms of patterns, which may be due to the 
fact that the dataset used to retrieve the rules consisted of 
annotations from multimorbid patients with pre-selected 
characteristics. In some cases, especially in the long term, 
the rules obtained showed a relationship between pathol-
ogies that are highly prevalent. It should be noted that 
the insight behind such rules may not necessarily reflect a 
temporal cause-effect relationship, but rather a co-occur-
rence that signifies the patients’ comorbidity. Therefore, 
it would be beneficial to compare the patterns of multi-
morbid patients with those of general patients in order to 
identify multimorbid-specific temporal association rules, 
similar to what [11] did with diabetic-specific patterns.

It is important to note a final limitation related to the 
intrinsic code annotations in the dataset, particularly 
for Sign or symptom ICPC-3 codes. The majority of the 
selected rules contained codes that were too broad (e.g. 
‘Respiratory symptom/complaint other’), resulting in 
reduced relevance of the rules. This is a recurring prob-
lem in our clinical history corpus for two reasons. Firstly, 
the corpus is relatively small, which means that the most 
general phenomena tend to be more common. Secondly, 
primary care physicians are often overwhelmed and tend 
to assign a generic code because they do not have time 
to search for the most appropriate code for each case. 
This lack of time is a chronic problem in all primary care 
systems, and all physicians complain that EHRs would be 
more complete and specific if they had more time to enter 
patient information at each visit. This situation results in 
"noisy data", such as missing or incomplete data, incon-
sistent notation, irregular patient visits, and uncertainty 
about when healthcare events occurred versus when they 
were recorded. This problem is a drawback of our extrac-
tion system. However, an extension of our methodology 
could eventually provide suggestions and/or additional 
information to make this process of registering informa-
tion more efficient. While intelligent diagnosis and treat-
ment machines cannot replace human practitioners, they 
can assist them in making better clinical decisions.

The limitations of our dataset are related to both its size 
(in terms of both the number of available patients and the 
historical data per patient) and its nature (the aforemen-
tioned level of specificity of the annotations). Indeed, the 
size of a dataset can have an impact on the association 
rules mined from it. An important property that relates 
the size of the dataset to the association rules is the spar-
sity of the dataset. Sparsity refers to the proportion of rare 
itemsets in the dataset. In our case, the data set happens 
to be both small and sparse. This has meant that there are 
interesting phenomena that are not captured because the 
corresponding rules do not meet the minimum support. 
However, there are very general phenomena that have 

been apprehended by the methodology. Therefore we 
believe that, although larger datasets may lead to the dis-
covery of more diverse and specific association rules, our 
current findings would still hold with greater reliability 
beyond our specific dataset. This is a hypothesis, it would 
be necessary to apply the methodology to an expanded 
dataset to assess the stability of the rules across differ-
ent dataset sizes. If the rules obtained from the expanded 
dataset were consistent or similar to those obtained from 
the smaller dataset, this would suggest that the rules are 
robust and not solely influenced by the dataset size.

Despite these limitations, we have successfully 
extracted accurate and relevant patterns, particularly 
for the specific group of multimorbid patients. This 
methodology may be valuable for preventive medicine, 
as sequential temporal patterns can predict risk factors 
commonly associated with certain diseases. Therefore, 
the next step would be to integrate this set of patterns 
into the existing medical system so that the patterns 
could be used in the decision-making process. This inte-
gration involves representing the patients’ medical data 
in a format suitable for applying the temporal association 
rules. Then, to assess a patient’s risk factor for a disease, 
the following steps could be taken: (1) select the relevant 
temporal association rules that are likely to indicate the 
presence or increased risk of the specific disease of inter-
est (this is indicated in the consequent of each rule), 
(2) apply the selected temporal association rules to the 
patient’s data and evaluate their applicability, i.e. check 
whether the antecedents of each rule match any relevant 
events in the patient’s medical history with the rule’s tem-
poral constraints, and (3) for each applicable rule, deter-
mine the patient’s risk factor for the disease. If the rule 
has high support and confidence, it suggests a potential 
risk factor for the disease. The strength of the association 
and the temporal patterns captured by the rules can pro-
vide insight into the patient’s likelihood of developing the 
disease. Moreover, the average time gap provides crucial 
information about the term of these risk factors, which is 
vital in primary care.

At this stage, the only assessment of the quality of the 
extracted patterns we can provide is that of the experts. 
The patterns extracted by our algorithm align with clini-
cal knowledge and can be easily understood by health-
care professionals. In our opinion, this demonstrates the 
potential of such patterns not only to confirm previously 
known associations but also to discover new relationships 
between factors and to better understand hypothesized 
relationships between such factors. We emphasize the 
importance of such transparent and explainable models 
in gaining the trust and acceptance of clinicians, enabling 
them to make informed decisions based on these patterns, 
thus empowering personalized preventive measures.
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