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Abstract 

Background  Low back pain (LBP) is a common condition made up of a variety of anatomic and clinical subtypes. 
Lumbar disc herniation (LDH) and lumbar spinal stenosis (LSS) are two subtypes highly associated with LBP. Patients 
with LDH/LSS are often started with non-surgical treatments and if those are not effective then go on to have decom-
pression surgery. However, recommendation of surgery is complicated as the outcome may depend on the patient’s 
health characteristics. We developed a deep learning (DL) model to predict decompression surgery for patients with 
LDH/LSS.

Materials and method  We used datasets of 8387 and 8620 patients from a prospective study that collected data 
from four healthcare systems to predict early (within 2 months) and late surgery (within 12 months after a 2 month 
gap), respectively. We developed a DL model to use patients’ demographics, diagnosis and procedure codes, drug 
names, and diagnostic imaging reports to predict surgery. For each prediction task, we evaluated the model’s per-
formance using classical and generalizability evaluation. For classical evaluation, we split the data into training (80%) 
and testing (20%). For generalizability evaluation, we split the data based on the healthcare system. We used the area 
under the curve (AUC) to assess performance for each evaluation. We compared results to a benchmark model (i.e. 
LASSO logistic regression).

Results  For classical performance, the DL model outperformed the benchmark model for early surgery with an AUC 
of 0.725 compared to 0.597. For late surgery, the DL model outperformed the benchmark model with an AUC of 0.655 
compared to 0.635. For generalizability performance, the DL model outperformed the benchmark model for early 
surgery. For late surgery, the benchmark model outperformed the DL model.

Conclusions  For early surgery, the DL model was preferred for classical and generalizability evaluation. However, 
for late surgery, the benchmark and DL model had comparable performance. Depending on the prediction task, the 
balance of performance may shift between DL and a conventional ML method. As a result, thorough assessment is 
needed to quantify the value of DL, a relatively computationally expensive, time-consuming and less interpretable 
method.
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Introduction
Low back pain (LBP) is one of the most common reasons 
for a hospital visit, with an annual prevalence of 7.4% [1]. 
As a result, LBP incurs an annual cost of $100 billion and 
is the leading contributor to disability and workdays lost 
[2–4]. Despite numerous available interventions for LBP, 
it remains difficult to diagnose and treat effectively, in 
part because LBP has many anatomic and clinical sub-
types [5, 6]. Lumbar disc herniation (LDH) and lumbar 
spinal stenosis (LSS) are two specific spine-related clinical 
syndromes that are highly associated with LBP [2, 7, 8]. 
Patients with LDH experience pain caused by extension 
of the intervertebral disc material beyond the disc space, 
which may compress adjacent spinal nerves [7, 9]. Patients 
with LSS experience pain associated with narrowing of 
the spaces within the spine due to changes in the interver-
tebral discs and facet joints, which may also compress the 
spinal nerves [10, 11]. These syndromes have overlap as 
(1) patients with one entity can develop the other and (2) 
both involve neuropathic lower extremity pain.

Patients with LDH/LSS are often started with non-sur-
gical treatments and if those are not effective then go on 
to have decompression surgery to relieve the compressed 
spinal nerves [11–13]. However, decompression has both 
potential benefits and risks. Recent studies indicate a 
possible improvement in early health outcomes due to 
decompression [14–17], but randomized controlled tri-
als (RCTs) indicate that benefits may decrease over time 
[14, 15]. Another study found that LDH patients who 
underwent surgery had better short-term improvement 
in function and pain relief compared to non-surgical 
treatments [17]. A RCT found that LSS patients who 
received decompression surgery instead of non-surgical 
treatments had better initial improvement in back pain, 
but this benefit diminished over time [16]. On the other 
hand, decompression surgery has potential risks, with 
18% of LSS patients experiencing adverse events [18], and 
between 3.1% and 9% having clinical worsening within 
1  year [19]. Continuation of non-surgical treatment is 
the default treatment option for patients with LDH/LSS, 
as many will improve over time without surgery [20]. 
Therefore, patients with LDH/LSS may be observed for 
long periods of time before surgery is considered. In 
summary, recommendation of decompression surgery is 
complicated as the outcome can be positive or negative 
depending on the patient. Early identification of patients 
at high risk of eventual surgical decompression (i.e. fail-
ure of non-surgical treatments) could inform discussions 

between patients and their clinicians on the benefits and 
risks of pursuing surgery.

Machine learning (ML) is a promising method to 
assist patients and healthcare providers to understand 
a patient’s predicted risk of eventual decompression 
surgery [21–23]. ML can be used to develop predictive 
models from large data sets [24, 25]. In recent years, 
deep learning (DL) has emerged as a popular method 
to learn low-dimensional representations of raw input 
data with the potential to improve predictive modeling 
performance [26]. Several works have applied DL to pre-
dict clinical outcomes. Norgeot et  al. developed a DL 
model to predict rheumatoid arthritis [27]. Choi et  al. 
used a recurrent neural network to predict heart failure 
[28]. These and other similar approaches used struc-
tured electronic health record (EHR) data (e.g. diagnosis 
codes), but with the growing volume and complexity of 
EHR data, combining structured and unstructured data 
(e.g. narrative text notes) is gaining acceptance [29]. As 
a result, multimodal deep learning (MDL—referring to 
the use of more than one mode of data) has emerged as a 
possible way to holistically model a patient’s full charac-
teristics [30–32]. However, the performance advantages 
often observed with deep learning models come with 
increased computational costs for training and infer-
ence relative to traditional machine learning approaches, 
as well as loss of model interpretability. A recent study 
indicated that depending on the underlying relationship 
of the features and outcome, conventional ML methods 
may provide simpler, cheaper, and more useful data mod-
eling that can achieve comparable, if not better, perfor-
mance than DL-based methods [33]. Rigorously testing 
any MDL approach against a conventional ML method 
is needed to determine whether the additional costs it 
incurs are truly justified.

In the current study, we aim to predict early (within 
2  months) and late (within 12  months after a 2  month 
gap) decompression surgery for patients with LDH/LSS 
by applying MDL to their structured and unstructured 
data and comparing the performance to a benchmark 
model, LASSO logistic regression (Fig. 1). The ability to 
identify patients at high risk of ultimately needing sur-
gery accurately could lead clinicians to either try more 
focused or intensive non-surgical treatments, or recom-
mend surgery earlier than they otherwise would. Addi-
tionally, patients predicted as unlikely to receive surgery 
may be motivated to continue with their non-surgical 
treatment plan.
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Methods
Data source
This was a retrospective study that utilized the Lumbar 
Imaging with Reporting of Epidemiology (LIRE) study 
dataset which consisted of approximately 250,000 patients 
from four healthcare systems (Group Health, Kaiser Per-
manente Northern California, Henry Ford, and Mayo 
Clinic) who received a thoracic or lumbar spine plain 
X-ray, magnetic resonance imaging (MRI), or computed 
tomography (CT) between October 1, 2013 and Sep-
tember 30, 2016 [34]. The LIRE study was a multicenter 
intervention study that investigated whether inserting text 
about the prevalence of common imaging findings into 
lumbar spine imaging reports reduced subsequent spine-
related interventions [34]. Once enrolled in the study, 
EHR data was collected from patients for two years fol-
lowing and one year prior to their first (i.e. index) imaging.

Patient selection
From the LIRE dataset, we selected patients who had at 
least two occurrences of International Classification of 

Diseases (ICD)-9 or ICD-10 codes related to LSS or LDH 
(Additional file  1: Table  S1). This criterion was agreed 
upon by our clinical experts (PS, JF, and JGJ), to increase 
confidence in identifying patients with these syndromes 
[35, 36]. We based our ICD codes on two previous stud-
ies [37, 38]. Martin et al. selected ICD-9 codes that were 
commonly used to describe spine-related problems. 
These codes were identified by searching the annual 
updates published by the World Health Organization 
and referencing the Conversion Tables of new ICD-9 
codes published by the National Center for Health Sta-
tistics to help identify newly added or modified codes 
[37]. They then validated their process to group patients 
based on these codes by comparing it to clinician judg-
ment using sensitivity and specificity analysis. Deyo 
et al. further grouped their patients with back pain into 
back and leg pain or herniated disc and lumbar stenosis 
groups based on ICD-9 codes [38]. We updated the code 
lists of Martin et al. and Deyo et al. to also include ICD-
10 [39].

Fig. 1  Overview of the prediction pipeline. For early surgery, we identified LDH/LSS patients if they have at least 2 diagnosis codes one year prior 
to LIRE enrollment and then identified out of these patients as having surgery if they had at least 1 decompression code within 2 months ahead. 
For late surgery, we identified LDH/LSS patients if they have at least 2 diagnosis codes one year prior to LIRE enrollment and then identified out of 
these patients as having surgery if they had at least 1 decompression code within 12 months ahead of a 2 month gap. For each prediction task, 
we collected patients’ demographics, diagnosis codes, procedure codes, drug names, and index image reports. For the multimodal deep learning 
architecture, the index image reports are passed into a CNN, the diagnosis and procedure codes and drug names are passed into a GRU, and the 
demographics are featurized. The output from each network are concatenated together along with the featurized demographics and then passed 
into a fully-connected layer and then to an output layer to make predictions. CNN, Convolutional Neural Network; GRU, Gated Recurrent Unit; LSS, 
Lumbar Spinal Stenosis; LDH, Lumbar Disc Herniation; LIRE, Lumbar Imaging With Reporting Of Epidemiology
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Outcome
We further split patients with LDH/LSS into two predic-
tion tasks: early and late surgery (Fig. 1). We chose these 
outcomes based on the clinical rationale that early surgery 
for LDH/LSS is more likely driven by severe or progres-
sive neurologic deficits, as opposed to late surgery, which 
is more likely to be driven by chronic pain [9]. For early 
surgery, we limited the patients to those that had at least 
two LDH/LSS diagnosis codes within the year prior to 
LIRE enrollment and then searched two months ahead for 
the presence (positive) or absence (negative) of their first 
decompression surgery code. We had 198 (2.4%) LDH/
LSS patients in the positive group and 8189 (97.6%) LDH/
LSS patients in the negative group. For late surgery, we 
limited patients to those that had at least two LDH/LSS 
diagnosis codes within the year prior to LIRE enrollment 
then searched, after a two month gap, one year ahead for 
the presence or absence of their first decompression sur-
gery code. We had 431 (5.0%) LDH/LSS patients in the 
positive group and 8189 (95.0%) LDH/LSS patients in 
the negative group. There was no overlap of patients with 
early and late decompression surgery. The decompression 
phenotype was developed by manually reviewing lists of 
Current Procedural Terminology (CPT) and ICD-9 Proce-
dure Coding System that were potentially associated with 
surgery by at least one non-clinician reviewer (Additional 
file 1: Table S1) [34, 40, 41]. Any uncertain codes were also 
reviewed by two clinician reviewers (PS and JF) and dis-
cussed until consensus was achieved by both reviewers.

Features
We considered patient demographics, diagnoses, proce-
dures, prescription information, and radiology reports as 
predictors for the model (Fig. 1). For demographics, we con-
sidered patients’ race, age, healthcare system, and ethnicity. 
For the primary care provider for each patient, we consid-
ered their gender, type of clinician, and speciality. For diag-
nosis, we considered patients’ ICD-9 and ICD-10 codes and 
the day they received the diagnosis. For procedures, we con-
sidered patients’ CPT and Healthcare Common Procedure 
Coding System Level II codes (i.e. procedure codes) and the 
day they received their procedure code. For prescriptions, 
we considered the drug name and prescription day. For 
radiology reports, we considered the finding and impression 
sections from the index imaging report in the LIRE study 
along with the type of image (i.e. X-ray, CT, or MRI).

Preprocessing/featurization
Demographics
This information is composed of patient and provider 
demographics along with the type of index image. To 

convert the data into a format for ML, we created dummy 
variables for the categorical features and normalized the 
discrete numerical feature (i.e. age) at the patient level 
(Fig.  2A). For early surgery, there are 23 features, while 
for late surgery there are 22 features.

Diagnosis, procedures, and prescriptions
We limited temporal data (diagnosis, prescriptions, and 
procedures) to the last three months of information prior 
to the index image for both prediction tasks, so that 
across the patients we (1) ensure that the time period is 
consistent and (2) minimize the variability in the amount 
of available data. The purpose was to minimize any influ-
ence from the heterogeneity of these factors on the pre-
diction tasks. For diagnosis codes, we mapped ICD-10 
to equivalent ICD-9 codes to minimize redundancy and 
then assigned all ICD-9 codes to depth level three on the 
ICD hierarchy using crosswalk files from cms.gov. We 
chose depth level three (i.e. the first three digits of ICD 
codes) to reduce the feature space, but also maintain 
an informative level of granularity [42]. ICD codes are 
organized into a hierarchy based on shared clinical char-
acteristics. The further down in this hierarchy, the more 
specific the disease based on anatomic site, etiology, and 
manifestations.

Featurization for classical machine learning  We created 
dummy variables for the features (i.e. diagnosis codes, 
procedure codes, and drug names) at the patient-level. 
Further, we excluded extremely rare (≤ 0.1%) or common 
(≥ 99%) features to reduce the feature space. For early sur-
gery, there are 25 features for diagnosis, 103 features for 
prescriptions, and 71 features for procedures. For late sur-
gery, there are 25 features for diagnosis, 106 features for 
prescriptions, and 72 for procedures.

Featurization for deep learning  We binned the data into 
one month intervals to reduce the sparsity of the even-
tual temporal feature matrix. We then created dummy 
variables for the features (i.e. diagnosis codes, procedure 
codes, and drug names) at the bin-level for each patient. 
To maintain the same number of bins (i.e. three), we added 
empty bins to patients with less than three bins. Finally, 
we converted the dataframe into a 3D tensor where the 
depth corresponds to the number of the patients, the 
height to the number of bins, and the width to the number 
of unique features (Fig. 2B). For early surgery, there are 41 
features for diagnosis, 245 features for prescriptions, and 
160 for procedures. For late surgery, there are 43 features 
for diagnosis, 245 features for prescriptions, and 161 fea-
tures for procedures.
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Index imaging reports
We developed regular expressions to search for the head-
ers of the finding and impression sections by reviewing 
a subset of these reports. For all our reports, we applied 
our regular expressions then isolated and concatenated 
the accompanying text in these sections. The purpose 
was to limit the text to only information that pertained 
to the diagnostic image itself. We then cleaned the text 
by converting it to lowercase, removing punctuation, 
removing extra whitespace, removing stopwords, and 
then isolated the stem of each word using a PorterStem-
mer from the python package nltk [43].

Featurization for  classical machine learning  We 
extracted uni-, bi-, and trigrams from the cleaned text 
using the python package scikit-learn [44]. Further, we 
excluded extremely rare (≤ 0.1%) or common (≥ 99%) 
n-grams to reduce the feature space. For early surgery, 
there are 26,245 features, while for late surgery there are 
26,983 features.

Featurization for  deep learning  To convert the index 
reports into a format for the DL architecture, we used the 
python package genism [45]. We first collected reports 
(n = 123,461) post LIRE enrollment and preprocessed 
them the same way as the index reports. We pre-trained a 
skip-gram model with a vector length set to 300 on these 
reports. Parameter values and architecture were based on 
a recent study that evaluated different types of word2vec 
architectures and observed that this architecture and val-
ues lead to optimal performance when converting radiol-
ogy reports into embedding representations [46, 47]. We 
extracted the vocabulary and the associated embeddings 
from this pre-trained skip-gram model (Fig. 2C). To main-
tain the same length for each document (a requirement 
for efficient batch-based deep learning implementations), 
we padded reports to the maximum length across index 
reports: 559 for early surgery and 573 for late surgery. We 
chose this approach to ensure the impression section was 
included as it summarizes the key findings from the image 
[48].

Fig. 2  Visualization of data preprocessing for deep learning. A For the demographics data (i.e. static data), we created dummy variables for the 
categorical features and normalized the discrete numerical feature (i.e. age) at the patient level. B For the diagnosis, procedures, and drug names 
data for the deep learning model (i.e. temporal data), we limited the information to the last three months of information prior to the index image 
for both prediction tasks. We cleaned up the ICD codes by mapping them to level three in the hierarchy. To maintain the same number of bins 
(i.e. three), we added empty bins to patients with less than three bins. Finally, we converted the dataframe into a 3D tensor. C We pre-trained a 
skip-gram model on 123,461 LIRE reports. We applied our model to each index imaging report to extract a feature representation. ICD, International 
Classification of Diseases; LIRE, Lumbar Imaging with Reporting of Epidemiology
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Machine learning
Benchmark model
We used the LASSO [49] logistic regression built using 
the python package scikit-learn and weighted the positive 
and negative group inversely proportional to their preva-
lence to address the imbalance in our dataset. Because 
the data naturally has multicollinearity among different 
features (i.e. diagnosis codes, procedure codes, and pre-
scriptions), this can lead to over- and underestimating 
relationships between the features and outcome. As a 
result, we chose LASSO since it performs feature selec-
tion through penalization to minimize these redundant 
features. To identify the optimal regularization parameter 
(lambda), we performed fivefold cross validation within 
the training set. We chose the lambda value that led to 
the highest average F1-score across the folds to shrink the 
coefficients of the features. We chose the F1-score since 
it’s a popular performance metric for imbalanced data-
sets, which takes into consideration how well the model 
can capture the positive group (i.e. minority group), but 
also the reliability of these positive predictions. Because 
LASSO’s lambda value and its subsequent performance 
can be affected by how the data is split, we repeated the 
process of fivefold cross validation 50 times, each process 
with a different split of the data into the folds, then chose 
the prevalent lambda value across repeats [50]. Addition-
ally, to assess the value of each modality, we repeated 
this process for each data type by itself (i.e. codes, demo-
graphics, and textual).

Multimodal deep learning model
The MDL architecture was built using the python pack-
age PyTorch and is composed of three entities: 1-layer 
Convolutional Neural Network (CNN), 1-layer Gated 
Recurrent Unit (GRU), and two 1-layer Fully-Connected 
(FC) (Fig. 1) [51]. This architecture is based on the work 
by Zhang et  al., which compared two different MDL 
architectures that differed in the use of either a CNN or 
Long Short-Term Memory (LSTM) for both sequences 
of clinical notes and structured data [30]. Since in our 
approach we do not have sequences of clinical notes, this 
comparison is out of scope. Additionally, we decided to 
use a GRU instead of an LSTM since the former is a sim-
pler architecture, but can lead to similar performance 
[52, 53]. We passed the featurized index reports and the 
pre-trained skip-gram embeddings and vocabulary into a 
CNN, the featurized temporal data into a GRU, concat-
enated the output from these individual networks with 
the featurized demographics and then passed the result-
ing concatenated vector to the FC layer to make predic-
tions. We included a FC layer to convert the temporal 
input into embeddings before passing into the GRU as 
previous studies of this approach showed improvement 

in prediction performance [54–56]. We used a CNN, 
because we wanted to model the spatial relationship of 
the words in our reports in relation to our prediction 
task. The MDL model was trained using the Adam opti-
mizer with a weight decay and ReLU as the activation 
function. We used Cross Entropy Loss as the loss func-
tion with weighting of the positive and negative group 
inversely proportional to their prevalence to address the 
imbalance in our dataset [57]. We minimized subsets of 
weights from co-adapting (i.e. overfitting to the noise in 
the training data) by adding a dropout to the hidden layer 
of the FC to allow all weights to participate in the pre-
diction task [58]. To optimize the hyperparameters (i.e. 
number of filters, learning rate, dropout rate, GRU hid-
den size, and weight decay), we 1) split the training data 
into 80% for training and 20% for validation, 2) used pre-
vious works as a starting point for values [30, 59], then 3) 
grid searched to identify the combination of values that 
was associated to the lowest validation loss (Additional 
file  2: Table  S2). We trained our model for 30 epochs 
using a learning rate scheduler to decrease the learning 
rate value when the validation loss increased to avoid 
overfitting. During the training process, our model was 
allowed to fine-tune the pre-trained skip-gram embed-
ding values. Unlike the LASSO optimization, we did not 
perform fivefold cross validation as it would have been 
prohibitively computationally expensive. Additionally, we 
repeated this entire process for each individual network 
(i.e. 1-layer FC, 1-layer GRU with 1-layer FC, and 1-layer 
CNN with 1-layer FC) in the MDL architecture by itself 
and its associated data: demographics, temporal, and tex-
tual, respectively.

Evaluation
Classical
For each prediction task’s dataset, we split it into a train-
ing (80%) and test set (20%). After hyperparameter 
tuning, the LASSO models were retrained on the full 
training set using optimized lambda values, while the DL 
models were retrained on the same training and valida-
tion set using the optimized hyperparameter values. The 
reason for this is that the learning rate scheduler for the 
DL models needs to monitor the validation loss, so that it 
can properly update the training process. We then evalu-
ated the models’ performance on the test set using the 
performance metrics: recall, specificity, balanced accu-
racy, precision, F1-score, area under the curve (AUC), 
and area under the precision-recall curve (AUPRC). 
While we calculated these different performance metrics, 
we prioritized AUC in the analysis and interpretation 
since it’s (1) a global metric that assesses overall perfor-
mance across different thresholds and (2) a more popu-
lar metric in the biomedical ML field. We estimated the 
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significance of differences in performance between mod-
els by performing a t-test on 1000 bootstrapped test sam-
ples [27, 31]. We used a Bonferroni correction to correct 
for multiple hypothesis testing when comparing MDL to 
the three individual networks by multiplying each p value 
by three.

Generalizability
For generalizability, we divided the data based on the 
healthcare system. We trained the models on Kaiser Per-
manente Northern California and tested on the remain-
ing systems. We chose Kaiser Permanente Northern 
California as the training set, since it made up roughly 
80% of our entire dataset. For the test set, we excluded 
the Mayo Clinic since it contained a substantially smaller 
number of patients compared to Henry Ford and Group 
Health (Table 2). For each test system, we then evaluated 
the models’ performance using the performance metrics: 
recall, specificity, balanced accuracy, precision, F1-score, 
AUC, and AUPRC. As before, while we calculated these 
different performance metrics, we prioritized AUC when 
interpreting results. We estimated the significance of 
performance differences between models by bootstrap-
ping 1000 samples for each healthcare system in the test 
set and then calculating the performance metrics. For 
each metric and »healthcare system, we performed a 
t-test comparing the distributions between the models. 
We used a Bonferroni correction to correct for multiple 
hypothesis testing when comparing MDL to the three 
individual networks by multiplying each p value by three.

Results
Data characteristics
For early surgery, we identified 8387 patients with a prev-
alence of 2.4% for decompression surgery (Table 1). For 
late surgery, we identified 8620 patients with a prevalence 
of 5.0% for decompression surgery. For the early sur-
gery dataset, the average age was 57 years, while for late 
surgery it was 57.2  years. Both datasets were balanced 
for gender with females representing 56.2%. The major-
ity of patients from both datasets were (1) white, 63.4% 
and 63.8%, respectively; and (2) from Kaiser Permanente 
Northern California, 84.3% and 84.4%, respectively. We 
found that the majority of patients in both datasets had 
an MRI with prevalence of 69.3% and 69.4%, respectively.

Classical performance assessment
To assess the best performing model for each predic-
tion task, we trained and tested each model, then calcu-
lated performance metrics on the test set, and then used 
a t-test to assess significant performance differences. 
For early surgery, we found that MDL had a signifi-
cantly higher AUC (0.725) compared to the benchmark 

model (0.597) (Table  2). For late surgery, we found that 
MDL had a significantly higher AUC (0.655) than the 
benchmark’s AUC of 0.635 (Table 2). For both early and 
late surgery, we found that textual data (i.e. index image 
reports) was the main contributing factor to MDL’s per-
formance based on comparing performances (Fig. 3).

Generalizability performance assessment
To assess the most generalizable model for each predic-
tion task, we trained on Kaiser Permanente Northern 
California data and tested on the remaining healthcare 
systems. We excluded Mayo Clinic from the test set since 
it contained a substantially smaller set of patients com-
pared to Group Health and Henry Ford (Table  1). For 
early surgery, we found MDL had a significantly higher 
AUC compared to the benchmark model for both health-
care systems, 0.731 compared to 0.656 for Group Health 
and 0.795 compared to 0.714 for Henry Ford (Table  3). 
For late surgery, we found that the benchmark had a 

Table 1  Data characteristics

Characteristics Early surgery Late surgery

N 8387 8620

 Negative 8189 (97.6%) 8189 (95.0%)

 Positive 198 (2.4%) 431 (5.0%)

Average days between LIRE enroll-
ment and decompression surgery

34.3 168

Age 57 57.2

Gender

 Female 4713 (56.2%) 4845 (56.2%)

Race

 White 5317 (63.4%) 5502 (63.8%)

 Black 991 (11.8%) 1007 (11.7%)

 Unknown 990 (11.8%) 1000 (11.6%)

 Asian 928 (11.1%) 948 (11.0%)

 Pacific Islander 50 (0.6%) 51 (0.6%)

 Other 27 (0.3%) 26 (0.3%)

 Multiracial 17 (0.2%) 19 (0.2%)

Ethnicity

 Not available 5945 (70.9%) 6129 (71.1%)

 Not Hispanic 1233 (14.7%) 1263 (14.7%)

 Hispanic 1209 (14.4%) 1228 (14.2%)

Image type

 MRI 5810 (69.3%) 5980 (69.4%)

 X-ray 2517 (30.0%) 2576 (29.9%)

 CT 60 (0.7%) 64 (0.7%)

System

 Kaiser Permanente 7071 (84.3%) 7274 (84.4%)

 Henry Ford 654 (7.8%) 657 (7.6%)

 Group Health 486 (5.8%) 517 (6.0%)

 Mayo Clinic 176 (2.1%) 172 (2.0%)
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significantly higher AUC compared to MDL for both 
healthcare systems, 0.641 compared to 0.630 for Group 
Health and 0.707 compared to 0.700 for Henry Ford 
(Table 3). Similar to classical performance, we found that 
textual data mainly contributed to MDL’s generalizabil-
ity performance for early surgery, but for late surgery, all 
three data types seemed to contribute, with a marginal 
advantage for static data, to MDL’s generalizability per-
formance (Fig. 4).

Discussion
Early identification of LDH/LSS patients at high risk of 
eventual surgical decompression (i.e. failure of non-
surgical treatments) could inform discussions between 
healthcare providers and patients on the benefits and 
risks of pursuing surgery using information specific to 
each patient. In our study, we developed a MDL model 
that leveraged textual, temporal, and demographic infor-
mation to predict decompression surgery for LDH/LSS 

Table 2  Classical performance assessment of multimodal deep learning against benchmark

We compared the performance of the MDL architecture against the benchmark (i.e. LASSO). We calculated 1000 bootstrap samples from the test set. For each sample, 
we calculated the performance metrics: recall, specificity, balanced accuracy, precision, F1-score, AUC, and AUPRC. We then calculated the average and standard 
deviation across the samples. For each prediction task, we underline the model that had the best performance for each metric. Finally, we performed a t-test to assess 
significance between each model’s performance metrics for each prediction task; we indicate significance with an asterisk

AUC, Area Under the Curve; AUPRC, Area Under the Precision-Recall Curve; MDL, Multimodal Deep Learning

Prediction Prevalence N Model Recall Precision Balanced accuracy F1 AUC​ AUPRC

Early Surgery 0.024 824 MDL 0.300 ± 0.077* 0.086 ± 0.021* 0.610 ± 0.039* 0.133 ± 0.033* 0.725 ± 0.040* 0.061 ± 0.014*

Benchmark 0.375 ± 0.076 0.069 ± 0.014 0.624 ± 0.038 0.116 ± 0.023 0.597 ± 0.050 0.047 ± 0.011

Late Surgery 0.049 851 MDL 0.595 ± 0.051* 0.080 ± 0.007* 0.619 ± 0.026* 0.140 ± 0.012* 0.655 ± 0.026* 0.077 ± 0.009*

Benchmark 0.440 ± 0.056 0.076 ± 0.009 0.580 ± 0.028 0.129 ± 0.016 0.635 ± 0.031 0.079 ± 0.011

Fig. 3  Classical performance assessment of multimodal deep learning against individual networks. We compared the performance of the MDL 
architecture against each individual network (i.e. temporal, textual, and demographics). We calculated 1000 bootstrap samples from the test set. For 
each sample, we calculated AUC. Finally, for each prediction task, we performed a t-test to assess significance between the model that contained 
all three data types and the models using a single data type; we indicate significance with an asterisk. We corrected for multiple hypothesis testing 
using Bonferroni correction by multiplying each p value by three. AUC, Area Under the Curve; MDL, Multimodal Deep Learning
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patients and then evaluated classical and generalizabil-
ity performance against a benchmark model. For early 
surgery, MDL was the better performing model for both 
evaluations. For late surgery, MDL was the better per-
forming model for classical performance, however for 
generalizability the benchmark model was better per-
forming. While the difference in performance between 
MDL and the benchmark model for predicting late sur-
gery was statistically significant, it was not necessar-
ily meaningful due to the small magnitude. This stands 
in contrast to the larger differences in performance 
observed when MDL had the advantage in early sur-
gery. Our study suggests that in some tasks, MDL and 
the benchmark conventional ML method can have simi-
lar performance, while in others (i.e. early surgery) MDL 
has a clear advantage. As a result, thorough assessment 
is needed to quantify the value of DL, a computationally 
expensive and time-consuming method that is relatively 
difficult to interpret.

For classical performance evaluation, the MDL mod-
els achieved a mean AUC of 0.725 for early surgery and 
0.655 for late surgery. The early surgery performance 
approaches results from prior studies that used DL to 
predict aspects of lumbar surgeries [60, 61]. André et al. 
assessed the feasibility of training a DL model on syn-
thetic patients generated from EHR data to predict the 

positive and negative outcomes from decompression sur-
gery resulting in an AUC of 0.78, while Wilson et al. pre-
dicted spinal surgery by applying deep learning to MRI 
images and achieved an AUC of 0.88. The difference in 
our results can be attributed to (1) our larger dataset (2) 
our different outcomes, (3) Andre et  al. using synthetic 
patients, rather than real patients, and (4) Wilson et  al. 
used only imaging data. As a result, these studies’ results 
are limited in their generalizability, and their results are 
not strictly comparable to ours. Nonetheless, they pro-
vide some context for interpretation of the performance 
of our models. Of note, a previous study by Keeney et al. 
used logistic regression to predict which Washington 
State workers with disability claims for back injuries 
would receive lumbar spine surgery (i.e. decompression, 
fusion, and/or both) or not, with an AUC of 0.93 [62]. 
This AUC value exceeds that from our benchmark and 
DL models for both early and late surgery. Keeney et al. 
found that the driving feature for this performance was 
a binary feature indicating whether a patient’s injury was 
first seen by a surgeon or not, and speculated that this 
may indicate that “who you see is what you get” [62]. This 
suggests that information about providers (which was 
not available in our dataset) may have further improved 
our models’ performance. However, the inclusion of pro-
vider type validates what is already known [63, 64], while 

Fig. 4  Generalizability performance assessment of multimodal deep learning against individual networks. We compared the performance of the 
MDL architecture against each individual network (i.e. temporal, textual, and demographics) for each system. We calculated 1000 bootstrap samples 
from the test set. For each sample, we calculated AUC. Finally, for each prediction task and system, we performed a t-test to assess significance 
between the model that contained all three data types and the models using a single data type; we indicate significance with an asterisk. We 
corrected for multiple hypothesis testing using Bonferroni correction by multiplying each p value by three. AUC, Area Under the Curve; MDL, 
Multimodal Deep Learning
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our approach further explored possible new associations 
by being more holistic about patients’ data.

Our study fills an important gap in the literature by 
evaluating the generalizability of a predictive model for 
spine surgery, a domain in which such evaluations are 
rare [65]. As noted, MDL was the most generalizable 
model for both prediction tasks, with implications for 
the development of models for broad deployment. Our 
rigorous evaluation shows DL-based models can learn a 
generalizable representation from the training data that 
can be applied to other healthcare systems’ datasets. As 
noted in Azad et al., if we want to bring ML models into 
the clinical space, more external validation is needed to 
prove that performance is not specific to the internal 
datasets used for training and testing [65].

Textual data (i.e. the index image report) was the con-
tributing data type for the MDL model for early and 
late surgery. This same observation was seen in the 
benchmark models’ top and bottom 10 predictors as 
well (Additional file  3: Tables S3 and Additional file  4: 
Table  S4). As noted earlier, early surgery for LDH/LSS 
is more likely driven by severe or progressive neurologic 
deficits, as opposed to late surgery, which is more likely 
to be driven by chronic pain. The drivers for both sur-
geries seem to be anatomic findings that may be associ-
ated with a greater likelihood of pain or persistent pain. 
While neurologic deficits cannot be known from textual 
radiology report data, the anatomic findings were cap-
tured. It is possible that our diagnosis codes could not 
fully represent these neurologic deficits and our models 
could have performed better if clinical notes (which may 
mention neurologic deficits) were included as another 
data source for ML, however this information was not 
captured in the LIRE study. Additionally, for late surgery, 
we observed that textual alone had a significantly higher 
AUC compared to using all the data types for DL (Fig. 3). 
This observation is most likely due to the fact that for 
a given prediction task in ML, more features does not 
necessarily mean better performance as the distinction 
between positive and negative labels can get difficult 
to discern with noisy features (i.e. non-textual data) vs. 
using a smaller set of useful features (i.e. textual data) as 
seen in other ML studies [66].

Our study highlights the potential disparities in spine 
care. For early surgery, static-only DL had a higher AUC 
than temporal-only DL (Fig.  3). This same observa-
tion was seen in our benchmark models; the static-only 
model was mainly driven by sociodemographic factors 
such as age, sex, race, ethnicity, and healthcare system, 
while the temporal-only model reflected clinical charac-
teristics (Additional file  5: Table  S5). This is consistent 
with other work related to back pain and spine surgery, 

where sociodemographics provide considerable predic-
tive information, and our group has previously shown 
that age, sex, race, and ethnicity are all associated with 
health care utilization in back pain and spinal conditions 
[67, 68]. Even for our late surgery benchmark model that 
utilized all data types, “White” was a top feature (Addi-
tional file  4: Table  S4). These findings underscore con-
cerns about disparities in spine care associated with race 
and ethnicity [69]. Additionally, the temporal features 
included in these EHR-based analyses may not be able 
to capture important time-varying clinical factors such 
as increases in pain intensity and/or evolving neurologic 
deficits, which are expected to confer an increased risk of 
surgical decompression.

There are several limitations to this study. First, 
expanding our hyperparameter value search space could 
have improved our DL-based models’ performances, 
however we used prior studies to focus our grid search 
on the most important hyperparameters and their ranges 
of values on account of constraints on computational 
resources. Second, we only used DL and logistic regres-
sion for our ML models and did not consider other meth-
ods. Including more conventional ML methods might 
have provided better performance than logistic regres-
sion and even DL. However, our objective was to specifi-
cally use DL to predict surgery and benchmark this costly 
method against the most popular and accessible method 
for researchers: logistic regression. Third, a bias in medi-
cine is that sicker patients generally have more data 
points than healthier patients. We sought to address this 
by limiting the patients’ data to the last three months and 
then binned into one month intervals, so that across the 
patients we 1) ensure that the time period is consistent 
and 2) minimize the variability in the amount of available 
data.

Conclusions
In summary, we built a MDL architecture to predict 
early and late decompression surgery for LDH/LSS 
patients. For each prediction task, we compared this 
architecture’s performance within and across different 
healthcare systems against LASSO logistic regression, a 
conventional ML method. Our rigorous testing shows 
that depending on the prediction task, DL can signifi-
cantly outperform a conventional ML method or both 
have comparable performances. This shows that thor-
ough assessment is needed to validate the need for DL 
over using a conventional ML method. Finally, based 
on our MDL model’s high AUC and low AUPRC, it can 
be used as a decision support tool to assist clinicians by 
mediating early discussions with their patients about 
possible treatments.
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