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Abstract
Background  Chronic kidney disease (CKD) is a global public health concern. Therefore, to provide timely 
intervention for non-hospitalized high-risk patients and rationally allocate limited clinical resources is important to 
mine the key factors when designing a CKD prediction model.

Methods  This study included data from 1,358 patients with CKD pathologically confirmed during the period from 
December 2017 to September 2020 at Zhongshan Hospital. A CKD prediction interpretation framework based on 
machine learning was proposed. From among 100 variables, 17 were selected for the model construction through a 
recursive feature elimination with logistic regression feature screening. Several machine learning classifiers, including 
extreme gradient boosting, gaussian-based naive bayes, a neural network, ridge regression, and linear model logistic 
regression (LR), were trained, and an ensemble model was developed to predict 24-hour urine protein. The detailed 
relationship between the risk of CKD progression and these predictors was determined using a global interpretation. 
A patient-specific analysis was conducted using a local interpretation.

Results  The results showed that LR achieved the best performance, with an area under the curve (AUC) of 0.850 
in a single machine learning model. The ensemble model constructed using the voting integration method 
further improved the AUC to 0.856. The major predictors of moderate-to-severe severity included lower levels of 
25-OH-vitamin, albumin, transferrin in males, and higher levels of cystatin C.

Conclusions  Compared with the clinical single kidney function evaluation indicators (eGFR, Scr), the machine 
learning model proposed in this study improved the prediction accuracy of CKD progression by 17.6% and 24.6%, 
respectively, and the AUC was improved by 0.250 and 0.236, respectively. Our framework can achieve a good 
predictive interpretation and provide effective clinical decision support.
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Background
Chronic kidney disease (CKD) affects 5–10% of the global 
population and is the leading cause of catastrophic health 
expenditure. It has therefore become a major global pub-
lic health problem [1]. Furthermore, CKD is projected 
to become the fifth leading cause of death worldwide by 
2040. The compensatory effects of the kidneys make the 
monitoring of CKD difficult [2]. Clinicians have made 
significant efforts to determine the key factors that can 
delay the progression of CKD [3]. Therefore, a risk pre-
diction model for monitoring such progression would be 
an economical and effective tool [4–6].

With the loss of renal function in CKD patients, the 
interval between follow-ups recommended by nephrolo-
gists becomes shorter, which makes the 24-h urine pro-
tein test a heavier medical burden [7]. This burden can 
be effectively reduced through follow-ups and less time-
consuming inspections. Patients with a 24-h urinary pro-
tein content less than 1 g/24 h are classified as low-risk, 
and outpatient follow-up is considered the main treat-
ment. Patients with a 24-h urinary protein content higher 
than 1 g/24 h are classified as high-risk and assigned to 
centralized in-hospital management. However, the 24-h 
quantitative urine protein detection process is complex, 
involving a lengthy measurement cycle, high patient-
compliance requirement, and numerous influencing fac-
tors. We are therefore committed to the development 
of a simple and rapid method to replace the traditional 
approach.

Compared with traditional scale-based scoring, 
machine learning (ML) models are widely used in inter-
disciplinary fields owing to its efficiency, accuracy, and 
reproducibility. Moreover, it demonstrates significant 
potential for disease prediction [8]. In comparison to six 
other machine learning models, Lee et al. achieved an 
excellent performance when applying a gradient boost-
ing model to malaria prediction [9]. The results of Huang 
et al. showed that random forest can effectively predict 
stroke incidence in adult patients with hypertension [10]. 
The application of machine learning in the field of kidney 
disease has long been a topic of interest. Various func-
tional methods have been developed for purposes such 
as predicting the survival rate of dialysis patients [11] 
and early screening of CKD [12]. Although considerable 
progress has been made, achieving a good predictability 
and interpretability remains a considerable challenge. 
Existing risk prediction models primarily focus on iden-
tifying risk factors, and further investigations into the 
detailed relationship between high-risk factors and CKD 
risk have rarely been reported.

In current medical studies, new prognostic indicators 
and their clinical interpretation have received an increas-
ing amount of attention. The screening of such potential 
clinical indicators has become an important problem. 
Therefore, several novel feature reduction algorithms 
have been proposed, including a novel feature reduction 
(NFR) model [13], an advanced hybrid ensemble gain 
ratio feature selection (AHEGFS) model [14], and a bio-
inspired ensemble feature selection (BEFS) model [15]. 
Meanwhile, the Shapley additive explanations (SHAP) 
algorithm has also made exciting discoveries in the use 
of interpretable techniques in the medical field. SHAP is 
a method introduced by Lundberg and Lee in 2017 for 
explaining the predictions of ML models using SHAP 
values. The key idea of SHAP is to compute SHAP val-
ues for each feature of the sample to be explained, to 
estimate the total effect, main effects, and interaction 
effects of the variables [16]. Zhao et al. first identified 
mechanical ventilation and pressure support ventilation 
as the most important predictive features of extubation 
failure in intensive care units based on SHAP values [17]. 
Tseng et al. used SHAP technology to identify important 
risk factors in acute kidney injury that were ignored by 
traditional risk scoring models, including intraoperative 
urine output, IV fluid infusion, blood product transfu-
sion, and dynamic changes in hemodynamics [18]. SHAP 
interpreters are used to provide a personalized assess-
ment and interpretation of models from both global and 
local perspectives, ensuring the reliability of prediction 
results and providing more evidence for solving clinical 
problems.

Herein, we describe a study conducted with patients 
having CKD and report a method for CKD prediction 
and interpretation. Specifically, recursive feature elimina-
tion with logistic regression (RFE-LR) was used to iden-
tify the risk factors for the progression of kidney disease. 
Second, based on the random forest (RF) algorithm and 
voting integration method combined with logistic regres-
sion, a risk stratification system for CKD was developed. 
Finally, the SHAP method was used to explain the predic-
tion model used to support clinical practice and ensure 
the reliability of the results.

Materials and methods
The study protocol (Fig. 1) received ethical approval from 
the Ethics Committee of Zhongshan Hospital. The study 
was conducted in compliance with the World Medi-
cal Association Declaration of Helsinki on Ethical Prin-
ciples for Medical Research Involving Human Subjects, 
and the national research regulations. Considering the 
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retrospective nature of this study, informed consent was 
waived by the Ethics Committee of Zhongshan Hospital.

Study participants
From the database, we retrospectively selected 1,358 
patients with pathologically confirmed CKD from 
December 2017 to September 2020. Patients younger 
than 18 years and those who underwent kidney trans-
plantation or dialysis or had a diagnosis of hereditary 
hyperuricemia, severe cardiopulmonary dysfunction, 

infection, tumor blood disease, shock, or hyperparathy-
roidism were excluded from all analyses.

We collected treatment data and then retrospectively 
extracted the clinical characteristics, such as demograph-
ics, routine blood tests, blood biochemistry, and blood 
immunity of the patients from electronic medical records 
and entered them into our structured database.

Fig. 1  Chronic kidney disease (CKD) prediction and decision support framework. A total of 1,358 patients were included in this study, with 100 clinical 
variables applied. The data were divided into training (80%) and validation (20%) sets. The model was trained using k-fold cross-validation (k = 10), and a 
grid search was conducted to determine the best parameter combinations
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Study outcome
In our study, the prediction targets are represented in 
binary form (0 = negative, 1 = positive). The outcome of 
the present study was the status of 24-h urinary protein, 
which was judged based on whether the urine protein 
level was lower or higher than 1 g/24 h, defined as mild 
(negative) or advanced (positive), respectively.

Data construction and feature selection
We collected 100 easily obtainable clinical features from 
our database. The proportion of missing values for all 
features was < 10%. Missing categorical data were filled 
in based on the mode, and continuous features were 
replaced through an imputation using RF [19]. The cat-
egorical features were then transformed into binary 
dummy variables. The dataset was randomly divided into 
a training cohort (80%) and an independent test cohort 
(20%), and synthetic minority oversampling technique 
(SMOTE) was used on the training set to balance the 
dataset. To identify whether any subsets of the features 
can achieve a better discrimination than the initial set of 
features and to determine the informative characteristic 
variables (features) in the prediction of CKD, the RFE-
LR and least absolute shrinkage and selection operator 
(LASSO) algorithms were used.

Model development and assessment
For the development system, in this study, we used 
macOS Monterey (Apple M1 Pro) with 16 GB of mem-
ory. As the analysis software, Python version v3.10 and 
the sklearn v1.1.1 machine learning library were uti-
lized as the main analysis tool. The model development 
included trials using several different machine learning 
classifiers, such as extreme gradient boosting (XGBoost) 
models [20], gaussian-based naive bayes [21], a neu-
ral network (NN) [22], ridge regression [23], and linear 
model logistic regression (LR) [24]. A brief description of 
these algorithms is described in the model establishment 
and brief illustrations (Additional file 1). We trained the 
models using a stratified k-fold cross-validation (k = 10) 
applied to the training cohort, and determined the best 
hyperparameter combinations through a grid search 
approach.

To quantify the discriminative capabilities of the 
model, we plotted the receiver operating characteris-
tic (ROC) and precision–recall curves based on a con-
fusion matrix, and then calculated the area under the 
ROC curve (AUC), which was used as the main metric 
to assess the model performance. Furthermore, the sensi-
tivity, specificity, accuracy, average precision, and execu-
tion time were used to evaluate the model performance 
from multiple perspectives. The calculation principles of 
these assessment indicators are described in the perfor-
mance metrics section (Additional file 1). In addition, we 

adopted a soft voting ensemble model by integrating the 
two models with the best AUC.

Feature interpretation
Feature importance refers to the extent to which the 
elimination of feature information increases the model 
error, which provides a highly compressed global insight 
into the behavior of the model. We computed the SHAP 
values to evaluate the correctness of the feature inter-
pretation in the best-performing model and explain the 
global interpretations of each feature contribution to the 
risk of CKD.

Results
Patients and clinical characteristics
In the final cohort, we reviewed the medical records of 
1,358 patients with CKD who underwent treatment at 
Zhongshan Hospital from December 2017 to Septem-
ber 2020. The mean age was 51.12 ± 16.09 years, and 910 
(67.01%) of the patients were male. A total of 906 (68%) 
and 452 (32%) subjects were classified as patients having 
advanced (positive) and mild (negative) CKD, respec-
tively. In addition, after applying data balance processing 
of the SMOTE algorithm on the training set, 364 nega-
tive samples were oversampled, and thus the sample ratio 
of the final training dataset was 1 (both at 725). The esti-
mated glomerular filtration rate (eGFR) was calculated 
using the MDRD formula. The proportions of missing 
values of the included clinical features were all < 10%. 
After data preprocessing, 100 complete clinical variables 
were used as predictive variables, the baseline character-
istics of which are shown in Table 1.

Feature selection
After imputation, we compared the results of the model 
construction without feature screening and with RFE-
LR and LASSO feature screening, and then used the 
AUC as the main evaluation index of the model. In the 
model construction results without feature screening, the 
highest AUC was 0.833 (Table S3). A total of 21 feature 
indexes were obtained through LASSO feature screen-
ing based on the optimal penalty parameter λ (0.035) 
using the 1 − standard error (SE) criterion (Figure S1), 
which achieved the highest AUC of 0.828 (Table S4). In 
the results of the RFE-LR feature screening, the perfor-
mance of the model was significantly improved when 
17 variables were used (Fig.  2a), and the model showed 
an over-fitting with a further increase in the number of 
variables. The highest AUC was 0.85 after RFE-LR fea-
ture screening (Table 2). In brief, the RFE-LR algorithm 
was used to reduce the number of feature variables to 17, 
which achieved the highest accuracy and AUC compared 
to using all features separately, with an improvement of 
3.3% and 0.017, respectively. Based on the results of the 
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Total
(N = 1358)

Mild CKD
(N = 452)

Advanced CKD
(N = 906)

P value

Gender
  Female 448 (32.99%) 182 (40.27%) 266 (29.36%) < 0.01

  Male 910 (67.01%) 270 (59.73%) 640 (70.64%)

Age
  Mean (SD) 51.12 ± 16.09 49.56 ± 16.33 51.90 ± 15.92 0.01

DBIL
  Mean (SD) 2.11 ± 3.03 2.50 ± 1.71 1.92 ± 3.48 < 0.01

  Missing 133 (9.8%) 51 (11.3%) 82 (9.1%)

TP
  Mean (SD) 59.96 ± 10.23 65.50 ± 6.56 57.26 ± 10.61 < 0.01

  Missing 131 (9.6%) 50 (11.1%) 81 (8.9%)

ALB
  Mean (SD) 35.09 ± 7.71 39.67 ± 4.74 32.86 ± 7.90 < 0.01

  Missing 133 (9.8%) 51 (11.3%) 82 (9.1%)

GLO
  Mean (SD) 24.87 ± 4.98 25.85 ± 4.31 24.40 ± 5.21 < 0.01

  Missing 133 (9.8%) 51 (11.3%) 82 (9.1%)

AGRatio
  Mean (SD) 1.44 ± 0.35 1.57 ± 0.30 1.38 ± 0.35 < 0.01

  Missing 133 (9.8%) 51 (11.3%) 82 (9.1%)

SPE.ALB
  Mean (SD) 55.75 ± 6.01 58.15 ± 4.66 54.56 ± 6.26 < 0.01

  Missing 164 (12.1%) 55 (12.2%) 109 (12.0%)

SPE.alpha1
  Mean (SD) 4.61 ± 1.32 4.08 ± 1.07 4.87 ± 1.36 < 0.01

  Missing 164 (12.1%) 55 (12.2%) 109 (12.0%)

SPE.alpha2
  Mean (SD) 11.55 ± 4.25 9.51 ± 2.31 12.57 ± 4.62 < 0.01

  Missing 164 (12.1%) 55 (12.2%) 109 (12.0%)

SPE.beta
  Mean (SD) 12.22 ± 1.85 11.66 ± 1.45 12.50 ± 1.96 < 0.01

  Missing 164 (12.1%) 55 (12.2%) 109 (12.0%)

SPE.gamma
  Mean (SD) 15.88 ± 4.34 16.60 ± 3.62 15.52 ± 4.61 < 0.01

  Missing 164 (12.1%) 55 (12.2%) 109 (12.0%)

ALT
  Mean (SD) 20.62 ± 23.20 21.87 ± 29.67 20.01 ± 19.29 0.25

  Missing 125 (9.2%) 50 (11.1%) 75 (8.3%)

AST
  Mean (SD) 19.66 ± 14.29 19.92 ± 19.20 19.53 ± 11.16 0.70

  Missing 133 (9.8%) 51 (11.3%) 82 (9.1%)

ALP
  Mean (SD) 68.64 ± 32.29 67.58 ± 27.48 69.15 ± 34.39 0.39

  Missing 133 (9.8%) 51 (11.3%) 82 (9.1%)

GGT
  Mean (SD) 35.48 ± 59.54 35.77 ± 78.09 35.35 ± 48.12 0.92

  Missing 125 (9.2%) 50 (11.1%) 75 (8.3%)

TBA
  Mean (SD) 4.65 ± 5.69 5.57 ± 7.35 4.19 ± 4.58 < 0.01

  Missing 164 (12.1%) 55 (12.2%) 109 (12.0%)

LDH
  Mean (SD) 196.88 ± 55.63 181.08 ± 47.35 204.76 ± 57.77 < 0.01

Table 1  Baseline characteristics of included CKD patients
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Total
(N = 1358)

Mild CKD
(N = 452)

Advanced CKD
(N = 906)

P value

  Missing 165 (12.2%) 55 (12.2%) 110 (12.1%)

APLB1
  Mean (SD) 127.40 ± 144.43 118.27 ± 141.11 131.95 ± 145.93 0.12

  Missing 164 (12.1%) 55 (12.2%) 109 (12.0%)

BUN
  Mean (SD) 10.88 ± 7.78 8.84 ± 6.55 11.88 ± 8.13 < 0.01

  Missing 74 (5.4%) 32 (7.1%) 42 (4.6%)

CRE
  Mean (SD) 205.18 ± 198.66 158.54 ± 152.71 227.85 ± 213.95 < 0.01

  Missing 74 (5.4%) 32 (7.1%) 42 (4.6%)

eGFR
  Mean (SD) 54.21 ± 33.96 62.20 ± 32.34 50.33 ± 34.07 < 0.01

  Missing 74 (5.4%) 32 (7.1%) 42 (4.6%)

CYSC
  Mean (SD) 1.94 ± 1.24 1.64 ± 1.09 2.09 ± 1.28 < 0.01

  Missing 362 (26.7%) 119 (26.3%) 243 (26.8%)

UA
  Mean (SD) 399.96 ± 107.38 376.30 ± 103.29 411.46 ± 107.51 < 0.01

  Missing 74 (5.4%) 32 (7.1%) 42 (4.6%)

GA
  Mean (SD) 12.82 ± 3.68 13.86 ± 3.25 12.32 ± 3.78 < 0.01

  Missing 241 (17.7%) 88 (19.5%) 153 (16.9%)

TG
  Mean (SD) 2.05 ± 1.52 1.81 ± 1.19 2.16 ± 1.65 < 0.01

  Missing 201 (14.8%) 68 (15.0%) 133 (14.7%)

LDL
  Mean (SD) 2.82 ± 1.49 2.40 ± 0.99 3.03 ± 1.64 < 0.01

  Missing 201 (14.8%) 68 (15.0%) 133 (14.7%)

N.HDL
  Mean (SD) 3.71 ± 1.63 3.20 ± 1.09 3.97 ± 1.79 < 0.01

  Missing 202 (14.9%) 68 (15.0%) 134 (14.8%)

APO.A.I
  Mean (SD) 1.33 ± 0.38 1.27 ± 0.30 1.36 ± 0.42 < 0.01

  Missing 202 (14.9%) 68 (15.0%) 134 (14.8%)

APO.B
  Mean (SD) 0.93 ± 0.36 0.82 ± 0.26 0.98 ± 0.39 < 0.01

  Missing 202 (14.9%) 68 (15.0%) 134 (14.8%)

APO.E
  Mean (SD) 52.10 ± 25.55 46.03 ± 19.34 55.11 ± 27.65 < 0.01

  Missing 202 (14.9%) 68 (15.0%) 134 (14.8%)

LPA1
  Mean (SD) 229.06 ± 328.97 199.44 ± 300.57 243.79 ± 341.44 0.02

  Missing 202 (14.9%) 68 (15.0%) 134 (14.8%)

Na
  Mean (SD) 141.68 ± 2.63 141.76 ± 2.50 141.64 ± 2.69 0.43

  Missing 80 (5.9%) 35 (7.7%) 45 (5.0%)

K
  Mean (SD) 4.10 ± 0.48 4.07 ± 0.42 4.11 ± 0.51 0.13

  Missing 80 (5.9%) 35 (7.7%) 45 (5.0%)

Cl
  Mean (SD) 105.13 ± 3.62 104.57 ± 3.25 105.39 ± 3.77 < 0.01

  Missing 80 (5.9%) 35 (7.7%) 45 (5.0%)

Table 1  (continued) 



Page 7 of 17Lu et al. BMC Medical Informatics and Decision Making          (2023) 23:173 

Total
(N = 1358)

Mild CKD
(N = 452)

Advanced CKD
(N = 906)

P value

CO2
  Mean (SD) 25.34 ± 3.29 25.47 ± 3.03 25.27 ± 3.41 0.28

  Missing 80 (5.9%) 35 (7.7%) 45 (5.0%)

AG
  Mean (SD) 11.21 ± 2.76 11.71 ± 2.39 10.97 ± 2.89 < 0.01

  Missing 80 (5.9%) 35 (7.7%) 45 (5.0%)

Ca
  Mean (SD) 2.17 ± 0.20 2.25 ± 0.18 2.14 ± 0.19 < 0.01

  Missing 95 (7.0%) 42 (9.3%) 53 (5.8%)

P
  Mean (SD) 1.26 ± 0.30 1.21 ± 0.26 1.28 ± 0.31 < 0.01

  Missing 96 (7.1%) 43 (9.5%) 53 (5.8%)

Mg
  Mean (SD) 0.85 ± 0.10 0.86 ± 0.09 0.85 ± 0.10 0.01

  Missing 96 (7.1%) 43 (9.5%) 53 (5.8%)

CPK
  Mean (SD) 108.01 ± 125.32 89.95 ± 74.79 116.94 ± 143.08 < 0.01

  Missing 188 (13.8%) 65 (14.4%) 123 (13.6%)

CK.MB
  Mean (SD) 15.59 ± 11.07 14.51 ± 11.25 16.13 ± 10.95 0.02

  Missing 186 (13.7%) 63 (13.9%) 123 (13.6%)

CK.MM
  Mean (SD) 95.45 ± 156.53 84.19 ± 183.31 101.05 ± 141.16 0.11

  Missing 186 (13.7%) 63 (13.9%) 123 (13.6%)

CRP
  Mean (SD) 5.86 ± 16.71 6.02 ± 17.04 5.78 ± 16.56 0.82

  Missing 144 (10.6%) 55 (12.2%) 89 (9.8%)

HCY
  Mean (SD) 16.89 ± 12.92 15.99 ± 9.23 17.34 ± 14.39 0.06

  Missing 266 (19.6%) 90 (19.9%) 176 (19.4%)

IRON
  Mean (SD) 14.28 ± 6.01 15.09 ± 5.82 13.88 ± 6.06 < 0.01

  Missing 222 (16.3%) 81 (17.9%) 141 (15.6%)

UIBC
  Mean (SD) 29.90 ± 10.74 33.78 ± 9.58 28.02 ± 10.77 < 0.01

  Missing 223 (16.4%) 82 (18.1%) 141 (15.6%)

TIBC
  Mean (SD) 44.22 ± 10.56 48.94 ± 8.59 41.94 ± 10.67 < 0.01

  Missing 223 (16.4%) 82 (18.1%) 141 (15.6%)

TS.
  Mean (SD) 33.49 ± 14.67 31.55 ± 13.05 34.43 ± 15.31 < 0.01

  Missing 223 (16.4%) 82 (18.1%) 141 (15.6%)

IGG
  Mean (SD) 9.79 ± 4.10 11.20 ± 3.40 9.11 ± 4.24 < 0.01

  Missing 206 (15.2%) 76 (16.8%) 130 (14.3%)

IGA
  Mean (SD) 2.48 ± 1.10 2.56 ± 1.13 2.44 ± 1.09 0.09

  Missing 234 (17.2%) 84 (18.6%) 150 (16.6%)

RBP
  Mean (SD) 33.06 ± 38.51 28.30 ± 34.27 35.47 ± 40.30 < 0.01

  Missing 358 (26.4%) 116 (25.7%) 242 (26.7%)

IGM

Table 1  (continued) 
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Total
(N = 1358)

Mild CKD
(N = 452)

Advanced CKD
(N = 906)

P value

  Mean (SD) 0.96 ± 0.51 0.98 ± 0.56 0.95 ± 0.48 0.32

  Missing 234 (17.2%) 84 (18.6%) 150 (16.6%)

IGE
  Mean (SD) 191.62 ± 702.02 136.94 ± 356.09 218.39 ± 818.68 0.02

  Missing 217 (16.0%) 77 (17.0%) 140 (15.5%)

C3
  Mean (SD) 0.97 ± 0.20 0.96 ± 0.18 0.97 ± 0.21 0.34

  Missing 228 (16.8%) 80 (17.7%) 148 (16.3%)

C4
  Mean (SD) 0.23 ± 0.07 0.22 ± 0.06 0.23 ± 0.07 < 0.01

  Missing 228 (16.8%) 80 (17.7%) 148 (16.3%)

CH50
  Mean (SD) 56.26 ± 19.92 56.29 ± 19.08 56.25 ± 20.33 0.97

  Missing 227 (16.7%) 79 (17.5%) 148 (16.3%)

B2M
  Mean (SD) 5.50 ± 4.95 4.49 ± 4.80 6.00 ± 4.94 < 0.01

  Missing 324 (23.9%) 106 (23.5%) 218 (24.1%)

TRF
  Mean (SD) 1.90 ± 0.46 2.11 ± 0.39 1.80 ± 0.46 < 0.01

  Missing 234 (17.2%) 85 (18.8%) 149 (16.4%)

ASO
  Mean (SD) 62.70 ± 93.47 68.73 ± 81.80 59.72 ± 98.65 0.12

  Missing 320 (23.6%) 109 (24.1%) 211 (23.3%)

RF
  Mean (SD) 11.54 ± 27.87 12.39 ± 39.63 11.13 ± 19.59 0.58

  Missing 321 (23.6%) 108 (23.9%) 213 (23.5%)

KAP
  Mean (SD) 2.69 ± 1.11 3.00 ± 0.95 2.53 ± 1.16 < 0.01

  Missing 331 (24.4%) 109 (24.1%) 222 (24.5%)

LAM
  Mean (SD) 1.57 ± 0.65 1.76 ± 0.61 1.47 ± 0.65 < 0.01

  Missing 331 (24.4%) 109 (24.1%) 222 (24.5%)

CA199
  Mean (SD) 17.37 ± 52.51 13.63 ± 26.38 19.11 ± 60.89 0.05

  Missing 374 (27.5%) 140 (31.0%) 234 (25.8%)

NSE
  Mean (SD) 13.17 ± 4.04 12.79 ± 3.71 13.34 ± 4.17 0.04

  Missing 385 (28.4%) 143 (31.6%) 242 (26.7%)

T3
  Mean (SD) 1.45 ± 0.38 1.54 ± 0.35 1.42 ± 0.39 < 0.01

  Missing 343 (25.3%) 125 (27.7%) 218 (24.1%)

T4
  Mean (SD) 84.29 ± 19.58 89.40 ± 18.27 81.86 ± 19.72 < 0.01

  Missing 342 (25.2%) 125 (27.7%) 217 (24.0%)

FT3
  Mean (SD) 4.12 ± 1.01 4.44 ± 0.93 3.97 ± 1.01 < 0.01

  Missing 339 (25.0%) 122 (27.0%) 217 (24.0%)

FT4
  Mean (SD) 15.14 ± 2.90 15.97 ± 2.74 14.74 ± 2.89 < 0.01

  Missing 339 (25.0%) 122 (27.0%) 217 (24.0%)

TSH
  Mean (SD) 3.81 ± 7.37 3.54 ± 7.55 3.94 ± 7.29 0.43

Table 1  (continued) 
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Total
(N = 1358)

Mild CKD
(N = 452)

Advanced CKD
(N = 906)

P value

  Missing 339 (25.0%) 123 (27.2%) 216 (23.8%)

PTH
  Mean (SD) 75.98 ± 103.56 63.57 ± 74.62 82.27 ± 115.02 < 0.01

  Missing 204 (15.0%) 64 (14.2%) 140 (15.5%)

TDB
  Mean (SD) 314.84 ± 277.94 282.47 ± 278.80 330.78 ± 276.32 < 0.01

  Missing 224 (16.5%) 78 (17.3%) 146 (16.1%)

B12
  Mean (SD) 525.56 ± 309.05 516.47 ± 293.20 530.01 ± 316.61 0.48

  Missing 229 (16.9%) 81 (17.9%) 148 (16.3%)

FOL
  Mean (SD) 8.54 ± 5.08 8.85 ± 4.94 8.39 ± 5.14 0.14

  Missing 230 (16.9%) 81 (17.9%) 149 (16.4%)

NTX
  Mean (SD) 32.78 ± 41.57 27.02 ± 30.97 35.64 ± 45.68 < 0.01

  Missing 303 (22.3%) 102 (22.6%) 201 (22.2%)

X25OHD
  Mean (SD) 31.84 ± 19.43 42.14 ± 21.53 26.59 ± 15.89 < 0.01

  Missing 216 (15.9%) 66 (14.6%) 150 (16.6%)

HGB
  Mean (SD) 119.29 ± 25.81 123.62 ± 23.45 117.16 ± 26.65 < 0.01

  Missing 90 (6.6%) 34 (7.5%) 56 (6.2%)

HCT
  Mean (SD) 35.65 ± 7.40 36.91 ± 6.57 35.03 ± 7.71 < 0.01

  Missing 90 (6.6%) 34 (7.5%) 56 (6.2%)

MCV
  Mean (SD) 90.05 ± 5.06 90.05 ± 5.28 90.05 ± 4.95 0.99

  Missing 90 (6.6%) 34 (7.5%) 56 (6.2%)

MCH
  Mean (SD) 30.10 ± 1.98 30.11 ± 1.91 30.10 ± 2.01 0.90

  Missing 90 (6.6%) 34 (7.5%) 56 (6.2%)

MCHC
  Mean (SD) 334.24 ± 12.17 334.45 ± 11.69 334.14 ± 12.40 0.66

  Missing 90 (6.6%) 34 (7.5%) 56 (6.2%)

PLT
  Mean (SD) 218.90 ± 67.67 217.56 ± 64.12 219.56 ± 69.37 0.61

  Missing 102 (7.5%) 38 (8.4%) 64 (7.1%)

WBC
  Mean (SD) 30.92 ± 496.32 54.03 ± 853.94 19.37 ± 70.94 0.39

  Missing 20 (1.5%) 6 (1.3%) 14 (1.5%)

NEUT.
  Mean (SD) 61.92 ± 11.70 59.65 ± 11.73 63.03 ± 11.53 < 0.01

  Missing 90 (6.6%) 34 (7.5%) 56 (6.2%)

LYMPH.
  Mean (SD) 27.00 ± 10.00 29.16 ± 9.96 25.94 ± 9.85 < 0.01

  Missing 90 (6.6%) 34 (7.5%) 56 (6.2%)

MONO.
  Mean (SD) 7.78 ± 2.34 7.89 ± 2.30 7.72 ± 2.36 0.24

  Missing 90 (6.6%) 34 (7.5%) 56 (6.2%)

EO.
  Mean (SD) 2.86 ± 2.77 2.83 ± 2.57 2.88 ± 2.87 0.80

  Missing 90 (6.6%) 34 (7.5%) 56 (6.2%)

Table 1  (continued) 
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AUC comparison, we conducted a follow-up study using 
the results of RFE-LR. We then used these 17 variables 
for subsequent model building, including gender, total 
protein (TP), albumin (ALB), serum protein electropho-
resis-albumin (SPE-ALB), serum protein electrophoresis-
alpha2 (SPE-alpha2), serum protein electrophoresis-beta 
(SPE-beta), eGFR, cystatin C (CYSC), uric acid (UA), 
glycated albumin (GA), non high density lipoprotein 
(N-HDL), apolipoprotein A (APO-A-I), creatine phos-
phokinase (CPK), retinol conjugated protein (RBP), 

transferrin (TRF), lambda light chain (LAM), and 25 
Hydroxyvitamin D (25OHD).

Model comparison
The adjustment results of the model hyperparameters 
were summarized firstly. Before adjusting these hyper-
parameters, the LR model achieved the highest AUC 
(0.839) (Table S5). Four machine learning models were 
constructed based on the best hyperparameter com-
binations of the algorithms (Table  2). The results of the 

Total
(N = 1358)

Mild CKD
(N = 452)

Advanced CKD
(N = 906)

P value

BASO.
  Mean (SD) 0.44 ± 0.27 0.47 ± 0.27 0.42 ± 0.26 < 0.01

  Missing 90 (6.6%) 34 (7.5%) 56 (6.2%)

NEUT
  Mean (SD) 4.47 ± 2.42 4.13 ± 2.03 4.64 ± 2.58 < 0.01

  Missing 90 (6.6%) 34 (7.5%) 56 (6.2%)

LYMPH
  Mean (SD) 376.29 ± 780.47 368.01 ± 811.23 380.34 ± 765.38 0.79

  Missing 79 (5.8%) 31 (6.9%) 48 (5.3%)

MONO
  Mean (SD) 0.52 ± 0.20 0.51 ± 0.18 0.53 ± 0.21 0.15

  Missing 90 (6.6%) 34 (7.5%) 56 (6.2%)

EO
  Mean (SD) 0.18 ± 0.19 0.18 ± 0.18 0.18 ± 0.20 0.56

  Missing 90 (6.6%) 34 (7.5%) 56 (6.2%)

BASO
  Mean (SD) 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.17

  Missing 90 (6.6%) 34 (7.5%) 56 (6.2%)

RDW.CV
  Mean (SD) 12.99 ± 1.35 12.86 ± 1.34 13.06 ± 1.35 0.01

  Missing 102 (7.5%) 38 (8.4%) 64 (7.1%)

RDW.SD
  Mean (SD) 42.46 ± 4.71 42.05 ± 4.90 42.66 ± 4.61 0.03

  Missing 102 (7.5%) 38 (8.4%) 64 (7.1%)

MPV
  Mean (SD) 10.95 ± 1.10 11.00 ± 1.05 10.93 ± 1.12 0.29

  Missing 104 (7.7%) 37 (8.2%) 67 (7.4%)

PCT
  Mean (SD) 0.24 ± 0.06 0.24 ± 0.06 0.24 ± 0.07 0.74

  Missing 104 (7.7%) 37 (8.2%) 67 (7.4%)

P.LCR
  Mean (SD) 32.44 ± 8.97 32.89 ± 8.59 32.21 ± 9.16 0.19

  Missing 104 (7.7%) 37 (8.2%) 67 (7.4%)

PDW
  Mean (SD) 13.08 ± 2.57 13.23 ± 2.36 13.01 ± 2.66 0.14

  Missing 116 (8.5%) 41 (9.1%) 75 (8.3%)

RET.
  Mean (SD) 1.67 ± 0.95 1.64 ± 0.96 1.68 ± 0.94 0.50

  Missing 228 (16.8%) 76 (16.8%) 152 (16.8%)

U.PRO
  Mean (SD) 2.70 ± 3.02 0.52 ± 0.32 3.79 ± 3.17 < 0.01

Table 1  (continued) 
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confusion matrixes are summarized in Table  3, where 
XGBoost created the minimum number of false positives 
(15) and LR created the maximum number of true posi-
tives (153). As can be seen from Table 4; Fig. 2b and c, 
LR achieved the best AUC (0.850) in the single machine 
learning model. The ensemble model constructed using 
the voting ensemble method further improved the pre-
dictive power and achieved the highest performance 
(AUC: 0.856). The model with the best sensitivity applied 
LR (0.845). The specificity values of XGBoost, NN, and 
the traditional creatinine (Cre) indicator were all above 
0.8, whereas the sensitivity of Cre was low (0.392). 
When compared with the pre-existing single renal func-
tion evaluation indices (eGFR, Scr), the prediction 

performance of machine learning for the progression of 
CKD was significantly improved (Table  4). In addition, 
we also compared the running time of different machine 
learning models under the same hardware conditions. 
As shown in Table S6, there is little difference among the 
models in the test cohort. However, when training the 
cohort of each hyperparameter, GNB had the fastest and 
XGBoost had the slowest execution time.

Most important predictors of CKD risk
To identify the features influencing the model and their 
impact on the risk of CKD as a way to support clinical 
decision-making, a particular variant of SHAP for ker-
nel-based explainers was used for the ensemble model 

Fig. 2  Screening of predictors and evaluation of models. (a) RFE-LR used to examine whether any subset of the input features can achieve a better 
discrimination than the initial set of features. (b) ROC curves of different models on the validation sets. (c) Precision–recall (PR) curves of different models 
on the validation sets
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interpretation with the best AUC performance. The 
features ranked based on the SHAP values in the train-
ing dataset are shown in Fig. 3.  Features other than Scr 
and eGFR were discussed to highlight those that may 
need to be closely monitored. As shown in Fig. 3, lower 
levels of 25OHD, ALB, and transferrin (TRF), male sex, 

and higher levels of CYSC were the major predictors of 
moderate-to-high severity. In addition, to obtain the 
exact form of the relationship, SHAP-dependence plots 
(Fig. 4) were employed. A SHAP value exceeding zero is 
regarded as the cut-off point, and the critical point cor-
responding to each feature can be observed at this time. 
According to the results, 25OHD levels lower than 30 
nmol/L indicate a moderate or even severe loss of renal 
function. In addition, when the 25OHD level was higher 
than 75 nmol/L, the individual differences increased. A 
decrease in serum ALB level predicts an increase in the 
risk of CKD. ALB levels below 37  g/L were correlated 
with a positive predictive value. We also found that the 
accumulation of CYSC indicates an increased risk of 
CKD, that is, when the CYSC level is higher than 2 mg/L, 
the same level of CYSC accounts for a greater differ-
ence among the patients. In addition, a higher glycated 
albumin (GA) level (%) indicates an increased risk of 
CKD. The results also illustrate the tendency of CKD risk 
when eGFR levels decrease. An eGFR level below 60 ml/
min/1.73 m2 is correlated with a positive predictive value. 
Within the range of 1.5–2.0  g/L, TRF changes slightly, 
whereas SHAP increases sharply, which shows that atten-
tion should be paid to changes in the TRF. Such analy-
ses can help clinicians understand the results of potential 

Table 2  Results of hyper-parameter optimization of different machine learning algorithms
Model Hyper-parameter space Best Combination of Hyperparameters AUC in the 

training 
cohort

AUC 
in the 
test 
cohort

XGBoost {‘max_depth’: [2, 3, 5–7, 9, 12, 15, 17, 25], ‘min_child_weight’: [1, 
3, 5, 7], ‘gamma’:[ 0, 0.05 ,0.1,0.2, 0.3, 0.5, 0.7, 0.9, 1], ‘subsample’:[ 
0.6, 0.7, 0.8, 0.9, 1], ‘colsample_bytree’:[0.6, 0.7, 0.8, 0.9, 1], ‘learn-
ing_rate’:[0.01, 0.015, 0.025, 0.05, 0.1]}

{‘max_depth’: [2], ‘min_child_weight’: [3],
‘gamma’:[0.2],
‘subsample’:[ 0.7], ‘colsample_bytree’:[0.8],
‘learning_rate’:[0.01]}

0.903 0.844

GNB / / 0.797 0.808

NN {‘alpha’: [0.1, 0.01, 0.001, 0.0001], ‘hidden_layer_sizes’:[(50,),(100,)], 
‘solver’:[‘sgd’, ‘adam’], ‘activation’:[‘tanh’,‘relu’], ‘learning_
rate’:[‘constant’, ‘adaptive’]}

{‘activation’: ‘tanh’, ‘alpha’: 0.1, 
‘hidden_layer_sizes’:(50,),
‘learning_rate’: ‘constant’, ‘solver’: ‘adam’}

0.855 0.822

Ridge {‘alpha’: [0.001, 0.01, 0.1, 1, 10, 100, 1000],‘solver’:[‘svd’, ‘cholesky’, 
‘lsqr’, ‘sparse_cg’, ‘sag’, ‘saga’]}

{‘alpha’: 10,
‘solver’: ‘svd’}

0.829 0.836

LR {‘C’: [0.001, 0.01, 0.1, 1, 10, 100], ‘penalty’:[‘l2’], ‘solver’: [‘newton-cg’, 
‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’]}

{‘C’: 0.1, ‘penalty’: ‘l2’, ‘solver’: ‘newton-cg’} 0.833 0.850

Table 3  Confusion matrices
Model Predictive Actual

Mild Advanced
XGBoost Mild 76 48

Advanced 15 133

GNB Mild 71 43

Advanced 20 138

NN Mild 74 47

Advanced 17 134

Ridge Mild 70 38

Advanced 21 143

LR Mild 66 28

Advanced 25 153

Ensemble Mild 68 33

Advanced 23 148

eGFR Mild 51 64

Advanced 40 117

Cre Mild 78 110

Advanced 13 71

Table 4  Performance summary
Models AUC 95%CI sensitivity specificity accuracy AP

Lower bound Upper bound
XGBoost 0.844 0.798 0.891 0.735 0.835 0.768 0.920

GNB 0.808 0.755 0.861 0.762 0.780 0.768 0.893

NN 0.822 0.773 0.872 0.740 0.813 0.765 0.907

Ridge 0.836 0.788 0.884 0.790 0.769 0.783 0.918

LR 0.850 0.805 0.896 0.845 0.725 0.805 0.924

Ensemble 0.856 0.812 0.901 0.818 0.747 0.794 0.926

eGFR 0.606 0.537 0.675 0.646 0.560 0.618 0.753

Cre 0.620 0.551 0.689 0.392 0.857 0.548 0.763
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interventions and design appropriate personalized care 
plans to reduce the risk of CKD.

Discussion
The 24-h urine protein test has stringent patient compli-
ance requirements and difficult follow-up procedures. 
The use of routine laboratory biochemical tests to replace 
the 24-h urine protein quantification will improve the 
convenience of outpatients and follow-up patients. In 
this retrospective cohort study, we developed machine 
learning algorithms using 100 easily obtainable clini-
cal features for predicting CKD based on the severity of 
the proteinuria (Fig.  5). Some studies have shown that 
changes in the proteinuria are significantly associated 
with certain kidney function metrics, including a dou-
bling of serum creatinine levels, rapid eGFR decline, and 
progression to end-stage kidney disease [25–27]. How-
ever, the detection of 24-h proteinuria is difficult owing to 
several factors, such as better applicability to hospitalized 
patients than to outpatients, poor patient compliance, 
and increased medical pressure. In the present study, the 
linear LR model exhibited the best AUC performance for 

single-model prediction, whereas the ensemble model 
(LR + XGBoost) exhibited the best AUC (0.856) among 
all models considered, with balanced specificity and sen-
sitivity. Model fusion technology is therefore suitable for 
clinical decision support. Owing to the diversity of the 
available data and an adequate AUC performance, it can 
be concluded that the results of this study are informa-
tive for the rapid diagnostic identification of patients with 
CKD, with the mining of key risk factors contributing to 
subsequent treatment.

Artificial intelligence is being increasingly used in the 
medical field to predict various outcomes. Several lon-
gitudinal studies involving CKD have reported progress 
regarding the use of machine learning algorithms in CKD 
prediction. A survey by Huang et al. showed that 125 
metabolites and 14 clinical variables can be used as pre-
dictors to establish a CKD prediction model for patients 
with type 2 diabetes (AUC = 0.857) [28]. Rashed-Al-Mah-
fuz et al. developed five models for predicting CKD using 
low-cost diagnostic screening. The RF accurately pre-
dicted (at a rate of 99.5%) patients at risk of CKD, but this 
high predictive power may be due to overfitting caused 

Fig. 3  SHAP summary plot of the top-17 features of the ensemble model. The abscissa is the SHAP value, which represents the impact on the model 
output. The ordinates are different features, with red representing larger eigenvalues, and blue indicating smaller eigenvalues
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by too little data quantities [29]. Ferguson et al. also used 
routinely collected laboratory data and machine learn-
ing models to identify those at high risk of developing 
advanced CKD within the next 5 years [30]. However, 
none of these studies can provide personalized informa-
tion for individual patients, thus hindering the ability of 
predictive models to support decision-making under 
clinical settings. This study provides a comprehensive 
framework for combining the predictive accuracy of CKD 
risk with interpretable results for the important charac-
teristics of individual patients. Interestingly, consistent 
with the research by Xiao et al. on the use of proteinuria 
as a standard for CKD [31], the linear model achieved the 
best prediction performance in the prediction of multi-
ple models; the ML model fusion used in this study can 
further improve the model AUC, which suggests that the 

model fusion scheme has potential practical capabili-
ties. Similarly, some common factors such as ALB, TP, 
and eGFR have been found to be significantly related to 
CKD progression. More details about the above-men-
tioned studies are shown in Table S7. Particularly, our 
outcome differs from most existing reports, namely, we 
used 24-hour urinary protein as the outcome, while oth-
ers were more based on eGFR, but the systemic changes 
in tubular creatinine secretion and extrarenal creati-
nine clearance could bias the results. Routinely, 24-hour 
urinary protein quantification is the gold standard for 
assessing the severity of CKD, but there are few studies 
that have stratified the risk of CKD with an outcome of 
24-hour urinary protein, resulting in limited comparable 
studies, and this may be due to the difficulty in obtain-
ing the results of 24-hour urinary protein quantification 

Fig. 4  SHAP dependence plots for ensemble model. The SHAP-dependence plot shows the effect of a single feature on the output of the ensemble 
prediction model. SHAP values for specific features exceeding zero represent an increased risk of CKD progression. (a-f) 25-hydroxyvitamin D, albumin, 
cystatin C, glycated  albumin, estimated glomerular filtration rate (eGFR), transferrin, protein A1, uric acid, and total protein
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in clinical practice. For each patient, risk stratification of 
CKD and timely identification of high-risk are of great 
significance for rational allocation of limited clinical 
resources and treatment intervention. Our research has 
made up for these deficiencies to a certain extent.

Unlike many studies on CKD risk factors, we used RFE-
LR algorithms to screen the most important variables 
that can be used for prediction and applied the SHAP 
values to explain the machine learning model. Based on 
the SHAP values, the 25OHD attribute was assigned the 
highest importance. The kidney is one of the main organs 
regulating vitamin D metabolism. The kidney internal-
izes 25OHD and converts 25(OH)D into 1,25(OH)2D. 
In CKD, the combination of a limited vitamin D intake 
and a reduced renal capacity to activate 25(OH)D into 
1,25(OH)2D leads to a progressive vitamin D deficiency 
[32].Additionally, this study found that patients with 
25OHD in the 28–35 nmol/L range require close moni-
toring to delay the progression of CKD. A close and regu-
lar review of 25OHD in such patients is recommended 
in clinical practice. However, further analysis of the 
actual health status of the patient is required to deter-
mine whether the dosing schedule of vitamin D can be 
adjusted. ALB was determined to be of the next highest 
importance based on the SHAP values; lower ALB lev-
els are associated with the loss of kidney function. ALB 
accounts for approximately 60% of the total serum pro-
tein content, maintains colloidal osmotic pressure, and 
binds a variety of compounds under physiological condi-
tions [33]. The glomerular filtration barrier prevents ALB 
from entering the ultrafiltrate. However, under the path-
ological condition of CKD, an increase in the effective 
radius of the barrier leads to protein loss, which further 

leads to a decrease in serum albumin levels [34]. The ALB 
of the point with zero SHAP values was approximately 
36–37  g/L. This means that for patients with reduced 
renal function, even if the reference range for ALB is 
35–55 g/L, ALB levels below 37 g/L may indicate moder-
ate-to-severe renal impairment and require closer moni-
toring. Although the production rate of CYSC is more 
stable and its internal variability is smaller than that of 
Scr, there have been fewer studies on the renal function 
marker CYSC, which is a low-molecular-weight protein 
produced by nucleated cells at a constant rate and acts 
as lysosomal and cysteine proteases [35]. A recent meta-
analysis showed similar findings; in particular, CYSC 
has a stronger correlation with renal function than Scr. 
We speculate that as an underlying explanation, CYSC 
is unaffected by muscle mass compared to Scr [36]. The 
interpretation based on the SHAP value is model-inde-
pendent; that is, the SHAP value can be applied to differ-
ent models. Therefore, although this research focused on 
CKD, the framework can be easily extended to the risk 
prediction and interpretation of other diseases to better 
support clinical decision-making.

Overall, in this study, an integrated framework for CKD 
risk prediction and interpretation is proposed to provide 
clinicians with decision support and model interpreta-
tion. Specifically, an integrated algorithm was developed 
to achieve a good prediction performance on the CKD 
dataset. While accurately predicting high-risk patients, it 
also achieves a strong interpretability for specific indica-
tors. Finally, this study has certain limitations. Firstly, this 
is a single-center retrospective study, and there may be 
variations in the clinical characteristics of the data across 
different regions. Therefore, to assess the generalizability 

Fig. 5  Overall summary of the study. Using common clinical variables, machine learning based approaches can effectively predict and explain the 
progression of CKD. Furthermore, decision support is provided for early intervention, and medical resource allocation is given for outpatients and those 
requiring a follow-up
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of the model, the conclusions drawn from this study need 
to be validated in external cohorts. Secondly, this study 
only considered the correlation between predictive fac-
tors and CKD, without considering causality. Thirdly, this 
study used conventional feature selection models, and the 
application of more recent advanced techniques such as 
NRF, AHEGFS, and BEFS may help identify more reliable 
CKD progression risk factors. Finally, the dataset used 
in this study only included blood-related indicators and 
ignored medical prescriptions and imaging examinations.

Conclusions
In conclusion, we developed a machine learning model 
for predicting CKD based on proteinuria severity. The 
experimental results show that constructing a predictive 
interpretation framework can lead to a good predictive 
interpretation and provide effective clinical decision sup-
port. Another essential value is in providing new clinical 
insights for the management of patients requiring follow-
up examinations for different diseases in large hospitals.
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