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Abstract 

Background: Upon the discovery of ovarian cysts, obstetricians, gynecologists, and ultrasound examiners must 
address the common clinical challenge of distinguishing between benign and malignant ovarian tumors. Numerous 
types of ovarian tumors exist, many of which exhibit similar characteristics that increase the ambiguity in clinical diag‑
nosis. Using deep learning technology, we aimed to develop a method that rapidly and accurately assists the different 
diagnosis of ovarian tumors in ultrasound images.

Methods: Based on deep learning method, we used ten well‑known convolutional neural network models (e.g., 
Alexnet, GoogleNet, and ResNet) for training of transfer learning. To ensure method stability and robustness, we 
repeated the random sampling of the training and validation data ten times. The mean of the ten test results was set 
as the final assessment data. After the training process was completed, the three models with the highest ratio of cal‑
culation accuracy to time required for classification were used for ensemble learning pertaining. Finally, the interpreta‑
tion results of the ensemble classifier were used as the final results. We also applied ensemble gradient‑weighted class 
activation mapping (Grad‑CAM) technology to visualize the decision‑making results of the models.

Results: The highest mean accuracy, mean sensitivity, and mean specificity of ten single CNN models were 
90.51 ± 4.36%, 89.77 ± 4.16%, and 92.00 ± 5.95%, respectively. The mean accuracy, mean sensitivity, and mean 
specificity of the ensemble classifier method were 92.15 ± 2.84%, 91.37 ± 3.60%, and 92.92 ± 4.00%, respectively. The 
performance of the ensemble classifier is better than that of a single classifier in three evaluation metrics. Moreover, 
the standard deviation is also better which means the ensemble classifier is more stable and robust.

Conclusion: From the comprehensive perspective of data quantity, data diversity, robustness of validation strategy, 
and overall accuracy, the proposed method outperformed the methods used in previous studies. In future studies, we 
will continue to increase the number of authenticated images and apply our proposed method in clinical settings to 
increase its robustness and reliability.
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Background
Ovarian and adnexal tumors are common gynecologi-
cal problems that can affect women of all ages. Premen-
opausal women develop follicular and corpus luteum 
cysts that are less than three cm in size every month. 
Postmenopausal women still have a 13 to 16% chance of 
developing cysts [1]. Therefore, in clinical practice, pelvic 
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ultrasound exams for women are likely to reveal ovarian 
and adnexal tumors, which require assessment, tracking, 
and treatment [2]. Most ovarian cysts are physiological 
and particularly common among premenopausal women, 
and they tend to disappear after a period of time. Only a 
small percentage of ovarian cysts are non-physiological, 
and such cysts will persist. Gynecologist can perform an 
abdominal or vaginal ultrasound to distinguish between 
benign and malignant cysts. Benign ovarian tumor often 
can be followed without interval change. Surgery only 
performed if benign tumors continue to grow or per-
sist, torsion and rupture may occur. However, malignant 
tumors require immediate cytoreductive surgery fol-
lowed by chemotherapy to reduce subsequent mortal-
ity. Ovarian cancer is the deadliest cancer of the female 
reproductive system. In 2012, approximately 240,000 
women worldwide were diagnosed with ovarian cancer, 
and 150,000 died from ovarian cancer [3]. According 
to United States Cancer Statistics, 53% of patients with 
ovarian cancer die within 5  years of diagnosis, and the 
mortality rate of such patients can increase because of 
diagnostic delay and late-stage diagnosis [4].

Upon the discovery of ovarian cysts, obstetricians, 
gynecologists, and ultrasound examiners must address 
the common clinical challenge of distinguishing between 
benign and malignant ovarian tumors. Numerous types 
of ovarian tumors exist, many of which exhibit similar 
characteristics that increase the ambiguity in clinical 
diagnosis. An ambiguous diagnosis can increase the dif-
ficulty of making subsequent treatment decisions and 
cause more anxiety for a patient. For example, debulk-
ing surgery is a common surgical method for treating 
malignant tumors, and it involves large abdominal inci-
sions. Benign ovarian tumors can be tracked or treated 
with minimally invasive surgery. An inaccurate diag-
nosis affects not only a patients’ wounds but also their 
prognosis.

At present, ultrasound evaluation methods for malig-
nant ovarian tumors are primarily based on the Simple 
Rules published by the International Ovarian Tumor 
Analysis group. The Simple Rules for predicting a benign 
tumor (B features) include the following ultrasound 
features: unilocular cyst (B1), solid component meas-
uring < 7 mm in diameter (B2), presence of acoustic shad-
ows (B3), smooth multilocular tumor with maximum 
diameter being < 10  cm (B4), and absence of detectable 
color Doppler signal (B5). The Simple Rules for predict-
ing a malignant tumor (M features) are as follows: irregu-
lar solid tumor (M1), ascites (M2), papillary structures 
(M3), irregular multilocular mass measuring > 10  cm in 
diameter (M4), and strong color Doppler signal (M5). 
When the Simple Rules are applied, tumors that exhibit 
only B features and those that only exhibit M features are 

classified as benign and malignant tumors, respectively. 
For tumors that exhibit none of the aforementioned fea-
tures or both benign and malignant features, the Simple 
Rules are ineffective for achieving a clear differentiation. 
In 2008, Timmerman et  al. applied the Simple Rules to 
manually interpret and classify 1233 tumor images, and 
76% of the tumor images were recognizable with a sensi-
tivity of 95% (106/112), a specificity of 91% (249/274) [5]. 
The difficulty and inconsistency of image interpretation 
can prevent physicians from identifying the appropriate 
treatment. Risk of malignancy index (RMI) is another 
popular approach to discriminate between benign and 
malignant adnexal tumors based on menopausal status, 
a transvaginal ultrasound score, and serum cancer anti-
gen 125 (CA 125) level. The sensitivity was 85% and the 
specificity was 97%. The limitation is the need of another 
information [6]. Besides, the IOTA ADNEX model was 
also developed for risk estimates and applied as a next 
step in order to determine the risk of malignancy if ovar-
ian malignancy was suspected [7]. Consequently, physi-
cians can only wait until or after a surgery to know if they 
made the right decision. Consistency in image interpreta-
tion is related to the judgement and clinical experience of 
each physician.

Numerous studies have reported the successful appli-
cation of deep learning technology in clinical settings for 
supporting image interpretation. Deep learning has been 
applied to ultrasound, X-ray, magnetic resonance imag-
ing, computed tomography, and other images for image 
classification, object detection, and semantic segmen-
tation [8–17]. Deep learning provides the advantage of 
learning discriminative features, which are implemented 
through repeated learning and correction to identify hid-
den rules and patterns in images, thereby improving the 
accuracy of classification. In recent years, some studies 
have also proposed the use of deep learning technology 
to diagnose ovarian tumors from various medical images 
[18, 19], including magnetic resonance imaging [20, 21], 
computed tomography [22], histopathological image [23], 
and ultrasound [24–27]. Ultrasonography is the most 
basic and commonly used way to distinguish benign and 
malignant ovarian tumors in clinical practice. Therefore, 
we aimed to develop a system that automates the char-
acterization of ultrasound images of ovarian tumors; 
this is achieved by applying deep learning technology to 
help physicians improve their image interpretation accu-
racy and reduce the time required for interpretation. The 
results obtained through the system can serve as clinical 
references and reduce the risk of clinical misdiagnosis. To 
test the stability and robustness of the system, we selected 
ten well-known pre-trained models and compared the 
recognition accuracy of ovarian ultrasound images at the 
same conditions, and we repeated the random sampling 
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of the training and validation data ten times for model 
training and validation, respectively. The mean of ten 
test results was used to evaluate the proposed method. In 
addition, the decision-making visualization technology 
of the proposed model enables physicians to understand 
the foundation of the system’s diagnostic results, such 
that they can assess the reliability of these system-derived 
results to prevent misdiagnoses.

Methods
Database
The datasets used for method development were col-
lected from 587 patients at the Department of Obstetrics 
Gynecology and Women’s Health, Taichung Veterans 
General Hospital, Taiwan. These data collections were 
approved by the internal review board of Taichung Vet-
erans General Hospital (IRB no. CE20356A). Informed 
consent obtained from all the participants included in the 
study. Two scanning techniques, abdominal ultrasound 
and vaginal ultrasound, were both included. In addition, 
the database does not contain color Doppler images to 
avoid redundant color regions affecting the model learn-
ing image features. For the present study, 1896 images 
(resolution of 975 × 674 × 3) were collected. Half of the 
ultrasound images displayed benign tumors, whereas 
the other half displayed malignant tumors. All images 
were labeled by gynecologists in accordance with the 
corresponding case and pathological report. The types 
of malignant tumors were including epithelial ovarian 

cancer (89.8%), germ cell tumor (5.4%), sex cord stromal 
tumor (3.4%), and sarcoma (1.4%).

Preprocessing
The process from data preprocessing to model training 
is presented in Fig. 1. Medical record numbers and other 
relevant information were displayed on the raw images. 
To comply with IRB protocol, we removed medical 
record information from the images to ensure data confi-
dentiality and avoid influencing subsequent model train-
ing and classification. From both benign and malignant 
tumor images, 70% were randomly selected and used as 
training datasets, and the remaining 30% were used as 
validation datasets. Training dataset images underwent 
data augmentation, which is a technique often used in 
machine learning to increase the diversity of training 
datasets, avoid model overfitting, and improve accu-
racy. In the present study, data augmentation involved 
randomized flipping (through which images were mir-
rored horizontally) and randomized rotation (through 
which images were rotated by 30° or − 30°). In addition, 
we add white noise (with speckle noise variance, 0.05) 
to each image in the training data to generate a number 
equal to the original training data, so the total number 
of images in the final training data set are 2654. Figure 2 
shows an example of the original image and its data aug-
mentation. Figure  2a–e present the original image, turn 
left 30 degrees, turn right 30 degrees, turn flip (mir-
rored horizontally), and with white noise (speckle, 0.05), 
respectively.

Fig. 1 Training ovarian ultrasound image interpretation model
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Ensemble learning uses multiple models, and all 
input images must be rescaled to fixed values to meet 
the requirements of each convolutional neural network 
(CNN). For example, the image input sizes for ResNet-50 
and Xception are 224 × 224 × 3 and 299 × 299 × 3, 
respectively. After model training, the validation datasets 
were imported into a model for model assessment. The 
metrics used for evaluation were accuracy, sensitivity, 
and specificity. Random sampling and retraining of data-
sets were conducted after each assessment. Specifically, 
model accuracy, sensitivity, and specificity were tested 
ten times, and the mean of ten test results was set as the 
final assessment results.

CNN In recent years, CNNs have achieved excellent 
results for tasks such as computer vision and image 
interpretation. A CNN is used to produce image feature 
maps and extract optimal features for training a network 
model for image classification. Numerous CNN archi-
tectures have been proposed, and their feature extrac-

tion methods can vary. GoogLeNet uses an inception 
network architecture, ResNet uses a residual learning 
framework, and DenseNet alleviates the vanishing-
gradient problem and improves feature propagation. 
In the present study, ten prevalent CNNs (ResNet-18, 
ResNet-50, and ResNet-101 [28]; DenseNet-201 [29]; 
Inception v3 [30]; Darknet-19 and Darknet-53 [31]; Shuf-
fleNet [32]; Xception [33]; and MobileNet-v2 [34]) were 
selected for classifying ultrasound images of benign and 
malignant ovarian tumors. Although CNN has excellent 
performance on many image-classification tasks, the 
excellent performance of CNN comes from classifying 
color images of common objects, people or animals in 
life, and we still do not ensure whether the same per-
formance can also be achieved on ovarian ultrasound 
images. Therefore, we compared the ten aforementioned 
CNN architectures and used the CNNs as the founda-
tion for constructing ensemble learning models, thereby 
allowing for the identification of the optimal model for 
classifying ovarian ultrasound images.

Fig. 2 An example of the original image and its data augmentation. a–e present the original image, turn left 30 degrees, turn right 30 degrees, turn 
flip (mirrored horizontally), and with white noise (speckle, 0.05), respectively
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Ensemble learning
Ensemble learning combines the decisions of multiple 
supervised learning models to develop a more compre-
hensive perspective and improve the overall accuracy 
of predictions for a given problem. Common methods 
of ensemble learning include the aggregation of mul-
tiple weak classifiers and weighted voting. The only 
requirements for weak classifiers are more favorable 
performance relative to pure guessing and learnability. 
Weighted voting can help weak learners to achieve per-
formance comparable to that of strong learners [35]. 
Ensemble learning is applicable in various areas such as 
augmented learning, feature selection, missing features, 
and data fusion [36]. Figure 3 is a schematic diagram of 
the three different ensemble methods used in the pre-
sent study. Ensemble 1 involves majoritarian decision 
making with multiple models, that is, the model with the 
most votes wins, and the decision-making power of each 
model in Ensemble 1 is equivalent. Ensemble 2 involves 
decision-making with multiple models based on their 
confidence score. Each model rates the accuracy, sen-
sitivity and specificity of image interpretation and gives 
a confidence score between 0 and 1, and the final inter-
pretation results are defined by the sum of the maximum 
confidence score in each category. Ensemble 3 is similar 
to Ensemble 2, except that the confidence score of the 
model with the highest accuracy in each category is mul-
tiplied by 1.5, whereas the weights of the two remain-
ing models remain unchanged. The final interpretation 

results are defined by the sum of the maximum confi-
dence score in each category. Ensemble 3 is comparable 
to a scenario in which image interpretation is performed 
by three experts, of which one is more experienced and, 
thus, given more weight in decision making.

Effectiveness assessment
We used four indicators to evaluate the performance of 
the proposed method, namely overall accuracy (ACC ), 
sensitivity (SE), specificity (SP), and standard deviation 
(SD), which are expressed using the equations as follows:

In the ACC , SE, and SP equations, TP denotes a true posi-
tive, TN denotes a true negative, FP denotes a false posi-
tive, and FN denotes a false negative. In the SD equation, 

(1)ACC =
TP + TN

TP + TN + FP + FN

(2)SE =
TP

TP + FP

(3)SP =
TN

TN + FN

(4)SD =
1

N

N

i=1

(xi − µ)2

Fig. 3 Three ensemble learning strategies. Ensemble 1 is based on majority voting, Ensemble 2 is based on sum of confidence scores, and 
Ensemble 3 is based on weighted sum of confidence scores
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N denotes the number of datasets, and μ is the mean of 
the overall data.

Ensemble Grad‑CAM
Although CNN provides excellent accuracy for vari-
ous computer vision tasks, the lack of interpretability 
in the basis of decision-making causes experts to dis-
trust the model’s decision and considerably increases 
the risk of misdiagnoses. Therefore, enabling experts to 
understand the decision-making basis of CNN models 
is crucial. Grad-CAM is proposed as a method for visu-
alizing the decision of CNN models; this is achieved by 
obtaining a final heat map through the extraction of the 
feature layer at the end of a network model and perform-
ing a weighted sum of all feature maps. The red areas of 
a heat map are crucial references in the decision making 
of models. Although Grad-CAM can visualize the deci-
sion making of a model for use as a reference for experts, 
we found that the areas that the model’s decisions focus 
on are sometimes inconsistent with t the expert. We still 
discovered that some confusing decisions such as the 
area of interest is on the background or without focus-
ing tumors. And we also discovered that for a given ultra-
sound image and under the premise of accurate model 
classification, not all the red areas of heat maps aligned 
with the lesion that identified by experts. Consequently, 
the experts questioned the reliability of the model deci-
sions. To resolve this problem, we also applied the 

concept of ensemble learning to Grad-CAM. Figure 4 is 
the flow chart of the proposed ensemble Grad-CAM. The 
heat maps produced by each model through Grad-CAM 
were superimposed and averaged to generate the final 
heat maps. This method can reduce the risk of models 
misidentifying non-lesion sites as the basis for decision 
making.

Result
Experiment setups
There are three main steps in our experiment: step (1) 
train and evaluate ten single CNN models; step (2) 
according to accuracy and computing costs, the top three 
trained CNN models in step (1) were selected to form 
three different ensemble CNN models; step (3) evalu-
ate and compare the performances of the three different 
ensemble CNN models. The experiments were running 
on the PyTorch toolbox using Python programming lan-
guage. Meanwhile, the software packages used in the 
experiment include Anaconda 3, PyTorch 1.6, CUDA10 
and cudnn 8.0. The hardware platform is running on the 
computer with Intel CPU i9-7980XE, RTX 2080ti GPU 
with 11G memory, and 128G RAM. In the training pro-
cess, the number of default epochs is set to 30 and the 
batch size was set to 32 in all experiments. The initial 
learning rate of optimizer using adaptive moment esti-
mation (Adam) is set to 1e-4.

Fig. 4 Ensemble Grad‑CAM. Final heat map is produced by superimposing and averaging Grad‑CAM heat maps
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Single network model performance
Table  1 presents the results obtained from ten CNN 
model architectures; specifically, we repeated the ran-
dom sampling of training and validation data ten times 
and averaged the ten sets of results to obtain the final 
results. For ACC , SE, and SP performance, ResNet-50 
had the highest ACC  (90.51%) and SP (92%), and 
DenseNet-201 had the highest SE (89.77%); MobileNet-
v2 had the poorest performance. The main reason we 
used the ten different CNNs was comparing which is 
the most suitable CNN architecture for the ultrasound 
imaging of ovarian tumor classification. For example, 
the DenseNet-201 model has a better performance 
than other selected CNNs by testing ImageNet dataset 
(https:// www. image- net. org/). But the DenseNet-201 
model is not necessarily the best CNN model for the 
ultrasound imaging of ovarian tumor classification. In 
other words, the more complex network architecture 
does not necessarily have better accuracy in every type 
of image. Furthermore, the ultrasound imaging of ovar-
ian is a special form of image which was often widely 
applied in the fields of rapid tumor screening. There-
fore, it is very important to find out which CNN archi-
tecture or components are suitable for the ultrasound 
imaging of ovarian tumor classification. According 
to our experimental results, ResNet50 has the highest 
accuracy for the ultrasound imaging of ovarian tumor 
classification. In addition to accurate interpretation 
results, the time required for interpretation should also 
be considered. Table 2 presents the time taken by each 
model to generate results from the input ultrasonic 

image data. According to Table  2, ResNet-18 took the 
least time (0.32  s) to produce results. Because of its 
high accuracy and speed, ResNet-18 was determined to 
be the optimal ensemble learning model.

In the order presented in Table  2, the models were 
gradually appended to the existing ResNet18 to assess 
the accuracy improvement of the ensemble models 
and the additional time required for ensemble models 
to interpret images. Figure  5 presents the association 
of the number of appended models with the accuracy 
improvement ratio and time difference ratio. With a 
range from ten ensemble models (maximum accuracy 
and maximum time consumption) to only ResNet-18 
(minimum accuracy and minimum time consumption), 
the present study calculated the accuracy improvement 
ratios and time difference ratio following the increased 
number of appended models.

Figure 5 indicates a decrease in ACC  (rather than an 
increase) after the four models were appended. ACC  
increased by 7.62% and time spent on interpretation 
increased by 17.31% when the number of appended 
models increased from three to six. In addition, 
whether the decision heatmap of the model is consist-
ent with the expert is also the main reason why the 
model is considered to be used in ensemble learning. 
Therefore, we decided to use three ensemble models to 
achieve the benefits of high accuracy and fast process-
ing. Finally, an ensemble network model was formed 
using ResNet-18, ResNet-50, and Xception for final 
ensemble learning.

Table 1 Results (mean ± standard deviation) of ten CNN model architectures after ten averages (from high to low accuracy)

CNN models ResNet‑50 ResNet‑101 ResNet‑18 DenseNet‑201 Inception‑V3

ACC  (%) 90.51 ± 4.36 90.15 ± 3.03 89.90 ± 3.30 89.79 ± 2.84 89.79 ± 3.70

SE (%) 89.02 ± 5.44 89.65 ± 3.86 89.05 ± 5.27 89.77 ± 4.16 89.50 ± 4.11

SP (%) 92.00 ± 5.95 90.67 ± 3.86 90.77 ± 4.66 89.79 ± 4.10 90.06 ± 4.99

CNN models Darknet‑53 ShuffleNet Xception Darknet‑19 MobileNet‑v2

ACC  (%) 89.53 ± 1.80 89.40 ± 3.78 88.79 ± 1.21 88.28 ± 1.90 87.41 ± 1.83

SE (%) 87.85 ± 3.99 87.43 ± 4.41 88.64 ± 2.95 88.05 ± 3.53 86.85 ± 1.98

SP (%) 91.20 ± 3.16 91.35 ± 3.89 88.93 ± 3.47 88.46 ± 3.36 87.99 ± 2.88

Table 2 Time (unit: s) taken by each model to generate interpretation results from input of an ultrasonic image (from least to most 
time taken)

CNN models ResNet‑18 Xception ResNet‑50 ShuffleNet Darknet‑19

Time (s) 0.32 0.67 0.81 0.83 0.97

CNN models MobileNet‑v2 Darknet‑53 ResNet‑101 Inception‑v3 DenseNet‑201

Time (s) 1.21 1.27 1.58 1.90 1.96

https://www.image-net.org/
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Performance of ensemble network models
Table 3 presents the ACC , SE, and SP results of the three 
ensemble learning methods based on three models (i.e., 
ResNet-18, ResNet-50, and Xception) after ten averages. 
Although Ensemble 3, which uses the weighted sum of 
confidence scores, had the highest ACC , the model’s sen-
sitivity was reduced. Given that malignant tumors are 
more harmful than benign tumors and in consideration 
of clinical applicability, we aimed to reduce the risk of 
misdiagnosing malignant tumors. Table  3 indicates that 
Ensemble 2, which uses the unweighted sum of confi-
dence scores, was only 0.04% less accurate (ACC ) but also 
0.41% more sensitive (SE) than Ensemble 3. For clinical 
applicability, we recommend Ensemble 2, whose ACC , 
SE, and SP were 92.15%, 91.37%, and 92.92%, respectively. 
Moreover, we perform pair sample t-tests on the ten test 
results of the three ensemble methods and the results 
of the best single CNN model (ResNet-50) to compare 
whether there is a statistical difference. The software tool 
we used to analyze the statistics was MATLAB® 2022a. 
The results show that there is no statistical difference 
(p-value: 0.061) between the Ensemble 1 and ResNet-50. 
The Ensemble 2 and Ensemble 3 both have statisti-
cal differences (p-value: 0.029 and 0.023, respectively) 

with ResNet-50. Such results indicate that Ensemble 2 
and Ensemble 3 significantly outperform ResNet-50. In 
addition, the inference times of these three ensemble 
models for an ultrasonic image are 1.77  s., 1.79  s., and 
1.8  s., respectively. This means that the computational 
cost required by the three ensemble methods is almost 
indistinguishable.

Ensemble Grad‑Cam result
After obtaining the model interpretation results, we used 
Grad-CAM to generate heat maps and invited experts to 
discuss with us the acceptability of the models’ explana-
tions. Figure 6 presents an example of images that were 
compared and discussed. The red circle in Fig. 6a is the 
lesion site identified by experts. Figure  6b–d represent 
the areas that drew the most attention from ResNet-18, 
ResNet-50, and Xception. Although both model and 
expert interpretations classified the tumor as benign, 
ResNet-18’s area of attention (see Fig. 6b) was the closest 
to that of expert interpretations. By contrast, Xception’s 
area of attention (Fig. 6d) was partially out of focus, and it 
was partially focused on the background and text; there-
fore, Xception’s interpretation lacked persuasiveness. We 
decided to combine the perspectives of all three models 
by superimposing and averaging their heat maps, thereby 
creating Fig.  6e. As indicated by Fig.  6e, the degree of 
attention paid to the background and ovarian tumor 
decreased and increased, respectively. In Fig. 6e, the area 
of attention was closest to that of expert interpretations. 
The heat map produced by superimposing and averaging 
the three model heat maps aligned more closely with the 
discussion results of the three experts.

Fig. 5 Relationship between accuracy improvement ratio and time difference ratio when models are appended to existing ResNet18 according to 
the orders in Table 2

Table 3 Accuracy (ACC), sensitivity (SE), and specificity (SP) of 
Ensembles 1, 2, and 3 after ten averages

Ensemble methods ACC  (%) SE (%) SP (%)

Ensemble 1 92.01 ± 2.74 91.13 ± 3.45 92.88 ± 3.95

Ensemble 2 92.15 ± 2.84 91.37 ± 3.60 92.92 ± 4.00

Ensemble 3 92.19 ± 2.88 90.96 ± 3.96 93.19 ± 4.19
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Discussion
A model’s confidence score for decision making deter-
mines whether experts adopt or accept its decision. 
Usually, a higher confidence score (rated by the model) 
is associated with a lower risk of interpretation errors 
and higher level of trust among experts in a model’s 
decisions. For clinical applications, artificial intelli-
gence (AI) is a method for conducting auxiliary diag-
nosis. An AI-based diagnostic system requires the 
development of an optimal threshold for the confidence 
score of decision-making; this allows clinical staff to 
determine when they can trust the auxiliary diagnos-
tic system and when they should reinterpret the results 
manually. An excessively high threshold indicates that 
more data are required for manual reinterpretation 
by clinical staff, which defeats the purpose of using 
the auxiliary diagnostic system to reduce labor and 
time cost. An excessively low threshold indicates an 
increased risk of incorrect decisions being made, which 
reduces the confidence of clinical staff in the system’s 

decisions; they may even reject system-derived results 
to avoid misdiagnoses and disputes.

To further explore the relationship between the range 
of confidence scores for decision-making and the amount 
of accurately interpreted data, we calculated the amount 
of benign and malignant tumor data that were distin-
guished in accurate interpretations under various con-
fidence score thresholds. The results are presented in 
Fig.  7. When the confidence score threshold was set 
to  ≥ 95%, 61.71% and 58.57% of benign and malig-
nant tumor images, respectively, were included. That is, 
among the accurately interpreted data, nearly 40% of the 
images required manual reinterpretation when the confi-
dence score was set to between 95 and 100%; this defeats 
the purpose of using the auxiliary diagnostic system to 
reduce labor and time cost.

When the confidence score threshold was set to 
between 80 and 100%,  ≥ 86% of images were included 
regardless of tumor type. That is, among the accurately 
interpreted data, less than 14% of the images had a 

(a)             (b)              (c)              (d)              (e) 
Fig. 6 Comparison of expert interpretations with heat maps of each model. a Red circle is lesion site identified by experts. b–d Areas that drew the 
most attention from ResNet‑18, ResNet‑50, and Xception. e Heap map generated by superimposing and averaging heat maps of three models; its 
area of attention is most closely aligned with that of expert interpretations

Fig. 7 Percentage of accurately interpreted benign and malignant tumors by confidence score threshold
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confidence score of between 50 and 80%. A confidence 
score threshold of between 80 and 100% can lead to a 
more balanced relationship between the risk of interpre-
tation errors and the deployment of medical resources or 
clinical personnel to reinterpret images.

To obtain the optimal threshold value of a confidence 
score, we applied the analysis method as follows. Images 
were excluded when a confidence score did not exceed 
the threshold value, and the overall accuracy of the 
included images was calculated. Starting from 80%, we 
gradually increased the threshold value by increments of 
1% to observe the effects of threshold changes on over-
all interpretation accuracy and determine the amount 
of data requiring manual reinterpretation. The analy-
sis results indicated that a higher threshold value could 
improve accuracy, but they also revealed an increase in 
the amount of data requiring manual reinterpretation. 
When the confidence score was set to 99%, an overall 
accuracy of 99.38% was obtained following image exclu-
sion, but the excluded data accounted for 61.75% of the 
total data.

Through discussions with clinical experts, we discov-
ered that the optimal results were achieved by setting the 
confidence score to 86%. Because according to the sta-
tistics of clinical experts, there is an average about 20% 
inconsistency between the interpretation results of the 
experts based on the ultrasound images and the results 
of the final tumor section pathology report, so we set the 
images with confidence scores more than 86% (account-
ing for 80% of all testing data) can directly adopt the deci-
sion of the model. In other words, there will be 20% of the 
testing data and we will recommend that clinical experts 
make manual judgment again to confirm the final result. 
Among the 568 images that served as the validation data 
for the present study, 112 images (approximately 20% of 
the total validation data) were excluded for a confidence 
score of less than 86% and for images requiring manual 
reinterpretation. In the remaining images, 446 images 
were correctly identified and other 10 images were incor-
rectly identified, indicating an overall accuracy rate of 
97.78%. If no threshold was set, 45 images would be inac-
curately interpreted, which is equivalent to an overall 
accuracy rate of 92.1%.

In order to compare the consistency between expert’s 
image classified results and the pathology report of tumor 
section, we asked a clinical expert to classify all testing 
ultrasound images for benign and malignant. The clini-
cal expert is a gynecologist with 21  years of experience 
and about 2500 patients’ ultrasound interpretations per 
year. The results were showed in Table 4, the ACC  of the 
proposed method was also added. The results of the com-
parison show that the accuracy of the proposed method 
is at least 12% higher than that of the expert. Such results 

mean that the accuracy of our proposed method has 
exceeded the level of experts.

Table  5 presents the comparison of the proposed 
method with other methods in terms of the interpreta-
tion of ovarian ultrasound images. A study [37] used the 
k-nearest neighbors method to classify 2600 ultrasound 
images of benign and malignant tumors and reported an 
accuracy of 100%. However, the aforementioned study 
lacked data diversity because the images were collected 
from only 20 women, with each woman contributing 130 
ultrasound images to the dataset. Because individual dif-
ferences exist in biomedical data, the lack of diverse data 
for model training can lead to validation results having 
limited generalizability and low reference value in clinical 
settings. Another study [38] applied a traditional machine 
learning method (i.e., fuzzy forest) to classify 469 ultra-
sound images of benign and malignant tumors collected 
from 469 women; although the image dataset was diverse, 
the study only achieved an accuracy of 80.6%. CNN and 
transfer learning were applied in another study [39] to 
classify the tumors in 988 ovarian ultrasound images as 
benign, malignant, or unidentifiable; the study achieved 
an accuracy of 87.5%. In the present study, the proposed 
CNN-based method outperformed [39] in terms of the 
quantity and accuracy of its validation data.

Conclusion
In the present study, we proposed an automatic system 
that utilizes an ensemble CNN to interpret ovarian tumor 
ultrasonic images. The system incorporates technologies 
such as image preprocessing, data augmentation, and 
ensemble Grad-CAM. For our validation strategy, we 
repeated the random sampling of the training and valida-
tion data ten times to verify model robustness. The mean 
ACC, SE, and SP of the single network model with opti-
mal performance were 90.51%, 89.02%, and 92%, respec-
tively. The present study proposed the ensemble method 
on the basis of the confidence scores of multiple deci-
sion-making models, which achieved a mean ACC, SE, 
and SP of 92.15%, 91.37%, and 92.92%, respectively. The 
proposed method increased the mean ACC, SE, and SP 
of the single network model with optimal performance 
by 1.64%, 2.35%, and 0.92%, respectively. From the com-
prehensive perspective of data quantity, data diversity, 
robustness of validation strategy, and overall accuracy, 

Table 4 Comparison of the pathology report (ground truth) 
with expert scoring and our proposed method

Ground truth/manual or automatic classification ACC  (%)

The pathology report/expert scoring 79.63 ± 4.45

The pathology report/proposed method 92.15 ± 2.84
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the proposed method outperformed the methods used in 
other studies.

Future studies should explore the detection of tumors 
in ultrasound images. In real-life clinical practice, tumors 
are absent from most ultrasound images captured by 
ultrasound machines. By overcoming the challenge of 
determining the presence of ovarian tumors in an image 
we can accelerate the screening and preprocessing of 
images and reduce the risk of misdiagnoses. Further-
more, no study has attempted to distinguish between 
abdominal and vaginal ultrasound images during data 
concentration. The features of abdominal and vaginal 
ultrasound images are different. Therefore, misdiagno-
sis rates can be reduced by training a model to capture 
multiple sites in ultrasound images. We will also continue 
to add more patient images to increase data diversity. A 
comprehensive dataset can produce a more robust clini-
cal applicability with respect to the incorporation of AI 
into clinical applications.
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