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Abstract 

Objectives  This research was designed to compare the ability of different machine learning (ML) models and nomo-
gram to predict distant metastasis in male breast cancer (MBC) patients and to interpret the optimal ML model by 
SHapley Additive exPlanations (SHAP) framework.

Methods  Four powerful ML models were developed using data from male breast cancer (MBC) patients in the SEER 
database between 2010 and 2015 and MBC patients from our hospital between 2010 and 2020. The area under curve 
(AUC) and Brier score were used to assess the capacity of different models. The Delong test was applied to compare 
the performance of the models. Univariable and multivariable analysis were conducted using logistic regression.

Results  Of 2351 patients were analyzed; 168 (7.1%) had distant metastasis (M1); 117 (5.0%) had bone metastasis, and 
71 (3.0%) had lung metastasis. The median age at diagnosis is 68.0 years old. Most patients did not receive radiother-
apy (1723, 73.3%) or chemotherapy (1447, 61.5%). The XGB model was the best ML model for predicting M1 in MBC 
patients. It showed the largest AUC value in the tenfold cross validation (AUC:0.884; SD:0.02), training (AUC:0.907; 95% 
CI: 0.899—0.917), testing (AUC:0.827; 95% CI: 0.802—0.857) and external validation (AUC:0.754; 95% CI: 0.739—0.771) 
sets. It also showed powerful ability in the prediction of bone metastasis (AUC: 0.880, 95% CI: 0.856—0.903 in the 
training set; AUC: 0.823, 95% CI:0.790—0.848 in the test set; AUC: 0.747, 95% CI: 0.727—0.764 in the external validation 
set) and lung metastasis (AUC: 0.906, 95% CI: 0.877—0.928 in training set; AUC: 0.859, 95% CI: 0.816—0.891 in the test 
set; AUC: 0.756, 95% CI: 0.732—0.777 in the external validation set). The AUC value of the XGB model was larger than 
that of nomogram in the training (0.907 vs 0.802) and external validation (0.754 vs 0.706) sets.

Conclusions  The XGB model is a better predictor of distant metastasis among MBC patients than other ML models 
and nomogram; furthermore, the XGB model is a powerful model for predicting bone and lung metastasis. Combin-
ing with SHAP values, it could help doctors intuitively understand the impact of each variable on outcome.
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Introduction
Male breast cancer (MBC) is clinically rare, account-
ing for approximately 1% of all breast cancers; however, 
its annual incidence has increased in recent years [1, 2]. 
Because the incidence of breast cancer in men is much 
lower than that in women, most breast cancer clinical 
studies only include women. Therefore, there are few 
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prospective data to guide the clinical treatment of male 
breast cancer.

Even though the survival rate of breast cancer patients 
has improved in recent years, patients with distant 
metastasis still had a worse prognosis, with an overall 
5-year survival rate of 27% [3]. Some studies have shown 
that MBC patients had a worse outcome than females, 
which could be attributed to a later stage at diagnosis, 
older age at diagnosis, or a subtype with a poor progno-
sis, such as triple negative breast cancer (TNBC) [4–7]. 
Compared with female breast cancer patients who had 
distant metastasis, MBC patients with distant metas-
tasis showed a higher proportion of simultaneous bone 
and lung metastasis [8]. However, pairwise analyses 
of patients with MBC and female breast cancer (FBC) 
adjusted for stage, age, hormone receptor status, and 
other variables revealed that MBC patients had a simi-
lar or better prognosis than FBC patients [9, 10]. Distant 
metastasis has a very important impact on the progno-
sis of MBC patients. Therefore, a tool to predict distant 
metastasis in MBC patients would be helpful for improv-
ing the awareness of cancer prevention among patients 
and for seeking appropriate treatment in time.

Medical fields have increasingly utilized machine learn-
ing (ML) for multiple applications over the past few 
years, such as the prediction of cancer incidence rates 
[11], cancer detection [12], cancer survival prediction 
[13] and bone metastasis risk prediction [14]. However, 
due to the “black-box” feature of ML models, it is diffi-
cult to understand how an ML model predicts an event 
or why such a feature is vital to outcome. Thus, it is also 
important to intuitively interpret an ML model so that we 
can apply the model to clinical work. To solve this dis-
advantage, the SHapley Additive exPlanations (SHAP) 
framework was developed in 2017 [15] to help clinicians 
interpret advanced ML models.

The present study aimed to construct various ML mod-
els to predict the distant metastasis risk of MBC patients 
and to compare their predictive ability of the models with 
that of a nomogram. Moreover, the SHAP framework 
was used to identify the best model, which could help 
provide a more accurate diagnosis and of distant metas-
tasis for male breast cancer patients.

Materials and methods
Patient selection
From 2010 to 2015, a total of 2241 MBC (ICD-O-3 
8500–8599) patients from SEER database, and a total of 
110 MBC patients from our hospital from 2010–2020 
were included into this study. The data from the SEER 
database between 2010 to 2015 included clinical and 
pathological TNM staging information and could not be 
distinguished. Therefore, the pathological TNM staging 

information of patients in our hospital was extracted 
from postoperative pathological reports according to the 
7th AJCC staging system.

Because the SEER database was publicly available, 
informed consent was not needed. The ethics committee 
of Harbin Medical University Cancer Hospital approved 
this study. It was performed in accordance with the 
World Medical Association Declaration of Helsinki in 
1964 and subsequently amended versions. An informed 
consent form (Titled: Informed consent for secondary 
utilization of medical history data/biological specimens) 
was signed by all of the patients from our hospital before 
the treatment, and a PDF version of this informed con-
sent form is provided in the related files (Chinese and 
English versions). According to the informed consent 
form, all the patients consent that the medical history 
data could be used for scientific research. No biological 
specimens were used in this study.

The inclusion criteria were as follows: (1) pathologically 
confirmed MBC (ICD-O-3 8500–8599); (2) unilateral 
MBC; (3) distant metastasis (including bone, lung, liver 
and brain metastasis) diagnosed by pathology or imaging 
examination; and (4) data with AJCC 7th stage.

The exclusion criteria were as follows: (1) the informa-
tion of distant metastasis is unknown; (2) breast sub-
type recoded not available/unknown; (3) ER borderline/
unknown; and (4) PR borderline/unknown.

Figure 1 illustrates the process of selecting patients and 
developing, evaluating and validating the ML models.

Feature selection and data preprocessing
Variables with less than 30% missing values were man-
aged by KNNImputer algorithm [16]. Non-hierarchical 
multiple categorical variables were processed by One-
Hot [17]. Fourteen features were selected in this study to 
predict distant metastasis (M1), including age, laterality, 
grade, T stage, N stage, radiotherapy, chemotherapy, ER, 
PR, HER-2, subtype_0 (HR + /HER2-), subtype_1 (HR + /
HER2 +), subtype_2 (HR-/HER2-) and subtype_3 (HR-/
HER2 +); logistic least absolute shrinkage and selection 
operator (LASSO) regression was applied to screen the 
features [18]. Ultimately, age, T stage, N stage, ER status, 
subtype_0 (HR + /HER2-) and subtype_2 (HR-/HER2-) 
were selected to develop ML models.

The development of ML models
A ratio of 7:3 was used for randomly dividing patients 
into training and test groups. Four powerful ML models 
were examined in this study, including extreme gradient 
boosting (XGBoost), knearest neighbor (KNN), decision 
tree (DT) and support vector machine (SVM). In the 
training set, SMOTE resampling method was applied to 
address the unbalanced data, and stratified ten-fold CV 
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was applied to prevent overfitting of ML models. A grid 
search method with ten-fold CV was also applied to opti-
mize the hyperparameters of the ML models. The details 
are shown in Fig. 1.

The evaluation of ML models
We assessed the performance of different ML models in 
the training, testing and external validation set. Mod-
els were evaluated and compared according to the area 
under curve (AUC) [19] and Brier score [20]. Higher 
AUC values and smaller Brier scores indicate better per-
formance of the ML models.

The explanation of ML models
To intuitively understand the nature of the ML model 
with the feature of ‘black-box’, the SHAP framework was 
introduced into this study to interpret the optimal ML 
model. Its interpretability performance has been vali-
dated in many models [21–23]. The SHAP framework 
could present global (e.g., summary plot) and local (e.g., 
force plot) interpretability plots based on SHAP values. 

The changes in SHAP values reflect the influence of a fea-
ture on the outcome.

Statistical analysis
Categorical variables are shown as proportions, while con-
tinuous variables are shown as medians and interquartile 
ranges (IQRs). The Delong test was applied to compare 
the performance of different models. The multicollinear-
ity among different variables were tested by multiple linear 
regression analysis via variance inflation factor (VIF), and 
a VIF ≤ 5 was considered non-collinearity [24]. Univari-
able and multivariable analyses were conducted by logistic 
regression analysis. The nomogram was constructed based 
on the results of multivariable logistic regression analysis 
in training set. Discrimination was evaluated by AUC and 
concordance index (C-index) values of the training, testing 
and external validation sets. Calibration was assessed by 
calibration plots. The bootstrapping method was applied 
for internal validation.

A two-tailed P value < 0.05 was considered to indicate 
statistical significant. R software version 4.1.3, python ver-
sion 3.9.7 and MedCalc version 19.0.7 were used to carry 
out all analyses.

Fig. 1  The flow chart of patients selection and the flow chart for the development, evaluation and explanation of models
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Results
The clinical and pathological characteristics of MBC 
patients
A total of 2351 MBC patients were included into this 
retrospective analysis. The median age was 68  years 
old. Most patients had Grade 2 (54.7%) and AJCC.T0/
Tis/T1 (46.0%). A total of 1306 (55.6%) patients had N0 
stage cancer. Most patients did not receive radiotherapy 
(73.3%) or chemotherapy (61.5%). A total of 2038 (86.7%) 
patients belonged to the HR + /HER2- subtype. A total 
of 168 (7.1%) patients had distant metastasis, of whom 
117 (5.0%) patients had bone metastasis, and 71 (3.0%) 
patients had a lung metastasis (Table 1).

The performance comparison of different ML models
According to the LASSO regression, the optimal fea-
ture number was 6 (Figure S1), including Age, T stage, 
N stage, ER status, subtype_0 (HR + /HER2-) and sub-
type_2 (HR-/HER2-). Four ML models were well trained 
and none of them exhibited overfitting (Figure S2).

In the training set, the XGB model showed the largest 
mean AUC (0.884) by the tenfold CV (Fig. 2A), and the 
XGB model also demonstrated the biggest AUC (0.907 vs 
0.839 vs 0.903 vs 0.888, Fig. 2B) and the second smallest 
Brier score (0.125 vs. 0.161 vs. 0.120. vs. 0.136, Fig. 2C). 
In the test set, the XGB model also showed the largest 
AUC (0.827 vs. 0.822 vs. 0.769 vs. 0.811, Fig. 2D) and the 
second smallest brier score (0.145 vs. 0.161 vs. 0.160 vs. 
0.144, Fig.  2E). In the external validation set, the XGB 
model also showed the largest AUC (0.754 vs. 0.717 
vs. 0.552 vs. 0.629, Fig. 2F) and the smallest Brier score 
(0.122 vs. 0.136 vs. 0.159 vs. 0.159, Fig. 2G).

To further compare the performance of different ML 
models, the Delong test was performed. In the training 
set, the AUC value of the XGB model was significantly 
larger than that of the DT and KNN models (p < 0.05, 
Table  2). In the test set, no significant difference was 
observed between the XGB model and other models 
(p > 0.05, Table 2). In the external validation set, the AUC 
value of the XGB model was significantly larger than that 
of KNN and SVM models (p < 0.05, Table 2).

Although no significant AUC difference was observed 
in the test set, which could be attributed to limited Data, 
the XGB model still showed better performance in the 
training and external validation sets. Therefore, the XGB 
model was selected as the optimal ML model for predict-
ing distant metastasis risk in MBC patients.

The development of nomogram
In the training set, univariable and multivariable logis-
tic regression analyses were applied to explore the 
independent risk factors for the construction of the 

nomogram. In the univariable logistic regression analy-
sis, age, grade, AJCC.T, AJCC.N, chemotherapy, subtype, 
ER, PR and HER-2 were significantly correlated with M1 
(p < 0.05, Table S1). Then, the multicollinearity among 
these parameters was tested. Subtype was excluded from 
multivariate analysis because of a VIF value > 5, and other 
variables were incorporated. The results of multivariable 
logistic regression analysis demonstrated that patients 
with younger age, G3, T3/T4/TX, N ( +) or ER negative 
status had a higher risk of distant metastasis (p < 0.05, 
Table S1).

Characteristics with p < 0.05 in multivariable logistic 
regression analysis of the training set were incorporated 
to develop the nomogram (Figure S3A). The C-index for 
distant metastasis prediction were 0.802 in the training 
set (Figure S3B), 0.838 in the test set (Figure S3D) and 
0.706 in validation set (Figure S3F). Similar results (0.790, 
0.838 and 0.701, respectively) were observed when boot-
strapping was utilized for internal validation. The dis-
tant metastasis prediction was highly consistent with the 
actual observations in the training set (Figure S3C). How-
ever, distant metastasis prediction was not in good agree-
ment with actual observations in the test (Figure S3E) 
and external validation (Figure S3G) sets.

The performance comparison of XGB model 
and nomogram
For a more detailed assessment of the performance of the 
XGB model, the predictive performance was compared 
between XGB model and nomogram.

The AUC value of the XGB model was larger than that 
of the nomogram in the training (0.907 vs 0.802) and 
external validation (0.754 vs 0.706) sets. The AUC value 
of XGB model was slightly lower than that of the nomo-
gram in the test validation set (0.827 vs 0.838). In addi-
tion, the Z statistic of the XGB model was greater than 
that of the nomogram in the training (77.248 vs 13.029), 
testing (10.901 vs 9.764) and external validation (4.915 
vs 3.556) sets (Table 3). Therefore, the predictive perfor-
mance of XGB is better than that of the nomogram.

The prediction of bone and lung metastasis based 
on the XGB model
Based on the above results, the XGB model showed the 
best predictive ability. The two most common distant 
metastasis organs were bone and lung [25]. Therefore, 
we further predicted the risk of bone and lung metastasis 
for male breast cancer patients based on XGB model. For 
the prediction of bone metastasis, the XGB model also 
showed a high AUC value (0.880, 0.823 and 0.747) and a 
low Brier score (0.136, 0.149 and 0.095) in the training, 
testing and external validation sets, respectively (Fig. 3). 
For the prediction of lung metastasis, the XGB model 
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Table 1  The baseline of all patients

Variables Overall train set test set external validation set
N = 2351 n = 1568 n = 673 n = 110

Age (median [IQR]) 68.00 [59.00, 76.00] 68.00 [59.00, 76.00] 68.00 [60.00, 76.00] 66.00 [57.25, 71.75]

Laterality (%)

  left 1248 (53.1) 859 (54.8) 338 (50.2) 51 (46.4)

  right 1103 (46.9) 709 (45.2) 335 (49.8) 59 (53.6)

Grade (%)

  1 256 (10.9) 178 (11.4) 76 (11.3) 2 (1.8)

  2 1286 (54.7) 826 (52.7) 362 (53.8) 98 (89.1)

  3/4 809 (34.4) 564 (36.0) 235 (34.9) 10 (9.1)

AJCC.T (%)

  T0/Tis/T1 1081 (46.0) 694 (44.3) 311 (46.2) 76 (69.1)

  T2 970 (41.3) 678 (43.2) 259 (38.5) 33 (30.0)

  T2 68 (2.9) 39 (2.5) 28 (4.2) 1 (0.9)

  T4/TX 232 (9.9) 157 (10.0) 75 (11.1) 0 (0.0)

AJCC.N (%)

  N0 1306 (55.6) 893 (57.0) 359 (53.3) 54 (49.1)

  N1 717 (30.5) 460 (29.3) 225 (33.4) 32 (29.1)

  N2 201 (8.5) 131 (8.4) 52 (7.7) 18 (16.4)

  N3/NX 127 (5.4) 84 (5.4) 37 (5.5) 6 (5.5)

Radiotherapy (%)

  no 1723 (73.3) 1146 (73.1) 474 (70.4) 103 (93.6)

  yes 628 (26.7) 422 (26.9) 199 (29.6) 7 (6.4)

Chemotherapy (%)

  no 1447 (61.5) 979 (62.4) 412 (61.2) 56 (50.9)

  yes 904 (38.5) 589 (37.6) 261 (38.8) 54 (49.1)

Subtype (%)

  HR( +)/HER2(-) 2038 (86.7) 1355 (86.4) 581 (86.3) 102 (92.7)

  HR( +)/HER2( +) 259 (11.0) 173 (11.0) 79 (11.7) 7 (6.4)

  HR(-)/HER2(-) 37 (1.6) 27 (1.7) 9 (1.3) 1 (0.9)

  HR(-)/HER2( +) 17 (0.7) 13 (0.8) 4 (0.6) 0 (0.0)

ER (%)

  negative 58 (2.5) 43 (2.7) 14 (2.1) 1 (0.9)

  positive 2293 (97.5) 1525 (97.3) 659 (97.9) 109 (99.1)

PR (%)

  negative 205 (8.7) 140 (8.9) 57 (8.5) 8 (7.3)

  positive 2146 (91.3) 1428 (91.1) 616 (91.5) 102 (92.7)

HER2 (%)

  negative 2075 (88.3) 1382 (88.1) 590 (87.7) 103 (93.6)

  positive 276 (11.7) 186 (11.9) 83 (12.3) 7 (6.4)

bone metastasis (%)

  no 2234 (95.0) 1492 (95.2) 637 (94.7) 105 (95.5)

  yes 117 (5.0) 76 (4.8) 36 (5.3) 5 (4.5)

brain metastasis (%)

  no 2336 (99.4) 1560 (99.5) 666 (99.0) 110 (100.0)

  yes 15 (0.6) 8 (0.5) 7 (1.0) 0 (0.0)

liver metastasis (%)

  no 2333 (99.2) 1554 (99.1) 670 (99.6) 109 (99.1)

  yes 18 (0.8) 14 (0.9) 3 (0.4) 1 (0.9)
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also showed a high AUC (0.906, 0.859 and 0.756) and a 
low Brier score (0.143, 0.149 and 0.112) in the training, 
testing and external validation sets, respectively (Fig. 4).

The interpretability of the XGB model
Based on the above results, the XGB model showed 
the best predictive ability. Therefore, the SHAP frame-
work was introduced to interpret the model. Figure  5A 
illustrated all of the risk factors evaluated by the mean 
absolute SHAP value. T, age and N were the three most 
important variables. Figure  5B illustrated how the risk 
factors influence distant metastasis. The y-axis repre-
sented the value of risk factors, and the x-axis (SHAP 
value) represented the impact of risk factors on model 
output (distant metastasis). High T stage, lower age, high 
N stage, ER negative, and HR(-)/HER2(-)(subtype_2) 
increased the probability of distant metastasis.

The combination of different variables influenced the 
patient outcome. Therefore, to demonstrate the model’s 
interpretability, we provided two classical samples: a dis-
tant metastasis patient with AJCC T2 stage and HR(-)/
HER2(-) (Fig. 5C), and a patient with non-distant metas-
tasis with AJCC.T1 and AJCC.N0 stage (Fig.  5D). The 
patient with distant metastasis had a high SHAP value 
(3.31) and a high prediction score (0.965); The patient 
without distant metastasis had a low SHAP value (-4.61) 
and a low prediction score (0.010).

The application of the XGB model
To make it easier for others to use this model, we devel-
oped a Web APP based on the XGB model. For exam-
ple (Fig. 6), enter a patient’s information into the model: 
age 68  years old, AJCC T1, AJCC N0, ER negative and 
HR( +)/HER2(-). Then, the model outputted a probabil-
ity of distant metastasis was 0.0892, which indicated that 
this patient had a very low distant metastasis risk. The 
Web APP is available online (https://​green​mood.​shiny​
apps.​io/​male/).

Discussion
Although MBC is rare, its incidence is gradually 
increasing. A previous study showed that MBC patients 
had a higher proportion of advanced disease than 
female breast cancer patients [26], which could be 
attributed to a lack of awareness and screening of breast 
cancer in MBC patients [27]. Therefore, it is necessary 
to discover and predict the risk of distant metastasis in 
a timely manner for MBC patients. This study demon-
strated that predictive ability of the XGB model is bet-
ter than that of other ML models and nomogram in 
predicting distant metastasis risk in male breast cancer 
patients. In addition, this model could also accurately 
predict the bone and lung metastasis risk. Through 
the SHAP value of each variable, the contribution and 
impact of each risk factor on mortality were intuitively 
demonstrated.

The clinicopathological characteristics of MBC are 
different from those of FBC. The results [25, 28] of the 
international MBC program demonstrated that the 
median age at diagnosis of MBC patients was 68.4 years 
old, and up to 99.3% patients were ER positive, while 
only 8.7% of patients were HER-2 positive. In this retro-
spective analysis from the SEER database of American 
and our hospital, similar clinicopathological charac-
teristics of MBC were observed. The median age was 
68.0 years old. Approximately half of the patients (1286, 
54.7%) had a grade 2 cancer, as previously reported 
[29, 30]. Most patients belonged to the HR + /HER2- 
subtype (2038, 86.7%). Up to 97.5% patients were ER 
positive (99.1% in the validation set), and only 11.7% 
patients were HER2 positive (6.4% in the validation 
set). This study demonstrated that 168 (7.1%) patients 
had a distant metastasis and the two most common 
distant metastasis organs were bone and lung, which is 
also as previously reported [25].

In different international breast cancer guidelines, the 
standard of therapy for MBC is based on FBC [31, 32]. 
Although MBC patients could benefit from local treat-
ment and systemic treatment, the prognosis of MBC is 

Table 1  (continued)

Variables Overall train set test set external validation set
N = 2351 n = 1568 n = 673 n = 110

lung metastasis (%)

  no 2280 (97.0) 1530 (97.6) 651 (96.7) 99 (90.0)

  yes 71 (3.0) 38 (2.4) 22 (3.3) 11 (10.0)

Distant Metastasis (%)

  M0 2183 (92.9) 1460 (93.1) 627 (93.2) 96 (87.3)

  M1 168 (7.1) 108 (6.9) 46 (6.8) 14 (12.7)

https://greenmood.shinyapps.io/male/
https://greenmood.shinyapps.io/male/
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Fig. 2  The performance comparison of different ML models. The AUC comparison of different ML models in train set (tenfold cross validation, A). 
The ROC curves of different ML models in train (B), test (D) and external validation sets (F). The calibration curves of different ML models in train (C), 
test (E), and external validation sets (G)
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worse than that of FBC [26] because of the later stage 
at diagnosis or older age at diagnosis. In addition, MBC 
patients showed a higher risk of having contralateral 
breast cancer than FBC patients, which also increased 
the risk of death [33]. In addition, the delay in seeking 
medical treatment due to lack of knowledge or public 
education also leads to poor prognosis of MBC patients 
[34]. However, recent studies also found that MBC 
patients had a similar or a better prognosis than FBC 
patients after adjusting for some risk factors, such as 
age and stage [9, 10]. Therefore, early detection, early 

diagnosis and early treatment are very important to 
improve the prognosis of breast cancer. In clinical prac-
tice, we have noticed that many male patients refused 
professional breast examinations due to embarrass-
ment or a lack of public education about MBC, which 
leads to a delay in getting medical attention. If we can 
develop a tool or model to predict the probability of 
mortality, it would be helpful to urge MBC patients to 
receive timely profession examination or treatment.

In recent years, ML models have also been widely 
applied to predict survival or lymph node metastasis of 
breast cancer [23, 35, 36]. However, it has not been used 
to predict the distant metastasis risk of MBC patients. 
In this research, we compared the predictive ability of 
four powerful ML algorithms, and XGB was the best 
model in predicting distant metastasis in MBC patients. 
The XGB model showed the largest mean AUC value in 
the tenfold CV (0.884) and the largest AUC value in the 
training (0.907), testing (0.0.827) and external validation 
(0.754) sets. These findings may be due to the unbalanced 
data (only 7.1% patients experienced distant metasta-
sis) and limited sample size in the external validation 
set. However, we applied some statistical methods (such 
as SMOTE resampling) to address this problem. The 
calibration curves still demonstrated a slight deviation. 
However, the XGB model still presented a more perfect 
calibration curve and a better net benefit than the other 

Table 2  The AUC comparison of different ML models in different sets

ML models Difference of AUC​ S. E 95% CI Z statistic p

Train set
  DT ~ KNN 0.0500 0.00551 0.0391—0.0608 9.059  < 0.0001

  DT ~ SVM 0.0649 0.00629 0.0526—0.0772 10.321  < 0.0001

  DT ~ XGB 0.0689 0.00433 0.0605—0.0774 15.940  < 0.0001

  KNN ~ SVM 0.0150 0.00462 0.00591—0.0240 3.241 0.0012

  KNN ~ XGB 0.0190 0.00356 0.0120—0.0260 5.339  < 0.0001

  SVM ~ XGB 0.00404 0.00388 -0.00355—0.0116 1.043 0.2970

Test set
  DT ~ KNN 0.0105 0.0267 -0.0418—0.0627 0.392 0.6952

  DT ~ SVM 0.0528 0.0352 -0.0161—0.122 1.503 0.1328

  DT ~ XGB 0.00503 0.0160 -0.0263—0.0363 0.315 0.7529

  KNN ~ SVM 0.0424 0.0306 -0.0175—0.102 1.386 0.1656

  KNN ~ XGB 0.0155 0.0219 -0.0275—0.0585 0.706 0.4801

  SVM ~ XGB 0.0579 0.0317 -0.00421—0.120 1.827 0.0677

External validation set
  DT ~ KNN 0.0882 0.0836 -0.0757—0.252 1.054 0.2917

  DT ~ SVM 0.165 0.120 -0.0695—0.399 1.378 0.1681

  DT ~ XGB 0.0368 0.0526 -0.0663—0.140 0.700 0.4838

  KNN ~ SVM 0.0766 0.0978 -0.115—0.268 0.784 0.4332

  KNN ~ XGB 0.125 0.0616 0.00434—0.246 2.030 0.0423

  SVM ~ XGB 0.202 0.0789 0.0471—0.356 2.557 0.0106

Table 3  The AUC comparison of XGB model and nomogram 
(based on multivariable logistic regression analysis) in different 
sets

ML models AUC​ S. E 95% CI Z statistic p

Train set
  XGB 0.907 0.00528 0.896—0.918 77.248  < 0.0001

  nomogram 0.802 0.0232 0.782—0.822 13.029  < 0.0001

Test set
  XGB 0.827 0.0299 0.796—0.855 10.910  < 0.0001

  nomogram 0.838 0.0346 0.808—0.865 9.764  < 0.0001

External validation set
  XGB 0.754 0.0517 0.663—0.831 4.915  < 0.0001

  nomogram 0.706 0.0579 0.611—0.789 3.556 0.0004
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three ML models with the smallest brier score (0.122) 
in the external validation set. In the future, a larger and 
balanced sample could present a better performance 
of XGB model. In addition, the XGB model also dem-
onstrated a powerful ability to predict bone and lung 
metastasis in these three sets. Different from other ML 
model that lack of interpretability [37, 38], we introduced 

SHAP framework to interpret the “black box” of the XGB 
model. The feature importance of characteristics was 
intuitively observed through the summary plots based 
on the SHAP value. In addition, how a variable influences 
the outcome was intuitively shown by the SHAP value, 
and the force plots illustrated two classical personalized 
samples (Fig. 5).

Fig. 3  The prediction of bone metastasis based on XGBoost model. The ROC curves of XGBoost model in train (A), test (C) and external validation 
sets (E). The calibrations of XGBoost model in train (B), test (D) and external validation sets (F)
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To date, only one study has explored the relationship 
between clinicopathological characteristics and distant 
metastasis of MBC by nomogram [39]. However, the 
performance of the nomogram was poorer than that of 

our ML model in the training set (AUC: 0.822 vs 0.907) 
and lacked external validation, which also reduced the 
reliability and practicability of nomogram. Currently, an 
increasing number of ML models had been applied to 

Fig. 4  The prediction of lung metastasis based on XGBoost model. The ROC curves of XGBoost model in train (A), test (C) and external validation 
sets (E). The calibrations of XGBoost model in train (B), test (D) and external validation sets (F)
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Fig. 5  The XGB model’s interpretation. The importance ranking of the different variables according to the mean (∣SHAP value∣) (A); The importance 
ranking of different risk factors with stability and interpretation using the optimal model (B). The higher SHAP value of a feature is given, the higher 
risk of death the patient would have. The red part in feature value represents higher value. A classical sample with distant metastasis (C), and a 
classical sample without distant metastasis (D)
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the prediction of lymph node metastasis or survival state. 
However, it has not been used to predict distant metas-
tasis in male breast cancer patients. In addition, no pre-
vious study has compared the ability of ML models and 
nomogram to predict distant metastasis in male breast 
cancer patients. Our previous study demonstrated that 
the XGB model had a better ability than the nomogram 
in predicting lymph node metastasis in breast invasive 
micropapillary carcinoma patients [23]. In this study, the 
results also showed that the XGB model had a better pre-
dictive ability than the nomogram in predicting M1 of 
MBC patients.

To make it easier for other researchers to use our 
model, we developed a public Web APP. After enter-
ing some necessary parameters, the user could obtain 
the probability of distant metastasis of an MBC patient. 
We believe that the model could urge MBC patients to 
receive standard treatment in time by telling them the 
probability of distant metastasis or help clinicians adjust 
the treatment plan in a timely manner.

This is the first study to develop, test and validate an ML 
model for the prediction of distant metastasis in MBC 
patients. Some limitations should also be noted. First, the 
data was extracted from SEER database of America, and 
our hospital is limited; more data from other regions will 
help the application of XGB model. Second, the informa-
tion from the SEER database is finite, and using a cohort 
including more clinical and pathological characteristics 

(like AR status, Ki67 index, etc.) to train a model would 
help further improve the performance of ML model. 
Third, the TNM staging information from SEER database 
between 2010 to 2015 is blurry. Therefore, it is neces-
sary to include pure pathological data to develop an ML 
model in the future.

Conclusions
The XGB model is a better tool for the prediction of 
distant metastasis among MBC patients than other ML 
models and nomogram. It is also a powerful model for 
predicting bone and lung metastasis. The SHAP frame-
work could effectively help clinicians intuitively under-
stood how a variable influences the outcome of an MBC 
patient. The Web APP based on XGB model could help 
doctors adjust treatment plans or urge MBC patients to 
receive standard treatment in time.
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