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Introduction
Intensive care units (ICUs) admit critically ill patients 
who require constant care and supervision from life sup-
port equipment and medication to ensure normal bodily 
functions [1]. The illness severity of patients explains the 
high fatality rate in ICUs, which remains at approximately 
20% globally [2]. Another explanation for this very high 
mortality rate lies in the rapid evolution of patients’ con-
ditions and the risk of delayed management of complica-
tions. Thus, timely diagnosis and relevant management 
and treatment are crucial to amend prognosis. To address 
this issue and identify patients with the highest risks of 
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Abstract
Background The risk of mortality in intensive care units (ICUs) is currently addressed by the implementation of 
scores using admission data. Their performances are satisfactory when complications occur early after admission; 
however, they may become irrelevant in the case of long hospital stays. In this study, we developed predictive models 
of short-term mortality in the ICU from longitudinal data.

Methods Using data collected throughout patients’ stays of at least 48 h from the MIMIC-III database, several 
statistical learning approaches were compared, including deep neural networks and penalized regression. Missing 
data were handled using complete-case analysis or multiple imputation.

Results Complete-case analyses from 19 predictors showed good discrimination (AUC > 0.77 for several approaches) 
to predict death between 12 and 24 h onward, yet excluded 75% of patients from the initial target cohort, as data was 
missing for some of the predictors. Multiple imputation allowed us to include 70 predictors and keep 95% of patients, 
with similar performances.

Conclusion This proof-of-concept study supports that automated analysis of electronic health records can be 
of great interest throughout patients’ stays as a surveillance tool. Although this framework relies on a large set of 
predictors, it is robust to data imputation and may be effective early after admission, when data are still scarce.
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severe complications, prognostic scores have been devel-
oped, such as the Acute Physiology And Chronic Health 
Evaluation II (APACHE II) [3], the Simplified Acute 
Physiology Score (SAPS II) [4] or the Sequential Organ 
Failure Assessment Score (SOFA) [5], used to predict in-
hospital mortality from data collected upon admission 
or in the first 24 h in the ICU. These prediction scores, 
however, have a number of limitations, one of the most 
important being that they rely on patients’ data at admis-
sion, without re-evaluation during their stays, as for most 
published ICU mortality prediction methods [6]. The 
prediction performances of these scores are therefore 
high regarding early complications but show a decrease 
in their capacity to estimate the mortality risk in patients 
who have already spent several days or weeks in the ICU 
[7].

To address this issue, other scoring systems have been 
developed to estimate the risk of complications through-
out the stay using updated collection of patient data. 
Regarding the risk of septic shock, one of the leading 
causes of death in ICU patients, longitudinal collection 
of data thus allowed to identify a “pre-shock” state dur-
ing which the symptoms of the upcoming failure are not 
yet clinically visible [8]. Early management of this state 
may prevent the occurrence of septic shock and improve 
survival. Opportunities to predict or identify the onset of 
complications early therefore represent a major challenge 
in the management of ICU patients. The current spread 
of health care data warehouses offers new opportunities 
to closely monitor the evolution of ICU inpatients and 
to develop prognostic scores relying on a wider range of 
data [9, 10]. These databases enable the collection and 
centralization of detailed data throughout inpatients’ 
stays via demographic characteristics, physiological mea-
sures, diagnoses, laboratory analyses, medical imaging, 
medical notes, etc. ICUs are highly monitored environ-
ments and important data sources for these warehouses. 
Repeated collection of data allows us to study the evo-
lution of patient characteristics and to identify factors 
associated with the occurrence of worsening conditions, 
possibly leading to complications or death. Appropriate 
machine learning algorithms are required to address the 
massive amount of data available in these warehouses. 
Deep learning methods have been extensively studied in 
recent years for their abilities to manage large amounts 
of data, and specific architectures of deep learning net-
works, such as convolutional and recurrent neural net-
works, have been developed to handle longitudinal data 
[9, 11]. Such predictive modeling approaches may, how-
ever, present limited interest when their use relies on a 
large number of predictors, several of which may be 
unavailable in some patients.

Considering recent advances in predictive modeling 
from longitudinal data using neural networks [12, 13], 

we aimed to develop and validate models predicting 
ICU mortality for higher lengths of stay than those well 
evaluated by the existing scores. These models were built 
from ICU hospitalizations lasting more than 48 h, using 
longitudinal health care data with missing values from 
electronic health records available in the freely accessible 
Medical Information Mart for Intensive Care (MIMIC-
III) critical care database [14, 15]. Different architec-
tures of deep learning neural networks were evaluated 
in the context of missing values for some predictors and 
compared with predictive models based on penalized 
regression.

Materials and methods
Data collection and preparation
All predictive models were trained from the MIMIC-III 
database (version: January 2020). This data warehouse is 
an open-access database that collected anonymized care 
data in 46,520 patients from 19 critical care units of the 
Beth Israel Deaconess Medical Center in Boston, USA, 
between 2001 and 2012. Only the first ICU stay of each 
patient in the MIMIC-III database was used. Patients 
aged over 100 years were excluded, as well as patients 
under 15 in order not to mix pediatric patients with adult 
patients and to keep a homogeneous population, as their 
conditions, risk factors and vital prognosis highly differ. 
Patients with missing information on vital status at hospi-
tal discharge and those with an ICU length of stay lower 
than 48 h were also excluded, as the method requires the 
collection of data over 36  h to predict mortality after a 
12-hour gap following the end of this observation period.

Data collected throughout patients’ stays were split 
into several time slots, during which information was 
summarized by a unique value per variable (the latest 
value collected during each time slot) (Fig. 1). Short-term 
evolution of all patients’ characteristics was accounted 
for with the use of triplets for consecutive values over 
three time slots; these triplets were used as predic-
tors for model development. Formats of 6- and 12-hour 
time slots were compared, with predictions still address-
ing mortality between 12 and 24  h following the 3rd 
predictive slot to find a trade-off between the ability to 
capture short-term evolutions and the overall duration 
of data collection. An additional format with 6 consecu-
tive 6-hour predictive time slots was also tested. In all 
analyses, the models aimed at predicting mortality after 
a 12-hour gap following the third predictive time slot. 
For instance, using 12-hour time slots following time 
t0, information collected over the 3 time slots between 
t0 and t0 + 36  h was used to predict mortality between 
t0 + 48 h and t0 + 60 h. The 12-hour gap between t0 + 36 h 
and t0 + 48  h was considered clinically relevant, as it is 
short enough to predict upcoming lethal complications 
yet leaves some time for physicians to become aware of 



Page 3 of 9Bouvarel et al. BMC Medical Informatics and Decision Making          (2023) 23:170 

possibly undetected complications and modify diagnostic 
or therapeutic management if necessary. Unlike the cur-
rent scores using admission data, these models therefore 
apply only to patients staying more than 48 h in the ICU.

The predicted endpoint was mortality in the ICU, 
coded as a binary variable. Assuming that patients’ char-
acteristics associated with mortality in the ICU were 
mostly identified by previously published prognostic 
scores, we first developed models relying only on vari-
ables used in the APACHE II and SAPS II scores [3, 4] to 
predict mortality, as well as the SOFA score [5] to predict 
the occurrence of organ failure. Nineteen predictors used 

in these scores were selected (Table  1), including medi-
cal history, vital signs, and blood tests, as well as admin-
istrative features such as previous hospitalization wards, 
which can provide information on the most common 
complications.

To assess the relevance of using longitudinal data, 
predictive models derived solely from admission data 
were built from the same dataset (thus only addressing 
patients alive and still in the ICU 48 h after admission to 
predict death anytime during their stays).

Table 1 Characteristics of patients in the Complete-case and Imputed-19 cohorts at admission (median [Q1, Q3])
Complete-case Imputed-19

Miss-
ing 
data

Survivors
n = 3489

Non-survivors
n = 787

Miss-
ing 
data

Survivors
n = 8590

Non-survivors
n = 1499

Admission type 0% - ELEC: 16.4%
- EMER: 81.4%
- URG: 2.2%

- ELEC: 5.1%
- EMER: 92.4%
- URG: 2.6%

0% - ELEC: 15.0%
- EMER: 80.7%
- URG: 4.3%

- ELEC: 4.7%
- EMER: 90.0%
- URG: 5.3%

Previous ward 0% 17 classes 17 classes 0% 17 classes 17 classes
Current ward 0% 18 classes 18 classes 0% 18 classes 18 classes
Age years 0% 64.66 [51.98, 75.94] 69.99 [56.43, 80.07] 0% 65.2 [52.05, 76.56] 70.98 [57.69, 80.32]
PaO2 mmHg 0% 133 [96, 202] 129 [92, 198.5] 15.65% 163 [98, 285] 128 [83, 209]
FiO2 proportion 0% 0.5 [0.4, 0.7] 0.5 [0.5, 0.8] 22.07% 0.6 [0.5, 1] 0.7 [0.5, 1]
GCS points 0% 9 [6, 15] 7 [4, 11] 0.65% 11 [6, 8] 10 [6, 8]
MAP mmHg 0% 79 [70, 90] 77 [67, 90] 21.45% 80 [70, 92] 78 [68, 91.75]
Platelets 103 cells/mm3 0% 188 [135, 260] 190 [115, 266.5] 0.06% 198 [141, 267] 190 [115, 269.75]
Blood creatinine mg/dL 0% 0.9 [0.7, 1.4] 1.1 [0.8, 1.8] 0.04% 0.9 [0.7, 1.3] 1.1 [0.8, 1.9]
Heart rate min− 1 0% 86 [75, 99] 88 [74.5, 103] 0.65% 87 [75, 99] 91 [76, 106]
Systolic blood pressure mmHg 0% 118 [103, 134] 115 [99, 133] 21.30% 118 [102, 136] 114 [98, 134]
Temperature °C 0% 36.89 [36.28, 37.5] 36.67 [36.11, 37.44] 1.07% 36.78 [36.22, 37.33] 36.67 [16, 37.33]
Sodium mEq/L 0% 139 [136, 142] 139 [136, 142] 25.37% 139 [136, 141] 139 [135.25, 142]
Potassium mEq/L 0% 4.1 [3.7, 4.4] 4 [3.7, 4.4] 25.36% 4 [3.7, 4.5] 4.1 [3.7, 4.5]
White blood cells K cells/mcL 0% 12.1 [8.9, 16.3] 12.9 [8.8, 18.2] 0.06% 11.5 [8.4, 15.5] 12.15 [8.5, 17.2]
Respiratory rate min− 1 0% 18 [15, 17] 20 [18, 19] 0.65% 17 [15, 20] 20 [18, 19]
Hematocrit % 0% 31.4 [28.5, 34.9] 31.6 [28.1, 35.3] 0.04% 32.2 [28.5, 36.5] 31.5 [27.8, 35.5]
Arterial pH 0% 7.38 [7.33, 7.43] 7.37 [7.31, 7.43] 15.23% 7.38 [7.33, 7.43] 7.37 [7.3, 7.43]
ELEC: elective; EMER: emergency; URG: urgent; PaO2: arterial partial pressure of oxygen; FiO2: fraction of inspired oxygen; GCS: Glasgow Coma Scale; MAP: mean 
arterial pressure.

Fig. 1 Time-slot formatting of data. For variables with values evolving within a predictive time slot, the latest values were used. Durations of 6 and 12 h 
were compared for predictive time slots
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Missing data
Selected predictors were subject to missing values, to a 
large extent for some of them (up to 25%, see Table  1). 
Three approaches were compared to handle incomplete 
data. First, the analysis used the complete-case cohort, by 
selecting only patients in whom all variables were avail-
able for the first time slot and “last observation carried 
forward” for the following slots. Second, missing val-
ues for the 19 selected predictors were imputed using 
multiple imputation by chained equations with respect 
to the hierarchical structure of data (time slots within 
patients) [18, 21], which allowed us to keep additional 
patients in whom data were available for at least one of 
these 19 predictors. Third, the set of covariates used to 
predict ICU mortality was extended to a larger set of 
clinical and biological variables regardless of preexisting 
scores, and missing values for all variables were multiply 
imputed. This third approach considered a large extent 
of available predictors without limiting the sample size, 
as would be required by the complete-case analysis. A 
new set of 70 predictors was defined according to their 
availability among patients, which allowed us to keep 
patients for whom data were available for at least one of 
these 70 predictors. These predictors were selected solely 
based on their availability, regardless of their expected 
clinical relevance or collinearity (e.g., several predictors 
could describe the same measure performed by differ-
ent devices, Appendix Table A.1). Continuous predictors 
were log-transformed when required to improve normal-
ity. Ten imputed datasets were generated using random-
effect linear and logistic regressions for quantitative and 
binary variables, respectively, and polytomous regression 
for other categorical variables. Parameters derived from 
multiple imputation were estimated with their standard 
errors through the imputed datasets and pooled using 
Rubin’s rule [22].

Neural network architectures and statistical analyses
Four neural network architectures were set up to predict 
mortality in ICU inpatients: a fully connected neural net-
work (FCN), a convolutional neural network (CNN) [23, 
24], a bidirectional long short-term memory (LSTM) 
recurrent neural network [20] and a CNN-LSTM net-
work [17], which concatenated the information from the 
two previous networks.

A fine-tuning of the hyperparameters was performed 
for each of the neural networks. Trained on two imputed 
datasets from the Imputed-19 and the Imputed-70 
cohorts, a grid search was performed based on the AUC 
scores averaged over 5-fold cross-validation to deter-
mine the optimal model architecture for both data for-
mats. Different hyperparameter combinations were 
iteratively tested by varying the number of layers and 
neurons per layer for the FCN, the number of neurons 

for the LSTM, and the number of layers and filters, the 
kernel size and the stride length for the CNN. In addi-
tion to these parameters specific to each type of neural 
network, different learning rates and batch sizes were 
tested. The Complete-case cohort was analyzed with the 
same hyperparameters as the Imputed-19 cohort, as the 
predictors did not differ.

The FCN used 6 hidden layers: the first hidden layer is 
composed of 150 neurons, with the number of neurons 
decreasing with each hidden layer. The CNN used three 
convolutional layers with an increasing number of fil-
ters per layer, an average pooling layer, and finally, a fully 
connected layer allowing the classification done by the 
model. Its kernel sizes were 3 and 25 for the Imputed-19 
and Imputed-70 cohorts respectively with a stride of 1. 
The LSTM network used a single layer, with 57 and 220 
neurons for the Imputed-19 and Imputed-70 cohorts, 
respectively, with a fully connected output layer. The 
CNN-LSTM network combined the hyperparameters of 
the CNN and LSTM networks.

All neural networks used rectified linear unit (ReLU) 
activation functions in the hidden layers, a dense output 
layer with two neurons (for two classes) and a sigmoid 
activation function. The parameters were optimized with 
a binary cross-entropy loss function, the Adam optimizer 
[25], a learning rate of 0.001 and a batch size of 128. 
Observations were weighted according to the outcome 
group to which they belonged in order to correct the 
imbalance between these groups [19].

Using the same data, these neural networks were com-
pared with elastic net, a regularized logistic regression 
approach that combines the penalties of the lasso and 
ridge methods to control multicollinearity, which com-
monly occurs in models with large numbers of predictors 
[26]. The alpha and lambda parameters (relative weight 
of ridge and lasso penalties and shrinkage parameter, 
respectively) were optimized using cross-validation over 
a grid search. The best performances were obtained for 
an alpha value of 0.001 (i.e., almost considering coeffi-
cients from only ridge regression) and a lambda value of 
0.5 for all cohorts.

Performances of these predictive models were assessed 
by evaluating their discrimination and calibration abili-
ties, with the use of multiple 5-fold cross-validation: 
patients were split into 5 subsets, 4 of which were used 
for model training and the 5th for performance evalua-
tion. This procedure was repeated so that all 5 subsets 
were used for evaluation. This 5-fold cross-validation was 
carried out 10 times with different partitions of the data-
set. The models’ ability to discriminate patients at higher 
risk of death was evaluated using the average area under 
the ROC curve (AUC). Pairwise AUC comparisons were 
performed between models using linear mixed models 
with a random intercept for the cross-validation dataset 
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partition, a method derived from the Hanley and McNeil 
test to account for the correlation between cross-valida-
tion datasets [27]. Fixed effects were tested directly for 
the complete-case analyses and after pooling with Rubin’s 
rule for imputed datasets. Calibration was graphically 
assessed with calibration plots comparing observed and 
predicted probabilities after rescaling predictions accord-
ing to the imbalance weights used for model training.

Neural networks were built using Keras version 2.3.1 
and the application programming interface of Tensor-
Flow version 2.1.0. All other analyses were performed 
using R Statistical Software version 4.0.2 (Foundation for 
Statistical Computing, Vienna, Austria). All tests were 
two-tailed at the 0.05 significance threshold.

This study followed guidelines from the Transparent 
Reporting of a multivariable prediction model for Indi-
vidual Prognosis Or Diagnosis (TRIPOD) statement [28]. 
The TRIPOD checklist is provided as Appendix Table 
A.2.

Results
Selection of patients
After exclusion of patients aged < 15 or > 100 years, those 
with missing data on vital status and those staying < 48 h 
in the ICU, 17,373 patients with unique admission 
remained in the dataset. According to missing data man-
agement, three cohorts were defined. Patients with no 

missing data in the 19 initially selected predictors, at least 
for the first time slot, defined the “Complete-case” cohort 
(n = 4276 patients, 787 deaths). The “Imputed-19” cohort 
included patients with data available for at least one of 
the 19 main predictors (n = 10,089 patients, 1499 deaths), 
whereas the “Imputed-70” cohort did the same with the 
extended selection of 70 predictors (n = 16,532 patients, 
2395 deaths). Models were derived from these two latter 
cohorts after multiple imputation. Figure  2 summarizes 
this selection process.

Models derived from data at admission
Using only admission data from the Complete-case 
cohort to predict death in patients still in the ICU 
48  h after admission, the CNN showed the best per-
formance (AUC = 0.742 ± 0.002, p < 0.001 compared 
with any other method). The elastic net ranked second 
(AUC = 0.709 ± 0.002), while the FCN, LSTM and CNN-
LSTM all had AUCs under 0.67 (Table 2).

Time slot duration
Now relying on longitudinal data, still with the Com-
plete-case cohort, neural network performances using 
time slots of 6- and 12-hour durations were compared. 
Fully connected networks showed poorer performances 
than all other models for all time slot durations (p < 0.001 
compared with any other method). Models with the 
best performances were elastic net for 12-hour slots 
(AUC = 0.789 ± 0.002) and CNN-LSTM for 6-hour slots 
(AUC = 0.780 ± 0.003), with similar AUCs (p = 0.193). 
Except for the FCN, which always showed poor perfor-
mance, all methods using longitudinal data with either 6- 
or 12-hour slots outperformed the same methods using 
only admission data (p < 0.001 for all methods).

Mortality prediction in presence of missing data
Multiple imputation of missing values allowed us to con-
sider a larger set of predictors and to keep larger sample 
sizes than for complete-case analyses. Table  2 summa-
rizes the predictive performances for all cohorts with 
12-hour time slots.

Predictions based on admission data or longitudinal 
data with either 6-hour or 12-hour slots are compared for 
the Complete-case cohort only. Cohorts defined by miss-
ing data management (Complete-case, Imputed-19 or 
Imputed-70 cohorts) are compared for predictions based 
on 12-hour slots only.

AUC: area under the ROC curve; SE: standard error; 
FCN: fully connected network; CNN: convolutional 
neural network; LSTM: long short-term memory. 
Imputed-19: missing values imputed for the same 19 pre-
dictors as complete-case analyses; Imputed-70: missing 
values imputed for an additional set of 51 predictors.Fig. 2 Flowchart for the definition of the three cohorts from the MIMIC-III 

database. Patients were selected according to age, length of stay ≥ 48 h 
and available data among the selected predictors
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Imputed-19. Multiple imputation of the 19 previous 
predictors allowed us to include nearly 2.5 times as many 
patients as in the complete-case analysis, with simi-
lar or slightly weaker performances. The CNN-LSTM 
(AUC = 0.772 ± 0.004) showed the best performance, 
close to the complete-case analysis, although no pair-
wise significant difference in AUC was found between 
all methods, except the FCN, which showed the weak-
est performance (p < 0.001 compared with any other 
method).

Imputed-70. Extending the set of predictors to 70 
covariates allowed us to include nearly 4 times as many 
patients as in the complete-case analysis, with similar 
or slightly better performances except for the FCN. The 
CNN showed the best performance (AUC = 0.783 ± 0.003), 
although, as for the Imputed-19 cohort, no significant 
difference was found among the four best methods.

Figure  3 summarizes the discrimination and calibra-
tion performances of the compared modeling methods 
for all cohorts, except for the FCN, which demonstrated 
poor performance in all analyses. ROC curves and cali-
bration plots represent the average estimates over the 10 
repeated 5-fold cross-validation and over the imputed 
datasets for the Imputed-19 and Imputed-70 cohorts. All 
models globally present a fairly satisfactory calibration.

Discussion
The vast majority of research on risk assessment for 
ICU mortality concerns short-term stays [6], using only 
admission data. The increasing availability of electronic 
health records in health care data warehouses offers new 
opportunities to closely monitor the evolution of ICU 
inpatients and to develop prognostic scores relying on a 
wider range of data, for instance, to detect life-threaten-
ing conditions and prevent hospital mortality [29], with 
promising results regarding specific conditions such as 
sepsis [30]. This study aimed to assess the relevance of 
predictive models for mortality in intermediate- or long-
term ICU stays, relying on health care data iteratively col-
lected throughout patients’ stays to reevaluate patients’ 
prognoses. Complementary to usual predictive scores 
for mortality occurring shortly after admission, such as 
SAPS II or APACHE II, our analyses focused on patients 
staying at least 48 h in the ICU.

Here, the mortality risk is continuously updated dur-
ing patients’ stays, using newly collected data. We nev-
ertheless considered a minimal 12-hour gap between 
the end of data collection and death, so that the devel-
oped models do not identify premortem status but rather 
leave some time for the medical staff to handle the situ-
ation. Considering the massive amount of data possibly 
available in data warehouses, we focused on statistical 
approaches likely to integrate a large number of variables, 
such as deep neural networks and penalized regression 
models.

Regarding the respective discrimination abilities of 
models using either 6- or 12-hour time slots, we found 
that both formats provided similar performances (AUC 
not significantly different).

Some of the models we developed showed perfor-
mances very close to the classical predictive scores of 
ICU mortality [31] or other ICU mortality prediction 
models based on neural networks [32], yet these latter 
models use admission data that are not updated through-
out patients’ stays. Our first analyses confirmed that 
the integration of data collected during patients’ stays 
permitted the identification of patients at higher risk of 
death better than when relying on baseline data only. 
Although unsurprising, this result highlights the need to 
develop and validate predictive scores that could more 
accurately evaluate patients’ prognoses after some time 
spent in the ICU.

Missing data are an important issue in clinical studies 
[33, 34], causing several limitations for complete-case 
analyses due to the exclusion of patients with missing 
data: lower sample sizes for the training of models, selec-
tion biases if patients without missing data are not repre-
sentative of the studied population, and the impossibility 
to apply these models and provide predictions in patients 
with incomplete data. Using data previously identified 
as predictive of ICU mortality, our complete-case analy-
sis showed satisfactory results, with an AUC between 
0.77 and 0.79 for both penalized regression and convo-
lutional neural networks. However, including patients 
with data available for all predictors implied selecting a 
subsample of only 4276 out of the 17,373 in the target 
cohort (25%), which suggests both a possible selection 
bias and the inability of our models to infer a mortality 

Table 2 Performance of elastic net and neural networks to predict ICU mortality (AUC ± SE).
Complete-case
n = 4276

Imputed-19
n = 10,089

Imputed-70
n = 16,532

Admission data 6-hour slots 12-hour slots 12-hour slots 12-hour slots
Elastic net 0.709 ± 0.002 0.769 ± 0.029 0.785 ± 0.002 0.753 ± 0.024 0.777 ± 0.003
FCN 0.663 ± 0.055 0.521 ± 0.037 0.634 ± 0.049 0.586 ± 0.056 0.542 ± 0.047
CNN 0.742 ± 0.002 0.778 ± 0.005 0.778 ± 0.006 0.751 ± 0.022 0.783 ± 0.003
LSTM 0.602 ± 0.027 0.751 ± 0.028 0.773 ± 0.016 0.764 ± 0.017 0.775 ± 0.019
CNN-LSTM 0.663 ± 0.028 0.780 ± 0.003 0.770 ± 0.009 0.772 ± 0.004 0.779 ± 0.018
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risk for patients in whom some of these predictors would 
be missing.

Multiple imputation by chained equations, using avail-
able information for a given patient and the associa-
tions between variables derived from the whole sample 
[35], appeared as a promising option to address these 
issues. A first attempt to impute data for these 19 predic-
tors (Imputed-19 cohort) allowed us to include a larger 
sample size (10,089 patients, 58% of the target cohort) 
without degrading predictive performances. More inter-
estingly, data imputation considering a larger set of 
potential predictors (Imputed-70 cohort) allowed us to 
include an even larger sample size (16,532 patients, 95% 
of the target cohort) with slightly better performances 
than for the Complete-case cohort. The excluded patients 
were those for whom no data were available at admission, 
and it is therefore difficult to determine how they differed 
from the included patients. For similar reasons, data 

imputation relies on a hypothesis of “missing completely 
at random” or “missing at random” mechanisms, and we 
cannot rule out a “missing not at random” mechanism 
(the probability of missing values depends on unobserved 
characteristics). In such a context, our models would 
yield biased estimates in patients with data missing for 
specific predictors. However, our cross-validation pro-
cedure used to estimate model performance captures the 
inaccuracy that could result from the missing data pat-
tern, and reported results already integrate this possible 
source of error. This robustness to missing data imputa-
tion is insightful, as it suggests that predictive models 
might be developed in ICUs admitting patients with spe-
cific conditions and provide prognosis predictions for all 
patients with a higher precision as available information 
accumulates.

Although deep neural networks are increasingly pop-
ular for handling massive data [16, 36], they did not 

Fig. 3 Predictive performances of the elastic net, CNN, LSTM and LSTM-CNN models. Discrimination is represented by the ROC curve (upper figures), 
and calibration is represented by a smoothed calibration plot showing the observed probabilities (and 95% confidence intervals) according to predicted 
probabilities (lower figures). The thick gray line shows values expected for a perfect calibration, with observed probabilities equal to predicted probabili-
ties. All estimates are averaged over the 10 repeated 5-fold cross-validation datasets and over the imputed datasets for the Imputed-19 and Imputed-70 
cohorts
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outperform more conventional penalized regressions in 
our study. An explanation might be that available data 
did not take full advantage of the time slot format [37]: 
although some predictors, such as vital signs or blood 
tests, were frequently updated, medical conditions likely 
to dramatically impact prognosis, such as the occurrence 
of shock or organ failure, were collected retrospectively 
but not on time to be used as a predictor. This limitation 
is due to the nature of the MIMIC-III database and may 
be present in other health care data warehouses, yet we 
assume that a timely collection of medical diagnoses and 
relevant symptoms may be insightful to enhance predic-
tive performances.

Our study has several strengths, including a novel 
approach to integrate updated information on patients’ 
characteristics to estimate their prognosis more accu-
rately and the additional opportunity to use this informa-
tion even when data are partially missing. The 12-hour 
gap between the collection of predictors and the occur-
rence of the predicted event also appears to be clinically 
relevant, as it allows the medical staff to take preventive 
measures whenever possible. Depending on the speci-
ficities of each ICU, similar predictive models could be 
developed for outcomes other than mortality, e.g., the 
occurrence of shock, organ failure or multiple organ 
dysfunction.

Several limitations must also be noted. First, this study 
must be seen as a “proof of concept” for a novel predic-
tive modeling framework, but we do not expect that 
inferring our models’ parameters to other ICUs with spe-
cific patients and data collections might yield meaning-
ful predictions. We nevertheless assume that using the 
same modeling approaches in a new setting may produce 
models with similar performances. Additionally, con-
trary to exponentiated regression coefficients of elastic 
net models that can be directly interpreted as odds ratios 
for the considered predictors, the “black box” nature of 
neural networks does not allow easy identification of spe-
cific predictors associated with a higher risk of mortal-
ity. These models must therefore be seen as global “alert 
systems” rather than as a tool likely to identify specific 
complications. Other statistical learning approaches, 
such as tree ensemble models, may also show satisfactory 
performances and should be evaluated in further studies. 
Finally, a technical limitation lies in the possibility of data 
collection and automated analysis of health care data 
almost in real time. Although very few ICUs might pres-
ent this ability, the current development of health care 
data warehouses worldwide may enhance feasibility.

Conclusion
This proof-of-concept study supports that automated 
analysis of electronic health records can be of great inter-
est throughout patients’ stays as a surveillance tool likely 

to provide early detection of life-threatening conditions. 
Such predictive models may be insightful as a continua-
tion of usual mortality predictive scores relying solely on 
admission data, especially regarding long hospital stays. 
Although this framework relies on a large set of predic-
tors, it is robust to data imputation and may be effective 
early after admission, when data are still scarce. Further 
studies would be needed to evaluate the applicability and 
interest of this approach in ICUs addressing specific pop-
ulations or medical conditions.
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