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Abstract 

Background  Food frequency questionnaires (FFQs) are one of the most useful tools for studying and understanding 
diet-disease relationships. However, because FFQs are self-reported data, they are susceptible to response bias, social 
desirability bias, and misclassification. Currently, several methods have been created to combat these issues by mod-
elling the measurement error in diet-disease relationships.

Method  In this paper, a novel machine learning method is proposed to adjust for measurement error found in mis-
reported data by using a random forest (RF) classifier to label the responses in the FFQ based on the input dataset 
and creating an algorithm that adjusts the measurement error. We demonstrate this method by addressing under-
reporting in selected FFQ responses.

Result  According to the results, we have high model accuracies ranging from 78% to 92% in participant collected 
data and 88% in simulated data.

Conclusion  This shows that our proposed method of using a RF classifier and an error adjustment algorithm is effi-
cient to correct most of the underreported entries in the FFQ dataset and could be used independent of diet-disease 
models. This could help nutrition researchers and other experts to use dietary data estimated by FFQs with less meas-
urement error and create models from the data with minimal noise.

Keywords  Food frequency questionnaire, Machine learning, Supervised learning, Underreporting, Measurement 
error, Error adjustment model

Introduction
Food frequency questionnaires (FFQ) are often used in 
large prospective cohort studies to assess habitual die-
tary intake and understand diet-disease relationships 
[1]. These questionnaires are faster to administer and 
take less resources to analyze in a large cohort com-
pared to multiple 24-h dietary recalls (24HR) or multi-
day dietary food records (FR). Dietary assessment that 
utilizes 24HR may reduce measurement error; how-
ever, archetypal cohorts and some more recent studies 
use FFQs to measure dietary patterns. Cohorts, such 
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as Reasons for Geographic and Racial Differences in 
Stroke (REGARDS) and Atherosclerosis Risk in Com-
munities Study (ARIC), contain older versions of FFQs. 
With new technologies emerging, such as omics, clini-
cal samples from these studies are driving new research 
questions that would benefit from including dietary 
information. For example, banked samples from the 
ARIC study have been used for metabolomics analy-
ses [2]. These types of analyses would benefit from the 
comparison between habitual dietary patterns gleaned 
from the available FFQs and omics data.

Historically, dietary assessment has known limitations. 
Self-reported data of any kind, but especially dietary 
assessment data, introduces recall bias, response bias, 
social desirability bias, and misclassification [3–6]. These 
ultimately render the dataset inefficient for any future 
predictions or studies, hereby limiting the range of new 
findings that can be drawn from these studies. Therefore, 
it is crucial to combat the measurement error challenges 
in these datasets for optimal usability.

Currently, several methods have been used to adjust 
for measurement error. One of the most common meth-
ods is regression calibration, in which the conditional 
expectation of the true long-term intake of the vari-
able replaces the FFQ intake given a vector of error-free 
covariates [7–9]. This supports the assumption that there 
is underlying truth in the dataset. However, this method 
has some limitations. It relies heavily on the use of other 
tools such as 24HR which could introduce additional bias 
into the model. The solution is to find the most efficient 
way to use the FFQ dataset without relying on internal 
calibration.

Participants, particularly those with a health condi-
tion, sometimes underreport or overreport certain types 
of food for a variety of reasons [10–13]. We apply the 
assumption of underlying truth in each dataset, which 
could be determined from both the healthier partici-
pants and the known reasons for under or overreport-
ing [10–16]. For demonstration purposes, we obtained a 
dataset of university employees that were considered rel-
atively healthy, with either no disease or well controlled 
disease. Each participant was asked to complete an FFQ 
at every study visit for the duration of the multi-year 
study. We used this dataset to build a predictive model 
to correct over and underreported responses in a full 
semi-quantitative food frequency questionnaire.

Our objective was to reclassify misreported foods to 
adjust for known measurement error. We proposed a 
supervised machine learning approach which uses a ran-
dom forest classifier to label the responses in the FFQ 
based on the input dataset. In addition, an algorithm was 
written based on the newly predicted class probabilities 
derived from the random forest model.

Material and methods
FFQ data participants
This work is based on information from the Emory Pre-
dictive Health institute and Center for Health Discov-
ery and Well Being Database (CHDWB) which has been 
described previously [17]. Briefly, the CHDWB cohort 
at Emory University in Atlanta, Georgia, USA, was an 
observational study designed to investigate the effects 
of clinical self-knowledge and health partner counseling 
on various health outcomes. In the present study, we 
included 819 participants for which complete FFQ data 
at various time points was available. Individuals with 
poorly controlled chronic disease or acute illness were 
excluded. Demographic information and potential covar-
iates (e.g., body mass index and personal health history) 
were collected from the CHDWB cohort database. The 
FFQ was the Block 2005 [18] delivered in an electronic 
format. This questionnaire was filled out by the partici-
pant prior to study visits via an online portal. These were 
not verified by the study staff prior to summary calcula-
tions conducted by the developer (Nutritionquest, Berke-
ley, CA, USA). It is assumed that some entries are either 
underreported or overreported.

Blood draws were performed in a fasting state and 
blood lipids and blood glucose were measured by com-
mercially available assays (Quest Diagnostics, Madison, 
NJ, USA). Body fat percentage was determined using 
dual x-ray absorptiometry (Lunar iDXA, General Elec-
tric, Chicago, IL, USA). Weight was measured in athletic 
clothing without shoes on a research grade scale (Tanita, 
Tokyo, Japan) and height was measured using a standard 
stadiometer. BMI was calculated using kg of body weight 
divided by height in meters squared.

Exploratory data analysis
Initial data analysis included missing data assessment 
and correlation analysis. The CHDWB dataset contained 
demographics, clinical biomarkers, and FFQ data reflect-
ing habitual diet in the past year. The original dataset con-
tained 593 variables and 3193 unique samples, including 
missing data points. Heatmaps were used to visualize the 
correlations between food frequency and demographic 
information. Due to high correlations between variables, 
it was fair to assume a low rank data assumption, which 
allowed the underlying ground truth to be determined 
from the present data to infer accuracy.

Variable selection
Underestimation errors in the FFQ are the most com-
mon issues [19]; thus, we chose to focus our analyses on 
this problem. Variables were selected based on fat con-
tent as those foods are typically underreported [20]. The 
four selected variables used as individual responses are 
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the frequency and quantity of bacon consumed and the 
frequency and quantity of fried chicken consumed. The 
frequency count of the values of these variables can be 
seen in Fig. 1

These selected variables are ordinal. As mentioned 
above, these were used as responses in four different 
classification models where accurate responses were 
predicted.

We chose the following as explanatory variables: blood 
levels of low-density lipoprotein (LDL), total choles-
terol, and glucose, body fat percentage, and body mass 
index (BMI) [1]. The explanatory variables selected for 
responses were chosen based on the assumption that 
they would have low measurement error because of their 
objective nature. These explanatory variables have proven 
relationships with frequency and quantity of bacon and 
fried chicken [14–16]. Age and sex, which are generally 
reported accurately, were added as demographic explana-
tory variables.

Training machine learning‑based error adjustment model
The proposed error mitigation approach relies on the 
premise that some groups of participants may be more 
likely to report their food consumption more accu-
rately, while others tend to underreport/overreport their 
unhealthy/healthy food consumption. Another assump-
tion made in this study is that some of the objectively 
measured variables including LDL cholesterol, total cho-
lesterol, blood glucose, body fat percentage and anthro-
pometric measures, and participant characteristics, 
including age and sex, are correlated with food consump-
tion habits. For example, participants that have a high 
saturated fat diet may have high blood cholesterol con-
centrations [14–16].

The overview of the proposed framework is given in 
Fig.  3. We first split the dataset into two groups repre-
senting healthy and unhealthy participants. The healthy 
group data were defined by using certain cutoffs for 
the body fat percentage, age and sex which classified 

Fig. 1  Bar plots showing bacon and fried chicken frequency (F) and quantity counts (Q). X-axis represents the consumption frequency(F) per year 
and quantity (Q) in cups, and Y-axis represents the frequency of participants (count) distributed among the respective categories
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participants by their health risks (for the specific health 
risk classification table, please refer to Tables  A2.1 and 
A2.2). While the participants with excellent, good and 
normal health risks have their responses defined as the 
healthy samples of the data consisting of 384 responses 
and 9 variables, the rest are defined as the unhealthy 
group data- consisting of 2238 responses and 9 vari-
ables. Then, based on the foregoing assumptions, we 
used the healthy group data to train a predictive model 
that quantifies the relationship between lab test variables 
and participant characteristics within the food frequency 
variables. Specifically, since the FFQ data are categori-
cal we use random forest (RF) classification to build the 
predictive model. Using cross-validation, we tuned the 
hyperparameters and selected the tree depth that showed 
the best model performance and highest training accu-
racy [21]. RF was selected over logistic regression due to 
higher performance, higher capability of capturing non-
linear relationships, robustness to overfitting, and ability 
to rank the importance of predictors [21].

After this relationship was learned, the trained pre-
dictive model was used to predict the food frequency 
variables for the unhealthy group based on their lab test 
results, BMI, sex, and age. Finally, the predicted value 
was compared to the original value reported by the par-
ticipants in the FFQ dataset in the unhealthy group data 
where the likelihood of underreporting is higher. If the 
original FFQ response is smaller by any amount than 
the predicted value, it will be replaced by its prediction. 
Otherwise, it is kept unchanged or modified according to 
the procedure described in “Applying error adjustment 
model” section.

Applying error adjustment model
In the final step of the proposed error mitiga-
tion approach, the trained RF prediction model 
used the objectively measured variables, anthro-
pometric variable and participant characteris-
tics to determine the FFQ response category with 
the highest likelihood. Additionally, the predic-
tion model can provide the likelihood of other cat-
egories for each response. For a response there are 
L categories of C(1),C(2), . . . ,C(L)  that are sorted in 
descending order with respect to their correspond-
ing probabilities P(1),P(2), . . . ,P(L)  obtained by the 
RF model. First, the class with the highest probabil-
ity, i.e., C(1)  is compared with the reported response 
in the FFQ dataset. For healthy food where the likeli-
hood of overreporting is higher, the FFQ response is 
replaced with the category lower than the reported 
FFQ response that has the largest probability, i.e., 
C(i)  where i = argmax P(i); i = 1, 2, . . . , L ;C(i) < CR . 

For unhealthy food where the likelihood of under-
reporting is higher, the FFQ response is replaced 
with the category higher than the reported FFQ 
response that has the largest probability, i.e., C(i) where 
i = argmax

{

P(i); i = 1, 2, . . . , L
}

;C(i) > CR . A summary 
of this procedure is given in Fig. 2.

Validation studies using simulation
The purpose of using a simulation study was to evaluate 
the performance of our proposed method. Unlike the 
FFQ dataset, the ground truth is known in simulated 
data. The main goal was to analyze how the proposed 
model would perform when the data simulated is very 
similar to real data, in this case FFQ data.

To simulate the dataset, we randomly generated a 
synthetic multinomial dataset using the make_classifi-
cation function from Scikit-learn library. For simplic-
ity, the synthetic dataset was meticulously engineered 
to emulate the characteristics observed in the FFQ 
data. For example, since the case study has 8 variables 
and 7 classes, the synthetic dataset was constructed to 
maintain those parameters, incorporating the 7 classes 
within its responses and 8 distinct variables across 
observations. In this study, we assumed the response 
represents consumption of unhealthy food (e.g., bacon 
frequency level). We followed this procedure to gener-
ate 1000 responses for 1000 simulated participants.

To ensure that our method is robust, we also tried 
two other simulation settings. The second setting 
involved generating another synthetic multinomial 
dataset with a smaller number of categories. We chose 
4 classes which is similar to the bacon and fried chicken 
quantity levels. In the third setting, we generated a syn-
thetic multinomial dataset with more distinct variables 
across observations and more responses, i.e., 15 vari-
ables and 10,000 responses.

The datasets were split into healthy and unhealthy 
subsets using the train and test split with a test ratio of 
0.3 to mimic the process in the original food frequency 
dataset. This means 70% of each synthetic data was 
classified as the healthy subset and the rest were clas-
sified as the unhealthy subset. To induce underreported 
responses, responses from the unhealthy subset were 
randomly altered to lower categories such that 50% of 
responses decreased by one level, 20% decreased by 
two levels and finally, 10% decreased by three levels, 
and the rest remained the same.

Next, following our proposed approach, we trained 
the error adjustment model using healthy group data 
and used the trained model to adjust the response for 
the unhealthy subset. Figure 3 depicts a summary of all 
the methods used. 
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Results
FFQ data results
Four RF classifier models were built, and the under-
estimation algorithm was used to correct the initial 

underreported entries in the FFQ data for the frequency 
and quantity of bacon consumed and frequency and 
quantity of fried chicken consumed. Four confusion 
matrices comparing the initial entries of the dataset and 

Fig. 2  Flowchart showing the algorithm for error adjustment

Fig. 3  Flowchart describing the methods for machine learning (ML) error adjustment model
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the final corrected entries of bacon frequency, bacon 
quantity, fried chicken frequency and fried chicken quan-
tity are shown in Figs. 4, 5, 6 and 7 respectively.

Looking at the frequency of bacon consumed, the RF 
classifier model has a model accuracy of 84.4%. This 
model demonstrates a precision score of 0.801, a recall 
score of 0.805 and ultimately resulting in an F1 score of 
0.807. In the confusion matrix, we see that many of the 
entries stay the same; however, a couple of entries moved 
to higher classes. In Fig. 4, about 50% of ‘class 1’ entries 
became ‘class 2’, and 3% of ‘class 2’ entries became ‘class 
4’. Looking at the quantity of bacon consumed, the RF 

classifier model has a model accuracy of 87%. This model 
demonstrates a precision score of 0.826, a recall score 
of 0.818 and ultimately resulting in an F1 score of 0.820 
. In the confusion matrix (Fig.  5), we see that many of 
the entries stay the same, with some changes detected in 
classes above the initial class. For instance, about 38% of 
‘class 1’ entries became ‘class 2’ and 16% of ‘class 2’ entries 
became ‘class 4’.

For the frequency of fried chicken consumed, the RF 
classifier model has a model accuracy of 91.6%. This 
model demonstrates a precision score of 0.882, a recall 
score of 0.861 and ultimately resulting in an F1 score 

Fig. 4  Confusion matrix showing the changes between the original and adjusted responses for bacon frequency

Fig. 5  Confusion matrix showing the changes between the original and adjusted responses for bacon quantity
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of 0.858. In the confusion matrix, we see that many of 
the entries stay the same; however, a couple of entries 
moved to higher classes. In Fig. 6, 54% of ‘class 1’ entries 
became ‘class 2’, and 1.4% of ‘class 2’ entries became 
‘class 4’. Looking at the quantity of fried chicken con-
sumed, the RF classifier model has a model accuracy 
of 93.1%. This model demonstrates a precision score of 
0.912, a recall score of 0.902 and ultimately resulting in 
an F1 score of 0.896. In the confusion matrix (Fig.  7), 
we see that many of the entries stay the same, with 
some changes detected in classes above the initial class. 
For instance, about 91% of ‘class 1’ entries became ‘class 
2’ and 4% of ‘class 2’ entries became ‘class 3’.

Simulation results
From the simulation study, the RF classifier model has 
a model accuracy of 78.5%. This model demonstrates a 
precision score of 0.794, a recall score of 0.786 and ulti-
mately resulting in an F1 score of 0.785. After applying 
the error adjustment algorithm, we saw that some of the 
entries in ‘class 1’ became ‘class 2’ entries. To ensure the 
proposed method worked using this simulated study, we 
compared the originally simulated data responses to the 
final simulated responses using another confusion matrix 
(Fig. 8). From this, we see that the underestimation algo-
rithm accurately classified the classes with 82.06% aver-
age accuracy rate.

To ensure that our model is robust, the second set-
ting resulted in a model accuracy of 90%. This model 
demonstrates a precision score of 0.901, a recall score 
of 0.900 and ultimately resulting in an F1 score of 0.90. 
After applying the error adjustment algorithm, we 
saw that some of the entries in ‘class 1’ became ‘class 2’ 
entries. Finally, we compared the originally simulated 
data responses to the final simulated responses using 
another confusion matrix (Fig. 9). From this, we see that 
the underestimation algorithm accurately classified the 
classes with 84.71% average accuracy rate.

Furthermore, the third setting resulted in a model 
accuracy of 80.71%. This model demonstrates a preci-
sion score of 0.807, a recall score of 0.806 and ultimately 
resulting in an F1 score of 0.805. After applying the error 
adjustment algorithm, we saw that some a similar shift 
pattern in the entries. Finally, we compared the originally 
simulated data responses to the final simulated responses 

Fig. 6  Confusion matrix showing the changes between the original and adjusted responses for fried chicken frequency

Fig. 7  Confusion matrix showing the changes between the original 
and adjusted responses for fried chicken quantity
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using another confusion matrix (Fig.  10). From this, we 
see that the underestimation algorithm accurately classi-
fied the classes with 82.47% average accuracy rate. These 
indicate that our proposed method worked as expected, 
since we knew the true original entries, and show that it 
is robust.

Discussion
As seen from the results, we have high model accura-
cies ranging from 77.5% to 91.6% in participant collected 
data. This shows that our two-step method of using RF 
classifier and an error adjustment algorithm is efficient 
in correcting most of the underreported entries in the 
FFQ dataset. Looking at the confusion matrices of bacon 
and fried chicken frequency, we can see that misclassifi-
cation due to underestimation is greatly reduced as the 
self-reported classes are moved to their “true” classes, 
with accuracies of 83.1% and 91.6%, respectively. The 
same can be seen in the bacon and fried chicken quantity 
variables as the misclassified observations are adjusted 

and moved to their true classes with accuracies of 77.5% 
and 90.3%, respectively. In addition to this, the simulated 
study shows an accuracy of 78.5%, signifying that the 
proposed method performs exceptionally. To our knowl-
edge, this is the first application of supervised machine 
learning methods to be used to correct misclassification 
in FFQ data that does not require calibration data to be 
collected.

Machine learning (ML) methods have been used to 
optimize prediction of FFQ data with methods such as 
dimensionality reduction; however, it has not been uti-
lized previously in the correction of measurement error 
[22]. Hence, in this paper, we explore the use of ML to 
adjust measurement error. Several machine learning 
models such as decision trees and multinomial logistic 
regression were considered for use as the classification 
model in this analysis. However, accuracy and model 
simplicity were chosen to be the most important char-
acteristics for a good model; therefore, random forest 
proved to be the best performer. We have reflected this 

Fig. 8  Confusion matrix showing the changes between the original simulated data response and the adjusted responses



Page 9 of 11Popoola et al. BMC Medical Informatics and Decision Making          (2023) 23:178 	

on our simulated dataset in the table below (Table  1). 
Random forest works as an aggregate of multiple random 
decision trees, which gives an accuracy advantage over 
other methods [21]. In addition, it is possible to rank the 
most important variables influencing the responses [21].

Previous studies have shown the use of other methods 
such as regression calibration and generalized gamma 
regression to adjust for measurement error [8]. These 
methods use a generalized linear model to show diet-
disease association, and directly model bias in them. 

Fig. 9  Confusion matrix showing the changes between the original simulated data response for the second setting and the adjusted responses

Fig. 10  Confusion matrix showing the changes between the original simulated data response for the third setting and the adjusted responses
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Knowing that true intake is generally measured incor-
rectly or is missing, these methods express the newly 
corrected data points as the conditional expected value 
of the unobserved true intake, given the observed data 
with error and error-free covariates [8]. These new data 
points are then used as the observations for the diet-
disease model and replace the previous observations. 
However, a lot of parameters, steps and instruments 
are involved in this process, hence contributing to the 
additional noise in the model. One of the instruments 
used, a 24HR recall has a distribution that is charac-
terized by skewness due to excess zeros in the dataset. 
It is also characterized by heteroskedasticity, mean-
ing higher variability than the FFQ dataset [23]. The 
regression calibration method also involves a Box-cox 
transformation to normalize the 24HR recall data, and 
an inverse transformation to bring it back to its origi-
nal scale. This means that between-person correlations 
would be lost. Generalized gamma regression combats 
this as the true intake is modeled as the product of the 
conditional mean and mean probability of the gamma 
distribution of the individual variables [8].

Our proposed method has many advantages over 
regression calibration methods. It does not require 24HR 
as an additional tool. It relies on the derived correlations 
and the underlying ground truth in the FFQ dataset, 
hence ensuring no unnecessary introduction of variabil-
ity in the data or participant burden. This works because 
of low-rank assumption. It also does not involve a trans-
formation of the variables or the introduction of any 
other distribution. This is because the subset of data con-
taining the underlying truth in the FFQ dataset assumes 
normality. Our method considers the measurement error 
in the FFQ data as an aggregate of the measurement error 
in multiple covariates in the data and adequately adjusts 
the error concurrently. Another significant difference is 
that current methods are fully parametric, hence, ineffi-
cient. Our proposed method involves fewer parameters 

and is more computationally efficient. Finally, we see high 
accuracy measures for the models used, hence showing 
the efficiency of our proposed method.

There are some limitations to be considered. Previ-
ous research uses energy intake calibration with known 
biomarkers, such as doubly labeled water or urinalysis, 
to determine true energy intake. However, FFQs are not 
designed to quantitatively estimate total energy intake, 
due to the finite list of food and beverages, and lim-
ited data on food specificity. In addition to this, though 
we have successfully derived a method to tackle incor-
rect observations caused by underestimations, future 
research should address the other FFQ measurement 
challenges which are overreported observations and 
missing data points. Knowing that food frequency ques-
tionnaires query a finite set of foods and beverages [19], 
it is fair to assume that certain foods will be omitted. 
This increases the issue of under-reporting; however, 
there are instances where over-reporting happens (e.g., 
vegetable consumption). These analyses will be done in 
further studies.

Conclusion and future work
This research presents an alternative and novel method 
to reduce the measurement error in FFQ datasets using 
the RF classifier model and an additional underreported 
data adjustment algorithm to recover the “true” predicted 
classes. This method efficiently reduces misclassification 
due to underestimation in self-reported dietary data esti-
mated by FFQ.

In future work, the ML techniques to adjust for the 
missing entries in the dataset and overreporting will 
be explored further. These have also contributed to the 
challenges faced by current researchers using the FFQ 
dataset. We will also consider the use of deep learning 
methods to accurately combat the missing data chal-
lenges and mitigate measurement error in the datasets. 
Machine learning has proven to be an invaluable tool for 
error adjustment and could be useful to address numer-
ous measurement error problems.
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Table 1  Table showing a comparative analysis of accuracy, 
precision, recall and F1-Score for three distinct models on 
simulated dataset: multinomial logistic regression, decision trees 
and random forest

Multinomial 
Logistic 
Regression

Decision Trees Random Forest

Accuracy 70.00% 59.05% 78.50%

Precision 0.715 0.600 0.794

Recall 0.700 0.590 0.786

F1-Score 0.701 0.592 0.785
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