
Ruz et al. 
BMC Medical Informatics and Decision Making          (2022) 22:316  
https://doi.org/10.1186/s12911-022-02062-7

RESEARCH

Facial biotype classification for orthodontic 
treatment planning using an alternative 
learning algorithm for tree augmented Naive 
Bayes
Gonzalo A. Ruz1,2,3*   , Pamela Araya‑Díaz4 and Pablo A. Henríquez5 

Abstract 

Background:  When designing a treatment in orthodontics, especially for children and teenagers, it is crucial to be 
aware of the changes that occur throughout facial growth because the rate and direction of growth can greatly affect 
the necessity of using different treatment mechanics. This paper presents a Bayesian network approach for facial bio‑
type classification to classify patients’ biotypes into Dolichofacial (long and narrow face), Brachyfacial (short and wide 
face), and an intermediate kind called Mesofacial, we develop a novel learning technique for tree augmented Naive 
Bayes (TAN) for this purpose.

Results:  The proposed method, on average, outperformed all the other models based on accuracy, precision, recall, 
F1-score , and kappa, for the particular dataset analyzed. Moreover, the proposed method presented the lowest disper‑
sion, making this model more stable and robust against different runs.

Conclusions:  The proposed method obtained high accuracy values compared to other competitive classifiers. When 
analyzing a resulting Bayesian network, many of the interactions shown in the network had an orthodontic interpreta‑
tion. For orthodontists, the Bayesian network classifier can be a helpful decision-making tool.

Keywords:  Bayesian networks, Tree augmented Naive Bayes, Evolution strategy, Facial biotypes, Orthodontic 
treatment planning

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
In recent years, there has been a rise in the use of 
machine learning-based tools in medical treatments 
to aid in decision-making for treatment planning. In 
particular, the output of these models can be used as a 
support tool for health personnel who ultimately make 
decisions. Given the implications for patients on these 
decisions, the machine learning technique used should be 
interpretable. An interesting machine learning technique 

for this purpose is Bayesian networks (BN) [1], which 
combines graph theory with probability theory.

In the field of dentistry BN have been applied in diverse 
areas. For example, in [2] prior to and during the appli-
cation of a certain orthodontic procedure, BN were 
employed to describe certain tooth color parameters. To 
better understand the underlying data structure of the 
patterns of dental caries in the population, the prevalence 
of dental caries in the primary dentition of 352 Myanmar 
schoolchildren was examined at the tooth level using 
BN in [3]. The effectiveness of BN in the assessment of 
dental age-related evidence obtained using a geometri-
cal approximation approach of the pulp chamber volume 
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was examined in [4]. BN are used in [5] for age estima-
tion and classification based on dental evidence, in par-
ticular, to the development of third molars. A BN clinical 
decision support system was designed in [6] to assist 
general practitioners in determining whether patients 
with permanent dentition need orthodontic treatment. A 
Dental Caries Clinical Decision Support System is evalu-
ated in [7] which uses a BN to provide suggestions and 
represent clinical patterns. The outcomes demonstrated 
the Bayesian network’s accuracy in various cases. In [8], a 
minimally invasive method for elevating the lateral max-
illary sinus was described, and BN was used to determine 
the link between the parameters involved. The use of BN 
to MR images to identify temporomandibular disorders 
was looked at in [9]. The goal was to ascertain how tem-
poromandibular disorders were diagnosed, concentrating 
on how each discovery affected the other. The findings 
demonstrated that the BN path condition method was 
more than 99% accurate when employing resubstitution 
validation and 10-fold cross-validation. The key benefit of 
utilizing BN, however, is its ability to express the causal 
links between various data and assign conditional proba-
bilities, which might subsequently be utilized to interpret 
the course of temporomandibular disorders. In [10], BN 
are used to identify and depict the relationships between 
several Class III malocclusion maxillofacial features dur-
ing growth and treatment. The authors demonstrate 
that as compared to individuals undergoing orthodontic 
treatment with rapid maxillary expansion and facemask 
therapy, untreated participants exhibit different Class 
III craniofacial growth patterns. Also, it is important to 
point out that BN have been used for meta-analysis in 
several dental research topics [11–16].

BN are probabilistic graphical models representing 
discrete random variables and conditional dependen-
cies via a directed acyclic graph (DAG). In classification 
(supervised learning) problems, when using a proba-
bilistic approach, the difficulty is to compute effectively 
the posterior probability of the class variable Yk (with 
k = 1, . . . ,K  ) given an n-dimensional input data point 
x = (x1, . . . , xn) . This can be carried out using the Bayes 
rule:

The numerator, which comprises the a priori probability 
of the class variable and the likelihood (the joint prob-
ability of the input features conditioned to the class 
variable), is what is important in this case. The calcula-
tion of the class variable’s a priori probability is simple. It 
can be determined from the training set’s class variable 
values’ relative frequency. However, there are numerous 
methods for calculating likelihood. The usage of Bayesian 

(1)p(Yk |x) =
p(Yk)p(x|Yk)

p(x)
.

networks, thus, Bayesian network classifiers [17], is one 
of them.

There are various Bayesian network classifiers [18–23]. 
However, the two most often used are the tree augmented 
Naive Bayes (TAN) classifier [17] and the Naive Bayes-
ian network classifier, also known as the Naive Bayes 
[24]. The Naive Bayes approach computes the likelihood 
in (1) by assuming conditional independence among the 
attributes given the class variable. There are no edges 
between the attributes as a result. As opposed to TAN, 
which begins by taking into account a fully connected 
network with weighted edges, it uses the conditional 
mutual information between pairs of attributes to gener-
ate these weights. Then, the application of Kruskal’s algo-
rithm (the maximum weighted spanning tree (MWST)) 
to produce a tree structure is carried out, leaving just 
n− 1 edges. Each attribute in this version of the Bayes-
ian network classifier will have an incoming edge from 
another attribute, with the exception of the selected root 
attribute node.

The TAN model corrects the naive version’s strong 
assumption of conditional independence. Theoretically, 
it ought to deliver better outcomes (accuracy) than the 
Naive Bayes. However, TAN has significant drawbacks, 
one of which is its difficulty to estimate the conditional 
mutual information accurately. Two direct difficulties 
when working with conditional mutual information are: 
(1) the computational complexity for n nodes and N 
training samples is O(n2N ) [25], therefore, for datasets 
with many attributes the computation becomes very 
slow, needing more computational power, (2) the con-
ditional mutual information estimate produced when 
there are not enough training instances in each class to 
accurately estimate the joint probability distribution and 
the conditional distributions. This is significant because 
conditional mutual information is used as weights in the 
fully connected graph throughout TAN’s tree construc-
tion technique. The obvious question is: Can the network 
weights be learned from the data to achieve satisfac-
tory classification results without estimating conditional 
mutual information?

When preparing a treatment in orthodontics, especially 
for children and teenagers, it is crucial to be aware of the 
changes that take place throughout facial growth because 
the rate and direction of growth can greatly affect the 
necessity of using different treatment mechanics. The 
Ricketts’ VERT index is one of the most widely used 
methods for identifying facial biotypes [26]. The biotypes 
can be divided into Dolichofacial (long and narrow face), 
Brachyfacial (short and wide face), and an intermediate 
form known as Mesofacial based on the VERT index.

In this paper, we propose a different approach for 
learning TAN classifiers without estimating conditional 
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Table 1  Performance measures for each model

Algorithm Accuracy Precision Recall F1-score Kappa
Avg. ± SD. Avg. ± SD. Avg. ± SD. Avg. ± SD. Avg. ± SD.

NB 70.27 ± 5.21 70.30 ± 5.92 74.09 ± 6.66 70.72 ± 5.55 0.54 ± 0.11

TAN 71.01 ± 4.19 70.29 ± 5.84 74.21 ± 4.52 70.81 ± 5.39 0.56 ± 0.11

SVM 70.63 ± 4.43 70.31 ± 5.22 73.68 ± 5.26 70.55 ± 5.31 0.55 ± 0.08

DT 69.27 ± 7.19 69.93 ± 5.02 73.16 ± 4.14 70.72 ± 4.82 0.52 ± 0.10

RF 69.07 ± 4.93 67.70 ± 4.78 71.08 ± 7.41 67.30 ± 5.78 0.51 ± 0.07

RVFL 70.11 ± 5.34 70.44 ± 4.31 74.16 ± 4.32 71.19 ± 4.35 0.54 ± 0.11

ATAN 71.10 ± 5.77 70.22 ± 3.56 73.89 ± 4.29 71.36 ± 4.36 0.56 ± 0.09

HC-TAN 70.41 ± 7.44 69.67 ± 6.39 73.95 ± 6.04 70.22 ± 6.26 0.58 ± 0.11

HC-SP-TAN 70.81 ± 6.48 71.63 ± 4.81 74.98 ± 5.98 71.98 ± 5.36 0.56 ± 0.11

BSEJ 71.09 ± 4.24 72.09 ± 5.95 74.28 ± 5.22 71.09 ± 5.11 0.55 ± 0.12

FSSJ 71.69 ± 3.92 72.03 ± 3.34 73.88 ± 5.02 72.27 ± 4.56 0.58 ± 0.09

(µ, �)-TAN 74.09 ± 3.62 73.89 ± 2.54 76.88 ± 2.34 75.14 ± 3.24 0.59 ± 0.08
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Fig. 1  Shows the best (µ, �)-TAN model obtained throughout the 20 runs. The (µ, �)-TAN classifier for the facial biotype dataset
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mutual information. Instead, we use an evolution strategy 
to learn the weights of the networks from the data. Using 
attributes that are unaffected by the sagittal position of 
the jaws, we apply the proposed method to automati-
cally classify a patient’s biotype, eradicating the inac-
curacies shown with the VERT index. In particular, one 
of the measurements used to calculate the VERT index 
is the facial depth, which indicates the sagittal relation-
ship between the jaws. When this sagittal relationship 
is altered, the VERT is also altered. Therefore, a higher 
VERT is obtained in individuals with a prominent jaw, 
diagnosing the patient as more Brachyfacial than it is. 
Conversely, a patient with a mandible positioned further 
back will appear more Dolichofacial than it is.

Results
The results are shown in Table 1. Overall we notice that 
(µ, �)-TAN, on average, outperforms all the other models 
for the particular dataset analyzed. Moreover, (µ, �)-TAN 

presents the lowest dispersion, making this model more 
stable and robust against different runs.

Table 2 shows that the results in terms of Accuracy of 
(µ, �)-TAN are statistically significantly different to the 
results obtained by the other methods. Also, it is impor-
tant to highlight that the results obtained are better than 
previously published results for the same dataset [27].

The best resulting network using (µ, �)-TAN is shown 
in Fig. 1. For better visualization, we have omitted in this 
figure, the node with the class variable and the edges 
from this node to all the other nodes.

We used the importance function from the randomFor-
est package in R [28] to create a smaller network. Based 
on the Gini importance, a metric used to assess the node 
impurity during the tree inference process, this function 
calculates the importance of each attribute (in decision 
trees or random forests). The outcome is displayed in 
Fig. 2.

Using the top four attributes from Fig. 2, the outcomes 
of our repeated experiments are displayed in Tables  3 
and 4. We notice similar results as before, with slight 
improvements in the evaluation measures.

The best resulting network in this case using (µ, �)-
TAN is shown in Fig. 3.

To evaluate the robustness of the proposed method, we 
tested (µ, �)-TAN on high-dimensional datasets chosen 
from the UCI database [29]. For this, three datasets were 
considered, as described in Table  5. Table  6 shows the 
performance of (µ, �)-TAN and RF. It can be noticed that, 
in the case of the three datasets, our method achieves 
better performances on average.

Discussion
From Fig.  1 we notice that Mc7 (Lower anterior facial 
height) is the parent node of 3 variables, St1 (SNA angle), 
Ja4 (Lower Gonial angle), and Ri21 (Symphysis length). 
Mc7 is measured from a point close (anterior nasal spine) 
to one of the points that constitute the SNA angle (point 
A) and both points are part of the same structure (maxil-
lary), so the modification of the first one could be accom-
panied of a modification of St1 as well. On the other hand, 
the relationship between Mc7, Ja4, and Ri21 is explained 
given that the three correspond to vertical measurements 
and the modification of one should be accompanied by 
the modification of the other two variables.

Table 2  Statistical significance test for different simulations in terms of Accuracy

The � symbol denotes that these two methods are statistically significantly different with p < 0.05

Algorithm NB TAN SVM DT RF RVFL ATAN HC-TAN HC-SP-TAN BSEJ FSSJ

(µ, �)-TAN � � � � � � � � � � �

Fig. 2  Attribute importance. Attributes ranking based on the Gini 
importance measure.
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Ja4 is the parent node of Ja9 (Cranial base and Man-
dibular length ratio), a relationship for which we do not 
have a satisfactory biological explanation since Ja4 is 
a vertical measurement and Ja9 is a horizontal one. In 
turn, Ja9 is the parent node of Ja8 (Mandibular corpus 
length), which is explained given that Ja8 is one of the 
measurements that make up Ja9.

Ri21 is the parent node of Ri19 (Condylar height) and 
Ja5 (Anterior cranial base length), a relationship that 
does not have an acceptable biological explanation, 
except that, as they correspond to linear measurements, 
they are influenced by the volumetric proportionality 
that exists between the structures given the greater or 
lesser general size of the skull.

St1 is the parent node of Ja3 (Upper Gonial angle), a 
relationship that could be explained since both repre-
sent sagittal growth, St1 indicates sagittal position of 
the maxilla with respect to the skull and Ja3 horizontal 
projection of the mandible; Normally, both structures 
tend to grow proportionally in the sagittal direction. 
Ja3 is the parent node of Ri18 (Posterior height), which 
is explained by the fact that both measurements share 
a reference point (gonion). Ri18 is the parent node of 
Ri10 (Maxillary depth angle) and Ja6 (Posterior cra-
nial base length), there is no biological explanation 
for the relationship between Ri18 and Ri10 since one 
corresponds to a sagittal measurement and the other 
is vertical and they are measured in different areas of 
the face. In the case of Ri18 and Ja6 they use different 
landmarks but both measure posterior height of the 
face, so a relationship between both variables is clearly 
explained.

Ri10 is the parent node of Ri13 (Anterior Cranial 
length), a relationship that can be explained since both 
measurements share a reference point (Nasion).

Table 3  Performance measures for each model (with four attributes)

Algorithm Accuracy Precision Recall F1-score Kappa
Avg. ± SD. Avg. ± SD. Avg. ± SD. Avg. ± SD. Avg. ± SD.

NB 72.27 ± 5.03 72.36 ± 5.63 76.23 ± 5.61 72.84 ± 5.81 0.57 ± 0.09

TAN 72.18 ± 3.53 72.41 ± 6.66 76.43 ± 6.16 73.33 ± 6.95 0.56 ± 0.05

SVM 66.90 ± 4.59 67.86 ± 4.91 71.89 ± 6.22 69.23 ± 6.73 0.49 ± 0.07

DT 69.63 ± 5.21 69.63 ± 3.27 72.79 ± 2.74 70.04 ± 3.18 0.52 ± 0.08

RF 70.27 ± 4.06 71.28 ± 4.45 73.82 ± 4.24 71.11 ± 4.46 0.54 ± 0.06

RVFL 71.53 ± 5.67 72.51 ± 4.56 76.56 ± 6.21 73.11 ± 5.55 0.56 ± 0.09

ATAN 72.21 ± 4.78 72.25 ± 4.96 76.43 ± 6.78 73.01 ± 5.99 0.58 ± 0.09

HC-TAN 72.12 ± 5.01 72.07 ± 5.73 75.33 ± 3.71 72.73 ± 5.11 0.58 ± 0.10

HC-SP-TAN 71.09 ± 7.03 71.82 ± 5.34 74.27 ± 5.01 72.11 ± 5.28 0.55 ± 0.09

BSEJ 71.63 ± 6.03 71.76 ± 4.65 74.80 ± 5.12 72.26 ± 4.51 0.56 ± 0.09

FSSJ 72.27 ± 4.43 72.35 ± 4.75 76.20 ± 6.86 72.81 ± 6.26 0.58 ± 0.09

(µ, �)-TAN 75.05 ± 3.86 74.85 ± 4.58 77.85 ± 4.46 75.51 ± 6.36 0.60 ± 0.07

Table 4  Statistical significance test for different simulations in terms of Accuracy

The � symbol denotes that these two methods are statistically significantly different with p < 0.05 (with four attributes)

Algorithm NB TAN SVM DT RF RVFL ATAN HC-TAN HC-SP-TAN BSEJ FSSJ

(µ, �)-TAN � � � � � � � � � � �

Mc3

Ja4

Mc7 Ja12

Fig. 3  Shows the best (µ, �)-TAN model obtained throughout the 20 
runs. The (µ, �)-TAN classifier for the facial biotype dataset (with the 
top 4 attributes)
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Ri13 is the parent node of Ri11 (Palatal plane angle) 
and Ja12 (Jarabak’s ratio), Ri13 and Ja12 share a reference 
point (Nasion) and all three correspond to vertical meas-
urements, so the relationship between them is justifiable.

Ri11 is the parent node of Mc3 (Linear distance from 
point A to nasion perpendicular), which is explained 
because they share a reference point in the maxilla 
(Nasion) and the modification of this point would pro-
duce a change in both variables.

Ja12 (Jarabak’s ratio) is the parent node of 3 variables 
Ri15 (Mandibular corpus axis), Mc6 (Maxillary length), 
and Ja1 (Saddle angle). Regarding this relationship, Ja12 
and Ri15 correspond to measures indicative of the mag-
nitude of vertical growth, Ja1 is part of Ja12, and with 
Mc6 instead, it cannot be explained biologically in a sat-
isfactory way.

Ja1 (Saddle angle) is the parent node of Ja2 (Articular 
angle), which is explained given that both are contiguous 
angles that tend to compensate each other, that is, the 
tendency is that if one angle increases, the other tends to 
decrease in post of maintaining the proportionality of the 
face.

Ri15 (Mandibular corpus axis) is the parent node of 
Ja7 (Ramus height) and Ri17 (Mandibular ramus posi-
tion), a relationship that is explained by the fact that Ri15 
and Ri17 share a reference point (Xi), and that the three 
measurements correspond to vertical variables.

Ri17 is the parent node of Ri12 (Cranial deflection), a 
relationship that is explained by the fact that both meas-
urements contain the Porion-Orbitale line.

Mc6 (Maxillary length) is the parent node of Ja10 (Pos-
terior facial height), Ar5 (Nasolabial angle), and Ja11 
(Anterior facial height), a relationship that does not 
have an acceptable biological explanation, except for 
the volumetric proportionality that exists between the 
structures that contain the landmarks corresponding to 
MC6, Ja10, and Ja11, given the greater or lesser general 
size of the skull and that Ar5 can be influenced by Mc6 
since the upper lip rests on the maxilla, although this 
relationship is not direct since it depends mainly on the 

Table 5  Information of the high-dimensional datasets

Datasets Training Testing Attributes Classes

Parkinson’s disease 529 227 754 2

Diabetes 130-US hospitals 71236 30530 50 2

Digital colposcopies 67 30 69 2

Table 6  Performance measures for proposed method using high-dimensional data

 Algorithm Datasets Accuracy Precision Recall F1-score Kappa
Avg. ± SD. Avg. ± SD. Avg. ± SD. Avg. ± SD. Avg. ± SD.

RF Parkinson’s disease 83.87 ± 1.39 74.58 ± 3.05 90.49 ± 3.97 81.72 ± 2.66 0.67 ± 0.05

(µ, �)-TAN Parkinson’s disease 85.02 ± 2.81 77.56 ± 4.12 90.26 ± 2.63 83.37 ± 2.79 0.69 ± 0.05

RF Diabetes 87.03 ± 1.08 79.03 ± 4.11 91.90 ± 2.90 85.34 ± 3.09 0.73 ± 0.05

(µ, �)-TAN Diabetes 88.28 ± 3.42 81.36 ± 6.34 92.92 ± 5.24 86.54 ± 3.81 0.76 ± 0.06

RF Digital colposcopies 84.33 ± 5.88 75.77 ± 2.56 90.23 ± 3.12 82.56 ± 2.99 0.68 ± 0.05

(µ, �)-TAN Digital colposcopies 85.91 ± 2.99 78.12 ± 3.45 90.88 ± 2.55 83.96 ± 2.81 0.69 ± 0.06

Fig. 4  Alternative learning algorithm for tree augmented Naive 
Bayes. Flowchart of the evolution strategy
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sagittal position of the maxilla. Ar5 is the parent node of 
Ri9 (Maxillary height angle), which could be explained 
by the fact that, as in the previous case, the position of 
the upper lip can be modified given the position of the 
maxilla, although this relationship is not direct since 
Ri9 corresponds to a indicative measure of the verti-
cal and not sagittal position of the maxilla. Ri9 is in turn 
the parent node of Ja13 (posterior cranial base ratio to 
ramus height), a relationship for which we do not have 
a satisfactory biological explanation since, although both 
are vertical measurements, they correspond to different 
areas of the face.

Ja10 (Posterior facial height) is the parent node of Ri16 
(Articular cavity position: Porion to Ptv), however, there 
is no direct biological explanation for this relationship; 
Ri16 is in turn the parent node of Ri20 (Condylar neck 
length), although the condyle is in relation to the joint 
cavity, we did not find an explanation for the relationship 
between the sagittal position of the joint cavity (Ri16) 
and the length of the neck of the condyle; Ri20 is the par-
ent node of Mc5 (mandibular length), a relationship that 
could be explained by the fact that Mc5 has a reference 
point in the condyle and this is related to the joint cavity 
and both are sagittal measurements.

When analyzing the importance of each variable shown 
in Fig. 2, we notice that the four variables that turned out 
to have the greatest discriminatory power are: Ja4 (Lower 
Gonial angle), Ja12 (Jarabak’s ratio), Mc7 (Lower ante-
rior facial height), Mc3 (Linear distance from point A to 
nasion perpendicular). In particular, the first 3 variables 
are the measurements that account for the direction of 
vertical growth of the mandible, which is the main deter-
minant in the pattern of facial growth and it is therefore 
logical that they appear as the most important. On the 
other hand, the Mc3 variable is indicative of the sagittal 
position of the maxilla with respect to the skull, which 
is not considered a determinant of the pattern of facial 
growth, however it could be related, since the rotation 
of the mandible generally in normally, it is accompanied 
by a rotation of the maxilla in the same direction and 
magnitude.

In the case of Fig.  3, it is observed that Mc3 (Lin-
ear distance from point A to nasion perpendicular) is 
the parent node of Ja4 (Lower Gonial angle), however, 
there is no direct biological explanation to explain this 
relationship since Mc3 is a sagittal measurement of the 
maxilla and Ja4 a vertical measurement of the mandi-
ble. In turn, Ja4 is the parent node of the variables Ja12 
(Jarabak’s ratio) and Mc7 (Lower anterior facial height), 
which can be explained because the three variables cor-
respond to measures indicative of vertical growth, so that 
when increasing or decreasing a of them, the others also 
increase or decrease respectively proportionally.

Conclusion
In this paper, we have presented an alternative learn-
ing method based on an evolution strategy to learn the 
weights for constructing the TAN classifier. We applied 
this method to the facial biotype classification problem, 
obtaining high accuracy values compared to other com-
petitive classifiers. When analyzing a resulting BN from 
(µ, �)-TAN, many of the interactions shown in the net-
work had an orthodontic interpretation, nevertheless, 
there were a few which did not have a satisfactory bio-
logical explanation. Future research will consider more 
benchmark datasets as well as other medical applications.

Methods
Dataset description
We use the [27] dataset, which comprises 182 lateral tel-
eradiographies taken from patients in Chile. 31 continu-
ous attributes that describe the craniofacial morphology 
were computed for each one using cephalometric analy-
sis (see Table  7). Orthodontists have personally classi-
fied and validated each lateral teleradiograph into one 
of the three categories (Brachyfacial, Dolichofacial, and 
Mesofacial).

Alternative learning algorithm for tree augmented Naive 
Bayes
We propose an evolution strategy (ES) for learning TAN 
classifiers. The standard versions of the ES are denoted by 
[30]

where � represents the number of offspring and µ the 
number of parents. From the multi-set of either the off-
spring, known as comma-selection ( µ < � must hold), or 
both the parents and offspring, known as plus-selection, 
the parents are deterministically chosen (i.e., determinis-
tic survivor selection). Selection is based on the ranking 
of the individuals’ fitness, taking the µ best individuals 
(also referred to as truncation selection).

In this study, we generate weights for the TAN model 
that produce good facial biotype classification results 
without estimating the conditional mutual informa-
tion by using the deterministic survivor selection (µ, �) 
technique.

In order to do this, a candidate solution (an indi-
vidual) is encoded as an m-dimensional vector that 
holds the m weight values of a network. We must define 
m = n(n− 1)/2 weights for a network of n nodes. Conse-
quently, we must locate 465 weights for n = 31 . (param-
eters). We proceed as follows in order to determine the 
right values for these weights.

(2)(µ, �)− ES and (µ+ �)− ES,
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By evenly distributing all the weight values in each 
individual’s unit hypercube at random, we create an 
initial population of µ individuals. The procedure is 
then repeated a specified number of times. Each itera-
tion starts with a population-wide evaluation of each 
proposed solution. A flowchart that briefly explains 
how the ES algorithm functions is shown in Fig. 4. The 
reader is directed to [31] for further information on 
how ES functions.

The accuracy, or the percentage of correctly classified 
instances in the training set, is then used to calculate 
the fitness function.

The highest scoring µ parents are then chosen. We 
perform the subsequent actions:

•	 The parent population consists of µ = 10 individu-
als.

•	 The number of offspring produced per each itera-
tion is indicated by � = 20.

•	 Individuals die out after one iteration step (we use 
1000 iterations) and only the offspring (the young-
est individuals) survive to the following generation. 
Then, µ parents are chosen from � offspring via 
environmental selection.

These hyperparameters were selected through simulations 
of trial and error.

Model performance assessment
We evaluated four metrics: precision (Prc), recall (Rec), 
accuracy (Acc), and F1-score. This is how these measure-
ments are calculated:

where TP, TN, FP, and FN stand for true positive, true 
negative, false positive, and false negative, respectively. 
Since we are dealing with a multiclass problem, we com-
pute Prc, Rec, and F1-score for each individual class, and 
then report the average.

Additionally, we calculate the Kappa statistic, which 
contrasts the trained model’s Acc (in the test set) with 
a random model’s accuracy. We utilize the classifica-
tion suggested in [32] to interpret the Kappa value: val-
ues ≤ 0 indicate poor agreement, 0− 0.2 indicate slight, 
0.21− 0.4 indicate fair, 0.41− 0.6 indicate moderate, 
0.61− 0.8 indicate substantial, and 0.81− 1 indicate 
practically perfect agreement.

(3)Prc =
TP

TP + FP
× 100

(4)Rec =
TP

TP + FN
× 100

(5)

Acc =
number of correctly classified instances

total number of instances
× 100

(6)F1-score =2×
Prc × Rec

Prc + Rec

Table 7  A description of the attributes [27]

Attribute Description

Mc3 Linear distance from point A to nasion perpendicular

Mc5 Mandibular length (Condylion to Gnathion)

Mc6 Maxillary length (Condylion to Point A)

Mc7 Lower anterior facial height (Anterior nasal spine to menton)

St1 SNA angle (Sella-Nasion-A)

Ja1 Saddle angle (Nasion-Sella-Articulare)

Ja2 Articular angle (Sella-Articulare-Gonion)

Ja3 Upper Gonial angle (Articulare-Gonion-Nasion)

Ja4 Lower Gonial angle (Nasion-Gonion-Menton)

Ja5 Anterior cranial base length (Sella to Nasion)

Ja6 Posterior cranial base length (Sella to Articulare)

Ja7 Ramus height (Articulate to Gonion)

Ja8 Mandibular corpus length (Gonion to Gnathion)

Ja9 Cranial base and Mandibular length ratio (Sella-Nasion/
Gonion-Gnathion)

Ja10 Posterior facial height (Sella to Gonion)

Ja11 Anterior facial height (Nasion to Menton)

Ja12 Jarabak’s ratio (Posterior facial height/Anterior facial height)

Ja13 Posterior cranial base and ramus height ratio (Sella-Articu‑
lare/Articulare-Gonion)

Ri9 Maxillary height angle (Nasion-Center of Face-A)

Ri10 Maxillary depth angle (Porion-Orbitale and Nasion-A)

Ri11 Palatal plane angle (Porion-Orbitale/anterior nasal spine-
posterior nasal spine)

Ri12 Cranial deflection (Basion-Nasion/Porion-Orbitale)

Ri13 Anterior Cranial length (Center of Cranium to Nasion)

Ri15 Mandibular corpus axis (point Xi to point protuberance 
menti or Pm)

Ri16 Articular cavity position: Porion to Ptv (intersection of the 
distal outline of pterigomaxillary fissure perpendicular to the 
porion-orbitale plane)

Ri17 Mandibular ramus position (Porion-Orbitale/Center of Face-
point Xi)

Ri18 Posterior height (Gonion to Center of Face)

Ri19 Condylar height

Ri20 Condylar neck length

Ri21 Symphysis length

Ar5 Nasolabial angle (Columella-Subnasale-upper lip)
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Experimental setup
The continuous features were discretized using Fayyad 
and Irani’s Minimum Description Length method [33], 
which has been shown to have a positive effect on the 
classifiers’ performance [34]. We compared the perfor-
mance of the Naive Bayesian network classifier (NB), 
TAN, support vector machine (SVM) [35], decision tree 
(DT) [36], Random Forest (RF) [37], random vector func-
tional link neural network [38] (RVFL), Averaged TAN 
(ATAN) [39] and the proposed method (µ, �)-TAN. Four 
greedy hill-climbing algorithms were also used as a basis 
for learning Bayesian network classifiers:

•	 Hill-climbing tree augmented Naive Bayes (HC-
TAN) [40].

•	 Hill-climbing super-parent tree augmented Naive 
Bayes (HC-SP-TAN) [40].

•	 Backward sequential elimination and joining (BSEJ) 
[18].

•	 Forward sequential selection and joining (FSSJ) [18].

The HC-TAN and HC-SP-TAN algorithms begin with a 
Naive Bayes structure and continue to add edges until 
the network score does not increase. Beginning with 
a Naive Bayes structure, BSEJ adds augmenting edges 
before removing features from the model until there is no 
longer any increase in the network score. On the other 
hand, FSSJ begins with a structure that only has the class 
node and builds upon it by adding features and enhanc-
ing edges.

Averages and standard deviations were recorded after 
20 times of doing each experiment run. We divided the 
dataset into 70% for training and 30% for testing for 
each run, with the division being done at random.

We partitioned the original training set into 70% for 
training and the remaining 30% to evaluate different 
hyperparameter configurations through grid search for 
all the algorithms that needed hyperparameter tuning.

The open-source R software environment for statisti-
cal computation was used for all of the simulations. We 
used the test set’s kappa statistic and accuracy metric to 
assess classification performance. Additionally a statis-
tical significance test, the paired sample t-test, for dif-
ferent simulations in terms of accuracy was conducted.
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