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Abstract
Background  Prediction tools for various intraoperative bleeding events remain scarce. We aim to develop machine 
learning-based models and identify the most important predictors by real-world data from electronic medical records 
(EMRs).

Methods  An established database of surgical inpatients in Shanghai was utilized for analysis. A total of 51,173 
inpatients were assessed for eligibility. 48,543 inpatients were obtained in the dataset and patients were divided 
into haemorrhage (N = 9728) and without-haemorrhage (N = 38,815) groups according to their bleeding during 
the procedure. Candidate predictors were selected from 27 variables, including sex (N = 48,543), age (N = 48,543), 
BMI (N = 48,543), renal disease (N = 26), heart disease (N = 1309), hypertension (N = 9579), diabetes (N = 4165), 
coagulopathy (N = 47), and other features. The models were constructed by 7 machine learning algorithms, i.e., light 
gradient boosting (LGB), extreme gradient boosting (XGB), cathepsin B (CatB), Ada-boosting of decision tree (AdaB), 
logistic regression (LR), long short-term memory (LSTM), and multilayer perception (MLP). An area under the receiver 
operating characteristic curve (AUC) was used to evaluate the model performance.

Results  The mean age of the inpatients was 53 ± 17 years, and 57.5% were male. LGB showed the best 
predictive performance for intraoperative bleeding combining multiple indicators (AUC = 0.933, sensitivity = 0.87, 
specificity = 0.85, accuracy = 0.87) compared with XGB, CatB, AdaB, LR, MLP and LSTM. The three most important 
predictors identified by LGB were operative time, D-dimer (DD), and age.

Conclusions  We proposed LGB as the best Gradient Boosting Decision Tree (GBDT) algorithm for the evaluation 
of intraoperative bleeding. It is considered a simple and useful tool for predicting intraoperative bleeding in clinical 
settings. Operative time, DD, and age should receive attention.
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Introduction
Hemorrhage represents a major, life-threatening intra-
operative complication that concerns any surgeon [1, 2]. 
Intraoperative bleeding worsens the quality of the surgi-
cal field, extends the time of the procedure, and increases 
the risk of complications [3]. Major bleeding requiring 
transfusion is associated with increased mortality and 
cardiovascular complications including myocardial injury 
and infarction, stroke, and acute kidney injury [4, 5]. The 
incidence of intraoperative bleeding varies greatly; that 
of endoscopic procedures can range from 2.9–45.1% [6], 
and that of presacral hemorrhage of rectal cancer can 
range from 4.6 to 9.4% [7].

In previous research, various risk factors have been 
associated with intraoperative bleeding. For example, 
increased operative time and abnormal erythrocyte size 
have been linked to intraoperative blood loss in ortho-
paedic surgery [8]. Low serum albumin levels and intra-
operative platelet counts have been identified as potential 
risk factors for perioperative bleeding in gastrointes-
tinal surgery [9], and a higher Body Mass Index (BMI) 
has been associated with increased bleeding in cardiac 
patients [10]. However, these studies are often limited by 
their focus on specific surgeries or patient groups, and 
they tend to ignore factors related to the operator. To 
address these limitations, we used real-world data from 
all inpatients to develop our perioperative bleeding mod-
els, with the aim of identifying potential risk factors that 
are more broadly applicable.

Previous studies usually developed traditional predic-
tion models with intraoperative bleeding identified by 

univariate and multivariate logistic regression analyses 
[11, 12] without considering the nonlinear relationship 
or the multicollinearity of variables. Compared with 
traditional statistics, machine learning algorithms have 
fewer restrictions on data and can build complex data 
modeling [13]. Machine learning algorithms have also 
demonstrated promising performance for imbalanced 
real-world data (RWD). These data do not need to be 
specifically collected by health care providers [14], and 
the increasing availability has made it a crucial explora-
tion in the generation of clinical insights [14]. Several 
studies have explored the potential benefits of combin-
ing traditional statistical methods with machine learn-
ing algorithms. For example, some researchers have used 
hybrid machine learning systems (HMLS) that combine 
dimensionality reduction algorithms and survival pre-
diction algorithms to improve the accuracy of survival 
predictions  [15]. Other studies have used a combina-
tion of logistic regression analysis and machine learning 
algorithms, such as extreme gradient boosting (XGB), 
and artificial neural networks 3 (ANN3), to construct 
prediction models for intraoperative blood transfusion 
[13]. Similarly, Eskandar Taghizadeh et al. identified the 
most optimal HMLS for diagnosing breast cancer, which 
included feature selection algorithms, a feature extraction 
algorithm, and classifiers [16]. These approaches demon-
strate the potential for integrating traditional methods 
with machine learning algorithms to improve the accu-
racy and effectiveness of prediction models. However, 
HMLS still has the shortcomings of traditional statistical 
models. Therefore, this study attempts to use machine 
learning models completely to simulate real-world intra-
operative bleeding situations and solve common overfit-
ting and data imbalance problems in previous models. 
They included light gradient boosting (LGB), extreme 
gradient boosting (XGB), cathepsin B (CatB), Ada-boost-
ing of decision tree (AdaB), logistic regression (LR), long 
short-term memory (LSTM), and multilayer perception 
(MLP). A table with an overview of the forecast models 
has summaried below (Table 1).

The assessment of bleeding risk during the periopera-
tive period has long been a focus of clinical and research 
attention. While many specialties have developed bleed-
ing risk assessment scales, the standards are not unified. 
For example, the intervals between hemoglobin concen-
tration groups before surgery differ  [18], and these scales 
cannot be updated in a timely manner with the develop-
ment of surgical techniques. Pre-operative medication 
can reduce the likelihood of bleeding. The combina-
tion of vasopressin and nitroglycerine can substantially 
reduce hepatsplanchnic blood flow, but this treatment is 
only suitable for specific liver surgeries [19]. Tranexamic 
acid is another drug that has been shown to potentially 
reduce surgical bleeding, but it has also been associated 

Table 1  An overview of the forecast models
Model Describe Strengths
AdaB an ensemble learning algorithm 

by iteration until a stop condi-
tion is reached or the error rate 
becomes sufficiently small [27].

the ability to handle 
complex datasets and 
feature interactions

LGB based on gradient boosting deci-
sion trees

optimize training speed 
and memory usage

XGB a boosting integrated machine 
learning algorithm based on the 
CART regression tree.

integrates regulariza-
tion techniques and 
feature selection meth-
ods, demonstrating 
strong generalization 
ability and predictive 
performance [17].

CatB a gradient boosting machine 
learning algorithm

high performance in 
categorical features

LR a supervised learning method and 
a member of the general linear 
model family [16]

simple

LSTM a supervised recurrent neural 
network

capture time correlation 
more effectively [16].

MLP one of the simplest artificial neural 
networks (ANNs) for data clas-
sification tasks [17] [17].

suitable for solving clas-
sification and regression 
problems
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with an increased risk of venous thromboembolism [5]. 
To gain a better understanding of the risk factors and 
underlying mechanisms of intraoperative bleeding, we 
took an observational approach. We placed inpatients 
in a natural state without any intervention and observed 
the potential association of certain factors with bleed-
ing. This observational study design allowed us to cap-
ture a wide range of patient and clinical factors that may 
be associated with bleeding and identify potential con-
founding variables that may need to be accounted for in 
subsequent analyses.

Methods
Subjects
This study was conducted on surgical inpatients who 
were admitted to a single tertiary hospital (Tongren Hos-
pital affiliated with Shanghai Jiao Tong University School 
of Medicine) from 1 to 2017 to 31 December 2021.

Participants met the inclusion criteria: age ≥ 18 years. 
The exclusion criteria were as follows: (1) surgical cod-
ing in Chap.  1 (operations and interventions), Chap.  4 

(operations for eyes) and Chap.  18 (various diagnostic 
and therapeutic procedures) of the International Classi-
fication of Diseases Clinical Modification of 9th edition; 
(2) uncountable bleeding volumes; and (3) loss of base-
line information. The inclusion and exclusion criteria for 
our study are outlined in Fig. 1. Out of a total of 51,173 
inpatients, 412 were younger than 18 years and 100 were 
excluded due to undergoing simple surgeries or diagnos-
tic procedures with minimal bleeding. Additionally, 1964 
inpatients were missing blood loss data, and 154 were 
missing ASA level data. After accounting for these exclu-
sions, we ended up with a dataset of 48,543 inpatients. 
These patients were divided into two groups: those who 
experienced bleeding during the procedure (N = 9728) 
and those who did not (N = 38,815).

Data collection
A data analysis and statistical plan was written and filed 
with the Changning District Committee of Science and 
Technology before data were accessed. The outcome of 
the study was defined as intraoperative bleeding when 

Fig. 1  Flow chart of the study strategy. N, number of patients
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the bleeding volume was over 200 ml or with a drop in 
hemoglobin ≥ 3 g/dL or hematocrit ≥ 10% (accounting for 
transfusions) [20]. The bleeding volume was obtained 
from the anesthesia record sheet and it is measured by 
the anaesthetist based on intraoperative bleeding by neg-
ative pressure suction and gauze weighing as an indirect 
estimate method. If a patient had two or more surgeries 
in one day, only the heaviest volume loss was considered.

The patients’ demographic characteristics and clini-
cal and laboratory test findings were extracted from the 
medical center’s electronic medical records (EMRs). The 
personal information of the surgeons was obtained from 
the human resource system. These data were cleaned and 
checked manually. There were still some null values in the 
BMI, and K-Nearest Neighbor (KNN) [21] was selected 
to fill in the missing values. It identified neighboring 
points by a distance measure and can use the full value of 
neighboring observations to estimate missing values.

Feature selection and data preprocessing
To select the variables for our study, we utilized a rig-
orous methodology that included several steps. Firstly, 
we conducted a systematic review of relevant studies 
to identify potential variables. Secondly, we consulted 
with experts in the field to ensure that our list of vari-
ables was comprehensive. Thirdly, we conducted initial 
univariate analyses to examine the association between 
each variable and the bleeding outcome. Finally, we used 
a combination of statistical significance and clinical rel-
evance to select the final set of variables. The EMRs 
dataset included 27 variables: three clinical variables 
(age, sex, BMI), five underlying illnesses (kidney/heart/
hypertension/diabetes/coagulopathy), six surgical vari-
ables (surgery coding, surgical level, emergency/elective 
procedures, anesthesia method, ASA, operative time), 
four surgeon variables (occupational title, departments, 
length of employment, academic degrees), and nine bio-
chemical criteria (pulse, systolic blood pressure, blood 
glucose, D-dimers, hemoglobin, hematocrit, thrombin 
time, prothrombin time, partial thromboplastin time). In 
the course of patient admission, well-established features 
were chosen as input features for the model (Appendix 
Table  1). The anesthesia modality is organized in the 
form of appendix Table 2 [22, 23].

Model development
Seven machine learning models that use different clas-
sifiers were developed to predict the occurrence of the 
outcome in the Introduction section. Boosting refers to 
the use of a series of linear combinations of models to 
complete model tasks. It includes AdaB [24] and gradient 
boosting [25]. In gradient boosting, there is a technique 
called GBDT whose base learner is CART (Classifica-
tion and Regression Trees). LGB, XGB, and CatB are all 

GBDT algorithms. LSTM is a supervised recurrent neu-
ral network that can capture time correlation more effec-
tively [26]. LR is a member of the general linear model 
family [26]. MLP is one of the simplest artificial neural 
networks (ANNs), which consists of three layers—an 
input layer, an output layer, and a hidden layer [27].

In our study, we employed the L1 regularization tech-
nique as the feature selection algorithm [28]. This tech-
nique encourages sparsity in the model by adding the 
absolute values of the coefficients as a penalty to the loss 
function. By doing so, the model is encouraged to select 
a subset of important features, which effectively reduces 
the dimensionality of the feature space. This approach 
allowed us to identify the most important features for our 
analysis and improve the performance of our prediction 
models.

We utilized the SHapley Additive exPlanation (SHAP) 
technique [29] to interpret predictions from tree ensem-
ble methods, such as gradient boosting machines [30]. 
This technique allowed us to gain insights into how each 
feature contributed to the overall prediction and under-
stand the relationship between features and outcomes. In 
Fig. 2, we demonstrated the relationship between SHAP 
and tree ensemble methods. By using this approach, we 
were able to gain a better understanding of the factors 
that contribute to perioperative bleeding and improve 
the interpretability of our prediction models.

All data were stored in a database (SQLite v3.16.0, 
http://sqlite.org/). Further analysis was performed using 
Python v3.8.3 with the lightgbm v3.3.2, xgboost v1.6.1, 
catboost v1.1, keras v2.10.0, scikit-learn v1.1.3, imbal-
anced-learn v0.8.1, and shap v0.41.0 packages (all avail-
able on https://cran.r-project.org/).

The dataset was randomly split into two dataset (2:1) 
cohorts, which were used to train machine learning mod-
els and tune their parameters, and a test cohort for model 
validation. The ratio of positive and negative samples was 
guaranteed to be the same in the training and test sets.

We found that the proportion of positive samples in 
the total dataset was approximately 1/4 and tried to use 
adaptive comprehensive oversampling Adaptive synthetic 
sampling (ADASYN) [31] to enhance the training data. 
The learning of the data distribution was improved in 
two ways by generating synthetic samples, reducing the 
bias caused by class imbalance, and adaptively moving 
the classification decision boundary towards instances 
where positive samples bleed.

To mitigate the risk of overfitting in our model, we 
implemented several best practices. Firstly, we carefully 
tuned the hyperparameters of the LGB algorithm, such 
as learning rate, maximum depth, and minimum data in 
leaf, using cross-validation and grid search. Secondly, we 
employed early stopping techniques during the model 
training process. Finally, we performed thorough model 

http://sqlite.org/
https://cran.r-project.org/
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evaluation using various metrics, including precision, 
recall, and F1-score, to assess the model’s generaliza-
tion performance on independent test data. By adopting 
these practices, we aimed to ensure that our model can 
effectively generalize to new data and produce reliable 
predictions.

Trials of seven machine learning classifiers were 
employed to generate models for the prediction of the 
study outcome. Model performance was assessed accord-
ing to the area under the receiver operating character-
istic curve (AUC), and the best-performing model was 
selected by AUC, sensitivity, specificity, and accuracy. 
The AUC reflects the discriminative power of these mod-
els, sensitivity represents the true positive recognition of 
patients with hemorrhage, specificity represents the true 
negative recognition without hemorrhage, and accuracy 
reflects the true recognition rate with both positive and 
negative results. Additionally, we used the AUC as our 
performance metric instead of accuracy, as accuracy can 
be misleading in the presence of class imbalance. The 
variable importance of each predictor for the optimal 
model was presented to rank their relative influence on a 
hemorrhage.

In the training process, it is more meaningful to iden-
tify high-risk patients of intraoperative bleeding than 
low-risk populations. We continuously adjust the recall 
rate and precision rate by reducing confidence and other 
operations. A random grid search was used to adaptively 
adjust the hyperparameters. The eigenvalue image degree 
of the results was also analyzed and the performance of 
the results was degraded.

Statistical analysis
We reported categorical variables as counts (%) and con-
tinuous variables as means ± standard deviation (SD) or 

interquartile ranges (IDRs). The normal distribution was 
verified by the Kolmogorov-Smirnoff test.

Two-tailed t-tests were applied to compare baseline 
characteristics between continuous variables, the Mann-
Whitney U test was used for nonparametric variables, 
and the χ² test was used for categorical variables. A two-
sided p < 0·05 was considered statistically significant. All 
analyses were performed with SPSS version 24.0 (IBM 
Corp, Armonk, New York, USA).

Ethical considerations
All participants were informed of the objectives, con-
tents, potential risk and benefits of this survey prior to 
the data collection. Written informed consents were 
obtained from participants prior to study procedures. 
Study participants were assigned a unique identifier 
number to collect data confidentially. The present anal-
ysis was approved by the Ethics Committee of Tongren 
Hospital (2022-084-01).

Results
The intraoperative bleeding data set of this paper was 
obtained, including 9728 positive samples and 38,815 
negative samples (Fig.  1). The presence of hemorrhage 
occurred in 6518 (20.04%) patients in the training data-
set and 3210 (20.04%) in the test dataset. The clinical 
and therapeutic characteristics of the study population 
are shown in Table  2. The mean age of all subjects was 
52.61 ± 17.33 years. Males accounted for 57.5%, and 
females accounted for 42.5%. There were no predictors 
with a significant difference between the training set and 
the test set.

The discriminative performance of machine learning 
models is shown in Fig.  3 as expressed by the receiver 
operating characteristic curves (ROCs) in the train-
ing and test datasets. LGB achieved the highest AUC of 

Fig. 2  The relationships of applied maching learning models
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all the methods, with a value of 0.933 (sensitivity = 0.87, 
specificity = 0.85, accuracy = 0.87). XGB also achieved 
the second-highest AUC, with a value of 0.927 (sensitiv-
ity = 0.85, specificity = 0.85, accuracy = 0.85). The perfor-
mance of the models for the pooled dataset is described 
in Table  2. LGB outperformed all seven comparison 
methods, as measured by AUC, sensitivity, specificity 
and accuracy.

Standard feature importance bar charts (Fig. 4) give a 
notion of relative importance. Operative time, DD, and 
age before surgery were the first three features to predict 
the end of bleeding. Other significant predictors included 
length of employment, hematocrit, surgery coding, BMI, 
SBP, TT, blood glucose, departments, PT, APTT, hemo-
globin, and pulse.

SHAP summary plots (Fig.  5) leverage individualized 
feature attributions to express the range and distribution 

of a feature [30]. We can directly see the impact of each 
characteristic on the prediction of bleeding risk. Red to 
blue represents the eigenvalue from large to small. The 
thickness of the line represents the sample distribution. 
The higher the SHAP value of a feature, the higher your 
log odds of risk. At the same time, in the analysis of vari-
ous characteristics, the impact of each factor on risk can 
be analyzed one by one. As shown in Fig. 5, bleeding risk 
was roughly proportional to operative time, and opera-
tive time was the most important risk factor for intraop-
erative bleeding. The density of the operative time plot 
shows how common different operative times are in the 
dataset. It has a large impact on a minority of people with 
long operative times, and the risk of bleeding increases 
by approximately 80 min. The general trend of long tails 
reaching the right means that extreme values of opera-
tive time can significantly raise the risk of bleeding. In 
contrast to operative time, DD has a ‘pure’ impact on a 
majority of people. The trend of tails reaching the left 
means that low values can significantly lower your risk. 
According to age, there was no obvious trend in most 
middle-aged people, but there was an increased risk in 
younger patients.

Discussion
In this study, we used RWD on 48,543 inpatients for sur-
gery to generate and test machine learning models to 
predict the risk for intraoperative bleeding. Our baseline 

Table 2  Performance of machine learning models of AUC, 
sensitivity, specificity, and accuracy
Model AUC Sensitivity Specificity Accuracy
LGB 0.933 0.87 0.85 0.87
XGB 0.927 0.85 0.85 0.85

CatB 0.929 0.86 0.83 0.84

AdaB 0.906 0.67 0.84 0.77

LR 0.818 0.41 0.83 0.65

MLP 0.892 0.79 0.84 0.83

LSTM 0.892 0.8 0.83 0.73

Fig. 3  The performance characteristic curves for LGB, XGB, CatB, AdaB, Log, LSTM, and MLP
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statistics showed that 20.04% of patients experienced 
bleeding. The LGB model presented excellent discrimi-
native abilities. Operative time, DD, and age were the 
top few important variables, which could guide further 
preoperative preparation and surgical optimization and 
identify high-risk patients by a personalized evaluation.

We explored 27 variables, most of which were routinely 
assessed from preoperative examination and EMRs dur-
ing the management of patients admitted for surgeries. 
The easy access to data facilitated clinical application.

We found that operative time acted as the most valu-
able predictor in the LGB model. Operative time has 
been confirmed as a significant and independent risk fac-
tor associated with intraoperative bleeding [32], [33]. The 
risk of massive intraoperative bleeding was significantly 
higher in long surgery patients than in short surgery 
patients [33]. A linear relationship was observed between 
operative time and transfusions (indicating exces-
sive blood loss) when the operative time exceeded 75 
to 80 min [34]. Anirudh K Gowd also considered that a 
15-minute increase in operative duration was associated 

with an increased risk of transfusion [35]. In our study, 
surgery coding may contribute to the operative time and 
intraoperative bleeding. Therefore, the operative time 
should be shortened as much as possible, and the preop-
erative international normalized ratio (INR) value should 
be controlled [36] to reduce the risk of bleeding [32].

Length of employment ranks fourth in the LGB model, 
and it is an interesting variable worth discussing. Our 
results showed that surgeons with longer employment 
years presented lower intraoperative bleeding risk than 
those with shorter employment years. Some studies con-
sidered that the surgeons’ experience cannot decrease 
bleeding for the following reason [4, 37]: with experience, 
the surgeon performs more complex cases that involve 
more risk of intraoperative bleeding [2]. However, it may 
reflect under-adjustment for risk, unmeasured confound-
ing by traditional statistics. LGB may avoid interaction 
and potential confounding among variables, and demon-
strate better agreement with human intuition.

Older and younger patients in this study were more 
likely to manifest as intraoperative bleeding than 

Fig. 4  Standard feature importance bar chart shows the importance of each predictor in the LGB model
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Fig. 5  SHAP summary plots of a 20-feature LGB prediction model on intraoperative bleeding RWD
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middle-aged patients. Advanced age may be associated 
with hypertension or malignant diagnoses, an increased 
likelihood of prescription medication use, or weak toler-
ance of the procedure, which cause a high rate of intraop-
erative bleeding [38]. However, the risks of intraoperative 
bleeding in younger patients were not adequately consid-
ered in previous studies. Jeon et al. found that younger 
age was a significant predictor of intraoperative bleeding 
during endoscopic operations, but the causes were still 
not discussed [39]. In our study, the higher intraoperative 
bleeding risk may be related to the surgery type. Younger 
patients were more likely to experience surgeries of the 
musculoskeletal system, which are usually accompanied 
by mass bleeding. Sex was not of great importance in the 
standard feature importance bar charts, but it is shown 
in the SHAP. Compared with males (left of the bound-
ary), females faced a higher risk of bleeding, and the color 
of SHAP was ‘pure’ red. A study confirmed an increased 
risk of in-hospital bleeding in women [40]. Physiological 
mechanisms of coagulation could change with a greater 
tendency of bleeding due to menstruation and pregnancy 
[41], but the female factor is considered to have little 
influence in our model.

There were some important biomarkers, DD and 
hematocrit, for the prediction of inoperative blood loss. 
DD was positively correlated with total blood loss on a 
postoperative day by a generalized linear model [42], 
which is similar to our GBDT models. Our results mainly 
focus on a low concentration of DD and low bleeding 
risk. It is convenient to apply low-dose oral Xa inhibi-
tors and is thought to have a lower risk of bleeding [43]. 
However, there is evidence of an association between the 
risk of thromboembolic disease and DD > 0.5 µg/mL [44]. 
When adjusting DD preoperatively, physicians should 
step on the balance beam between the risk of embolism 
and bleeding. Elevating the hematocrit could shorten 
the bleeding time [45]. In classification and regression 
tree analyses, hematocrit ≥ 44% was associated with 
larger estimated blood loss [46]. Preoperative hematocrit 
counts may identify patients at increased bleeding risk.

Some researchers hold the view that LR is one of the 
best-performing machine learning models in develop-
ing risk-scoring systems [47]. However, LR has greatly 
reduced performance in dealing with nonlinear prob-
lems. It is difficult to address the situation of data imbal-
ance and fit the distribution of RWD. LR is sensitive to 
outliers, and this can be a disadvantage when dealing 
with data that has a large number of outliers. Lastly, LR 
may face variable selection and over-fitting problems 
when dealing with large sample size data.

A variety of machine learning algorithms, including LR, 
boosting, and neural networks, have been widely applied 
in crowd models in terms of treatment and prognosis [48, 
49]. LGB [50] is a type of gradient boosting [25] and has 

been introduced into medical fields in recent years [51], 
[52]. From the results of this study, LGB showed the best 
performance in the intraoperative bleeding outcome in 
this paper. LGB, XGB, and CatB are almost unanimous in 
terms of AUC, but LGB has a better recall rate, which can 
screen out more patients with high intraoperative bleed-
ing risk. There is little research about LGB and intraoper-
ative bleeding, but the application in other disease fields 
demonstrates the good performance of LGB, such as Par-
kinson’s disease diagnosis [53] and the prediction of dia-
betes mellitus [54]. Efficiency is a key advantage of LGB, 
which is optimized for both training speed and memory 
usage. This makes LGB particularly suitable for predicting 
perioperative bleeding, especially which often involves 
large datasets and complex features. Automatic feature 
transformation is a powerful feature of LGB, which is 
particularly useful when predicting perioperative bleed-
ing, as it often involves multiple features that may be of 
different types. LGB uses histogram-based algorithms to 
transform them into more informative representations. 
By doing so, LGB can effectively enhance the prediction 
accuracy, making it a valuable tool. Robustness to missing 
values is a key advantage of LGB in medical applications, 
where data often contain missing values. LGB can handle 
missing values automatically without requiring additional 
data preprocessing steps, making it a valuable tool in 
predicting perioperative bleeding. λFeature importance 
metrics is a valuable feature of LGB in predicting peri-
operative bleeding. By providing insights into the contri-
bution of each feature to the model’s predictions, LGB’s 
feature importance metrics enable better understanding 
and interpretation of the model.

The recall rate of bleeding patients detected by LGB 
has reached 90%, which greatly improved the early warn-
ing rate of high-risk patients. The value of XGB in post-
partum hemorrhage prediction reached 0.93 [55], and 
the AUC was 0.91 in upper gastrointestinal bleeding [56], 
which is similar to our study. Therefore, the LGB model 
is recommended as the optimal model for the predic-
tion of surgical patients with a high risk of intraoperative 
bleeding.

In recent years, there has been a growing trend in the 
field of model development, which involves combining 
traditional methods with machine learning algorithms. 
One approach involves using regression models to screen 
features and select those with a high correlation to bleed-
ing risk [13]. The selected features are then ranked using 
a machine learning algorithm to obtain their importance. 
This approach aims to enhance the overall performance 
and interpretability of the model through feature screen-
ing and ranking. However, this approach has some limi-
tations. The selection of features may be subjective and 
human-biased, as it is based on domain knowledge or 
experience. It may not capture all relevant features or 
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overlook important ones. While the method combines 
linear regression and machine learning, it may not be an 
accurate fit for complex data patterns and may not han-
dle non-linear relationships well. To better understand 
the advantages and disadvantages of these methods, we 
summarize them in Table 3.

Our study has several strengths that increase the valid-
ity and impact of our findings. Firstly, we had a large 
sample size and collected comprehensive data, which 
enabled robust statistical analysis and increased the gen-
eralizability of our results. Additionally, we overcame the 
challenge of class imbalance by applying techniques that 
have been ignored in other studies. Furthermore, our 
study focused on a clinically relevant outcome that has 
important implications for patient care and management. 
Finally, our study provides practical guidance for clini-
cians and researchers who are interested in using predic-
tion models to identify patients at high risk of bleeding.

This study has several limitations. First, this is RWD, 
so some potential variables are not available in the cur-
rent study. Second, we did not establish a follow-up 
cohort, and postoperative bleeding could not be moni-
tored. Third, we derived these data only from a single ter-
tiary hospital in Shanghai, so the generalizability of the 
results is unpredictable. Extended validation would pro-
ceed in prospective data and other hospitals. In addition, 
the results and improvement measures of this study will 
be applied in our clinical practice to observe the actual 
results in the real world.

Conclusion
GBDT algorithms, especially LGB, appear to be efficient 
tools to assess the risk of intraoperative bleeding in surgi-
cal adult patients. Several principal predictors for bleed 
were linked to surgical procedure and patient character-
istics and should receive attention. The prediction model 
can be used to optimize surgeries and decrease bleed-
ing. Further validation in prospective data is needed for 
extended application.
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lation capabilities
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