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Abstract 

Background:  The electroencephalography (EEG) signal carries important information about the electrical activity 
of the brain, which may reveal many pathologies. This information is carried in certain waveforms and events, one 
of which is the K-complex. It is used by neurologists to diagnose neurophysiologic and cognitive disorders as well 
as sleep studies. Existing detection methods largely depend on tedious, time-consuming, and error-prone manual 
inspection of the EEG waveform.

Methods:  In this paper, a highly accurate K-complex detection system is developed. Based on multiple convolutional 
neural network (CNN) feature extraction backbones and EEG waveform images, a regions with faster regions with 
convolutional neural networks (Faster R-CNN) detector was designed, trained, and tested. Extensive performance eval-
uation was performed using four deep transfer learning feature extraction models (AlexNet, ResNet-101, VGG19 and 
Inceptionv3). The dataset was comprised of 10948 images of EEG waveforms, with the location of the K-complexes 
included as separate text files containing the bounding boxes information.

Results:  The Inceptionv3 and VGG19-based detectors performed consistently high (i.e., up to 99.8% precision and 
0.2% miss rate) over different testing scenarios, in which the number of training images was varied from 60% to 80% 
and the positive overlap threshold was increased from 60% to 90%.

Conclusions:  Our automated method appears to be a highly accurate automatic K-complex detection in real-time 
that can aid practitioners in speedy EEG inspection.
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Background
The electroencephalography (EEG) recording shows the 
scalp’s electrical activity on different locations using sev-
eral channels. It reveals the electrical activity produced 
by the brain neurons, which may aid in revealing several 
pathologies, such as epilepsy, tumors, coma, brain dam-
age, and encephalopathies. EEG analysis has been shown 
to be a powerful tool for sleep studies and diagnosis of 
neurological diseases [1]. The EEG exhibits several wave-
forms such as alpha and beta and events like K-complexes 
and sleep spindles [2].

The EEG recording is a time-varying continuous signal 
with an amplitude range of 10–200 μV and a frequency 
range of 0.5–50 Hz [3]. Detecting the occurrence of the 
waveform and events is of great importance in clinical 
practice and considered in many cases to be tedious and 
time-consuming. This is especially true for long-duration 
recordings in sleep analysis, where neurologists must 
evaluate the entire sleep recordings. Therefore, an auto-
mated approach for detecting EEG waveforms and events 
can be very helpful in supporting the clinical decision, 
because it will shorten the duration of the evaluation 
and provide a tool to detect the relevant waveforms and 
events.

Advances in signal processing and artificial intelligence 
techniques have enabled active research into automated 
algorithms that facilitate the usability of EEG recordings 
[4]. To this end, the work in this paper aimed at identi-
fying K-complexes in EEG waveform images using deep 
transfer learning and faster regions with convolutional 
neural networks (Faster R-CNN) [5]. K-complexes occur 
during the non-rapid eye movement (NREM) during 
sleep stage N2. The transient waveform performed by the 
K-complex has a biphasic morphology, which has 200 ms 
waves that are characterized by a positive rise followed by 
a negative fall of 550 ms with a long-lasting positive peak 
of 900 ms [6]. Therefore, the presence of K-complexes has 
an important role in the clinical diagnosis of diseases like 
Alzheimer’s, insomnia, epilepsy, restless legs syndrome 
(RLS), and obstructive sleep apnea (OSA) [7, 8].

Several studies in the literature were conducted to 
detect K-complexes. The pioneering study of Bremer 
et  al. [9] developed a real-time hardware-based auto-
matic K-complex detection system, which can also work 
offline. However, topical detection methods provide soft-
ware-based solutions. The majority of these methods are 
based on signal processing techniques to transform the 
EEG signal into a more usable form (e.g., segmentation) 
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and extract distinctive features of the K-complexes 
that can be fed to AI-based classifiers. For example, 
Noori et al. [10] used chaotic features and the modified 
extreme learning machine-generalized radial basis func-
tion (MELM-GRBF) classifier. Dumitrescu et  al. [11] 
aimed at improving the computation time and detection 
accuracy using Cohen class recursiveness and realloca-
tion in conjunction with deep learning. Several studies 
were conducted by Al-Salman et  al. [12–14] in which 
they experimented with several feature extraction tech-
niques for K-complex detection (i.e., multi-domain fea-
ture extraction and fractal dimension of time frequency 
images) in conjunction with a number of classification 
algorithms (i.e., K-means, least square support vector 
machine, and Naïve Bayes). Consequently, Kantar and 
Erdmar [15] used the same procedure. They extracted 
three features from the EEG records and used support 
vector machine classifier. Yucelbas et al. [16] investigated 
the use of the time-frequency analysis of the EEG record-
ings to detect K-complexes. They used three different 
time-frequency analysis methods: singular value decom-
position, discrete wavelet transform, and variational 
mode decomposition. Several other works were also con-
ducted in the literature [17–26].

The goal of this work was to get rid of the signal pro-
cessing steps, explicit feature extraction, and transforma-
tions (e.g., spectrograms) along with their companion 
overhead, inaccuracies, and implementation difficulties. 
This was accomplished by using deep transfer learning 
artificial intelligence (AI) algorithms and object detection 
techniques. The approach we follow is different in that 
we treat the EEG signal visually as a series of waveform 
images. These images form the input to a deep learning 
feature extraction model that feeds an object (i.e., the 
K-complex) detector, which in turn determines the loca-
tion of the K-complex via a bounding box overlayed on 
the waveform.

The remainder of this paper is organized as follows: 
The materials and methods section explains in detail the 
dataset and EEG signal images, object detection models, 
experimental setup, and performance evaluation metrics. 
Afterwards, The results are presented and discussed. We 
summarize our findings and limitations, and recommend 
future works in the conclusion section.

Materials and methods
The K-complex detection system developed in this work 
targets the visual detection of K-complexes in EEG wave-
forms using computer vision techniques in the form of 
the Faster R-CNN algorithm and deep transfer learn-
ing. Thus, building such model relies upon the avail-
ability of EEG waveform images and the corresponding 
K-complex locations. Given a set of EEG recordings and 

their K-complex scoring (i.e., start and end times of the 
K-complex), individual images were generated along with 
separate text files containing the information about the 
location of the K-complex (i.e., a bounding box expressed 
as [x, y, width, height] with the x–y coordinates repre-
senting the bottom left corner). Two strategies were used 
to generate the images: (1) One K-complex per image 
with no repetition of the K-complex. (2) A particular 
K-complex appear in multiple images by shifting the sig-
nal and capturing the image.

The Faster-RCNN object detection algorithm uses the 
features supplied by a deep neural network backbone, 
which was implemented using convolutional neural net-
works (CNNs) and transfer learning. Faster-RCNN taps 
into one of the feature layers in the CNN model, and uses 
the output of this layer as features to estimate the loca-
tion of the bounding boxes with the best overlap in com-
parison to the ground truth annotated by the experts. 
Several CNN models can be used, and for each model 
many options are available for the choice of the feature 
layer. Four feature extraction CNN models were evalu-
ated in this work.

Once the available data is converted into images with 
accompanying text files of bounding box locations, the 
Faster-RCNN algorithm and the CNN model need to 
be trained, validated, and tested. Several strategies were 
used for this step: (1) The hold-out method with data 
pooling from all patients and several data split propor-
tions. (2) Fivefold cross validation. (3) The hold-out 
method with separate patients used for testing. Moreo-
ver, the performance was evaluated using several met-
rics that reflect the true performance of each model and 
method.

The general steps followed in this work are shown in 
Fig.  1. In the next few subsections, we go through each 
step in detail.

Dataset
The data used in this study was based on the “Dreams 
K-complexes database” [27], which is composed of 10 
30-min EEG recordings of the central EEG channel 
extracted from polysomnographic (PSG) sleep record-
ings. The number of subjects was 10 with each record-
ing corresponding to a single patient only. The EEG was 
sampled at a rate of 200 Hz, hence each resulting record-
ing contained 30× 60× 200 = 360,000 data points. The 
K-complexes were annotated independently by experts 
with recordings from 1 to 6 were annotated by 2 experts 
while recording from 7 to 10 was annotated by a single 
expert.

The EEG signal waveform was divided into multi-
ple images. Each image had a separate text file for the 
K-complex location, which was expressed using four 
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numbers (i.e., [x, y, width, height]) corresponding to 
the coordinates of the bottom left corner along with 
the width and height of the bounding box). The width 
and height are positive numbers indicating right and up 
directions, respectively. The images were generated by 
plotting a 5-s window of the EEG (i.e., at 200  Hz, it is 
equivalent to 5× 200 = 1000 data points). After that, the 
window is shifted by 20 points and the data were plot-
ted again. Hence, the difference between two consecutive 
plots is 0.1 s. Similar segmentation techniques have been 
reported in the related literature [13]. The total number 
of frames generated per 30 min of recording is: 30 min 
× 60 s × 10 frames per second = 18,000 frames. Each 
frame displays a 5-s recording of the EEG signal, which 
is converted to an image if it contained a K-complex. The 
total number of resulting images with K-complexes was 
10,948.

K‑complex detection model
CNNs are one of the most widely used neural networks 
types. They are considered one of the most suitable 
machine learning techniques for discerning image fea-
tures and discovering spatial and other relationships in 
visual data [28]. CNNs are composed of a series of con-
volution and down sampling (i.e., pooling) operations. 
Different filter sizes control the resolution of the fea-
tures being considered in the convolution operations. In 

between these layers, several other operations are con-
ducted to optimize and regulate the network functional-
ity. For example, to avoid overfitting, batch normalization 
and/or dropout can be used. In addition, various activa-
tion functions (e.g., Rectified Linear Unit (ReLU)) can 
be used to help in learning complicated patterns and in 
handling nonlinearity. The CNN typically terminates in a 
fully connected layer or a global pooling operation, which 
combines features from previous layers to generate the 
desired output (e.g., classification). The CNN design liter-
ature produced a wide range of models that differ in their 
structure, width, depth, parameters, and regularization. 
Moreover, they differ in their training efficiency and the 
methods of updating internal network parameters.

In this work, four CNN models pre-trained using the 
ImageNet [29] database were used. These were AlexNet 
[30], VGG19 [31], ResNet-101 [32], and Inceptionv3 
[33]. They represent different design philosophies in the 
CNN literature. AlexNet was one of the early deep CNN 
designs and consisted of eight layers only due to process-
ing capabilities available at the time. It is a spatial exploi-
tation CNN that improved and fine-tuned many internal 
operations to reduce overfitting and increase learning 
efficiency. VGG19 falls under the same spatial exploita-
tion category and consists of 19 layers. The design of the 
VGG19 network replaces large filters present in AlexNet 
with a stack of smaller filters. The main premise was 

Fig. 1  A graphical abstract of the general steps taken to build the K-complex detection model
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that multiple small filters can achieve the same perfor-
mance as large filters, but with a lower number of param-
eters and an improved computational complexity. Vastly 
improved processing powers with the introduction of 
graphical processing units have spurred the design of 
more complicated CNNs. As the name suggests, the 
ResNet-101 consists of 101 layers. Extremely large num-
ber of neurons in one layer allows the discovery of more 
features at a wide range of resolutions but with great 
overhead. On the other hand, more network depth (i.e., 
more layers) provides the same benefits with reduced 
cost [28]. Moreover, several innovations were introduced 
to reduce the overhead of training very deep networks. 
In this regard, the ResNet architecture introduced resid-
ual learning for more efficient training. The Inceptionv3 
model is 48 layers deep and improved on the computa-
tional requirements of depth-based networks. This was 
accomplished by using inception blocks that replaced 
symmetric large filters with asymmetric small filters, in 
addition to other modifications [28].

The CNN models act individually as the feature extrac-
tion backbone for the object detection algorithm, which 
was performed using the faster regions with convolu-
tional neural networks (Faster R-CNN) method [5]. This 
algorithm operates by hypothesizing several object loca-
tions using region proposals. Many bounding boxes (i.e., 
anchor boxes) are proposed as possible locations for the 
targeted objects. A region proposal network (RPN) dras-
tically reduces the computational overhead of region pro-
posals by sharing the full image convolutional features. 
Thus, the system structure is composed of a pre-trained 
CNN (i.e., one of AlexNet, VGG, ResNet101, or Incpet-
ionv3), which serves as a feature extraction network. This 
feeds to two subnetworks: (1) An RPN that produces pos-
sible areas where the K-complexes are likely to be found 
(i.e., K-complex region proposals). (2) A second subnet-
work that predicts the class and bounding box offset of 
each proposal by using a region of interest (ROI) pool-
ing layer. The designer needs to decide on the optimal 
location in the CNN to extract the features from. This is 
best determined empirically or based on design recom-
mendations (e.g., Matlab deep learning toolbox tutorials). 
The work in this paper followed the Mathworks recom-
mendations for the location of the feature extraction lay-
ers and experimented with some other parameters (e.g., 
positive overlap range). Some of the CNN model proper-
ties are shown in Table 1 and further details are provided 
in the experimental setup section.

Experimental setup
The evaluation parameters were set as follows: The mini-
mum batch size was set to 2. This was done because the 
nature of the models, coupled with the number of 

training images, required large memory space. Higher 
batches have led to system crashes due to insufficient 
memory. Unless otherwise stated, the maximum number 
of epochs was set to 4. Before such epoch was reached, 
the model training/validation accuracy and loss started 
to steadily saturate (i.e., no further improvement). The 
object detector does not require perfect bounding box 
fits, instead, a positive overlap range needed to be speci-
fied for a bounding box to be considered correct. This 
range was varied from 0.6 to 0.9 in steps of 0.1. It refers to 
the amount of overlap based on the intersection of union 
(IoU), which is defined as: IoU =

Area of intersection
Area of union

 . The 
data split into training/validation/testing subsets was var-
ied from 60/10/30 to 80/10/10 in steps of 10, with the 
validation percentage fixed at 10%. The initial learning 
rate was set to 0.001. The stochastic gradient descent 
with momentum (SGDM) was used as the solver optimi-
zation algorithm. It is a commonly used algorithm for 
training due to its fast convergence [34], however, other 
methods are available (e.g., Adaptive Moment Estimation 
(Adam) optimizer).

The deep learning models were modified, trained, 
and evaluated using MATLAB R2021a software run-
ning on an HP OMEN 30L desktop GT13 with 64 GB 
RAM, NVIDIA GeForce RTX™ 3080 GPU, Intel Core™ 
i7-10700K CPU @ 3.80 GHz, and 1TB SSD.

Performance evaluation metrics
The performance was evaluated using the following met-
rics, where TP is true positive, FN is false negative, FP is 
false positive, and FN is false negative:

•	 Precision (i.e., positive predictive value) defined as: 
precision =

TP
TP+FP.

•	 False negative rate (i.e., miss rate) defined as: 
miss rate = FN

TP+FN .
•	 Recall (i.e., sensitivity, hit rate, or true positive rate) 

defined as: recall = TP
TP+FN  . It is the complement of 

the miss rate, and although not explicitly reported, it 
is used in the precision-recall curve.

Table 1  The CNN model properties and the location of the 
feature extraction layer for K-complex detection

Feature 
extraction 
model

Input size Feature extraction 
layer

Anchors Anchor 
boxes

AlexNet [227 227 3] relu5 6 2

VGG19 [224 224 3] relu5_4 6 2

ResNet-101 [224 224 3] res4b22_relu 6 2

Inceptionv3 [299 299 3] mixed7 6 2
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•	 F score, which is defined as the harmonic mean of the 
Precision and Recall (i.e., F score =

2×Precision×Recall

Precision+Recall
). 

•	 Precision-recall curve, which plots the value of preci-
sion as the class probability threshold is lowered (i.e., 
higher recall values). A good model will keep the pre-
cision high when the recall is increased.

•	 The log-average miss rate curve, which plots the miss 
rate against the false positives per image (FPPI) in log 
scale. Such curves are useful, for example, in each 
image if you want all the K-complexes to be detected 
(i.e., less miss rate), then this may lead to more false 
positives (i.e., part of the signal wrongly detected as 
K-complex) as a side-effect.

•	 Average precision (AP) is taken over all images, and 
the mean average precision (mAP) is taken over all 
positive overlap thresholds unless otherwise stated.

Results and discussion
The ability of the various models to detect K-complexes 
in EEG waveform images was thoroughly evaluated and 
compared. Table 2 shows the average precision and mean 
average precision for AlexNet. Using the default Matlab 
setup (i.e., 60% positive overlap threshold), the model 
was able to achieve 92.75% to 67.47% AP (81.55% mAP). 
Moreover, the AP increased as more training data was fed 
to the model (i.e., 96.24% AP with 80% of the data used 
for training), which possibly shows more ability to learn 

without overfitting the data. This trend is also apparent 
in the other models as well, see Tables 3, 4, and 5. How-
ever, the AP degrades as the bounding box acceptable 
overlap threshold is increased from 60 to 90%. The table 
shows that there is a large AP drop (about 13%) when the 
threshold is increased from 80% to 90%, with 60% of the 
data used for training.

Such results should be expected as the location of the 
K-complex is determined by a bounding box, which is 
compared to the ground truth (i.e., exact location of the 
bounding box as determined by the experts) for perfor-
mance evaluation. The 60% positive overlap threshold is 
the smallest value in the table for the required overlap 
for a positive detection. This means that this is the low-
est par for passing a bounding box as correct. Increas-
ing this threshold means more stringent requirements 
(i.e., higher passing grade) to consider a bounding box as 
correct. Nonetheless, a 60% overlap threshold provides 
good estimates of the K-complex location. Figure 2 pro-
vides an indication of the quality of different thresholds 
for bounding box overlap. In comparison, some related 
works reported their results for 30% overlap (e.g., Cham-
bon et  al. [35, 36]). In addition, the 80/10/10 data split 
uses 80% of the dataset for training, which is the high-
est among the other split methods. It is well-known that 
deep learning models learn better with more data in 
comparison to traditional machine learning, thus, such 
results are reasonable [37].

Table 2  AlexNet average precision

Data split (%) 60/10/30 (%) 70/10/20 (%) 80/10/10 (%)
Positive overlap 
threshold

60 92.75 95.83 96.24

70 85.42 91.15 90.00

80 80.55 81.66 82.49

90 67.47 71.7 81.02

mAP 81.55 85.09 87.44

Table 3  VGG19 average precision

Data split (%) 60/10/30 (%) 70/10/20 (%) 80/10/10 (%)
Positive overlap 
threshold

60 98.75 99.13 99.44

70 92.94 90.45 94.32

80 90.23 93.67 94.52

90 84.64 89.41 85.21

mAP 91.46 93.17 93.37

Table 4  ResNet-101 average precision

Data split (%) 60/10/30 (%) 70/10/20 (%) 80/10/10 (%)
Positive overlap 
threshold

60 97.86 98.49 98.68

70 90.77 94.09 97.16

80 83.7 83.69 82.37

90 73.43 79.99 86.53

mAP 86.44 89.07 91.19

Table 5  Inceptionv3 average precision

Data split (%) 60/10/30 (%) 70/10/20 (%) 80/10/10 (%)
Positive overlap 
threshold

60 97.38 99.8 99.62

70 96.31 97.97 96.57

80 83.78 86.66 91.4

90 91.38 90.55 87.13

mAP 92.21 93.75 93.68
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The other three models (Inceptionv3, VGG19, and 
ResNet-101) perform much better than AlexNet and 
achieve a maximum AP of 99.62%, 99.44%, and 98.68% 
respectively. Although the three models follow similar 
performance trends with increased training data and 
overlap threshold as AlexNet, the drop is less significant 
with the Inceptionv3 and VGG19 models. However, the 
data in Tables  3 and 5 exhibit some discrepancies. For 
example, there is slight decrease in the accuracy for Inc-
petionv3 when more data is used for training (e.g., 99.8% 
AP with 70% data split as compared to 99.62% AP with 
80% data split). A similar discrepancy appeared in some 
limited cases when the positive overlap threshold is 
increased (e.g., ResNet-101 82.37% AP with 80% thresh-
old and 80% data split compared to 86.53% AP with 80% 
data split and 90% threshold). This may be caused by 
model training variations (e.g., random dropout in the 
deep learning model layers), the availability of more test-
ing data making detection errors less profound in terms 
of precision, the randomness of the data split (i.e., more 
difficult to detect cases turn out in the testing set), or in 

the extreme case an overfitting of the data. However, this 
should not undermine the excellent AP and mAP results 
achieved by those models. Moreover, running the mod-
els several times should provide more clues into this phe-
nomena, but it requires a long runtime.

More insight into the K-complex detection perfor-
mance can be obtained via the precision-recall curve. It 
gives more information about the relative performance 
of the various models in relation to the detection class 
probability. As the recall value is increased (i.e., more 
bounding boxes are accepted), a good model would have 
these boxes to be of the correct class or position. In other 
words, the precision does not drop with higher recall. 
Figures  3, 4, 5 and 6 show the precision–recall curves 
for the four models drawn on the same figure for the 
four corner cases for the data split and penalty thresh-
old (i.e., 60/10/30 split and 60% threshold, 60/30/10 split 
and 90% threshold, 80/10/10 split and 60% threshold, 
and 80/10/10 split and 80% threshold). Inceptionv3 and 
VGG19 are indeed the best performing models.

Fig. 2  A K-complex with the bounding box as determined by the experts (in blue color) in comparison to multiple overlapping bounding boxes
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Fig. 3  A comparison between all feature extraction models using 
60/10/30 data split and 60% positive overlap threshold. The figure 
plots the precision recall curve
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Fig. 4  A comparison between all feature extraction models using 
60/10/30 data split and 90% positive overlap threshold. The figure 
plots the precision recall curve
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Fig. 5  A comparison between all feature extraction models using 
80/10/10 data split and 60% positive overlap threshold. The figure 
plots the precision recall curve
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Fig. 6  A comparison between all feature extraction models using 
80/10/10 data split and 90% positive overlap threshold. The figure 
plots the precision recall curve

Table 6  AlexNet average miss rate

Data split (%) 60/10/30 (%) 70/10/20 (%) 80/10/10 (%)
Positive overlap 
threshold

60 9.37 5.72 4.47

70 18.09 12.43 12.29

80 25.22 24.22 23.4

90 37.89 33.89 24.27

Tables 6, 7, 8, and 9 show the average miss rate for the 
four models. It is calculated by averaging the miss rate, 
which evaluates how much K-complexes are missed rela-
tive to the number of K-complexes really present, on 
all the FPPI points. The tables show similar trends and 
relative performance to the AP measure. Figures  7, 8, 9 
and 10 show the log-average miss rate curve for all FPPI 
points, which follows a similar trend to the precision-
recall curves.
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Table  10 shows the training times for all algorithms 
using the various data splits. The Inceptionv3 model was 
by far the slowest requiring 19.63 h for training using 
80% of the dataset. The fastest model was AlexNet, which 
required 2.53 h for training using 80% of the data. How-
ever, VGG19 represents an excellent compromise as it 
requires 4.13 h using 80% of the dataset for training, but 
achieves comparable accuracy to Inceptionv3. Although 
these times are large, they are only for training, the test-
ing times were in the order of milliseconds for individual 
images.

Table 7  Inceptionv3 average miss rate

Data split (%) 60/10/30 (%) 70/10/20 (%) 80/10/10 (%)
Positive overlap 
threshold

60 2.53 0.2 0.39

70 4.27 2.44 3.21

80 19.55 14.74 10.15

90 10.53 11.77 15

Table 8  VGG19 average miss rate

Data split (%) 60/10/30 (%) 70/10/20 (%) 80/10/10 (%)
Positive overlap 
threshold

60 1.49 0.83 0.55

70 7.72 5.22 4.83

80 11.62 12.77 6.22

90 20.68 11.22 18.56

Table 9  ResNet-101 average miss rate

Data split (%) 60/10/30 (%) 70/10/20 (%) 80/10/10 (%)
Positive overlap 
threshold

60 2.19 1.64 1.37

70 8.6 7.52 3.06

80 19.48 20.56 20.68

90 34.06 23.56 16.98

10-4 10-3 10-2 10-1
10-2

10-1

100
Split = 60\10\30, Theshold = 60

Alexnet, Log Average Miss Rate = 9.37%
Inceptionv3, Log Average Miss Rate = 2.53%
resnet101, Log Average Miss Rate = 2.19%
VGG19, Log Average Miss Rate = 1.49%

Fig. 7  A comparison between all feature extraction models using 
60/10/30 data split and 60% positive overlap threshold. The figure 
plots the log-average miss rate curve

10-4 10-3 10-2 10-1

10-1

100
Split = 60\10\30, Theshold = 90

Alexnet, Log Average Miss Rate = 37.89%
Inceptionv3, Log Average Miss Rate = 10.53%
resnet101, Log Average Miss Rate = 34.06%
VGG19, Log Average Miss Rate = 20.68%

Fig. 8  A comparison between all feature extraction models using 
60/10/30 data split and 90% positive overlap threshold. The figure 
plots the log-average miss rate curve

10-3 10-2 10-1
10-3

10-2

10-1

100
Split = 80\10\10, Theshold = 60

Alexnet, Log Average Miss Rate = 4.47%
Inceptionv3, Log Average Miss Rate = 0.39%
resnet101, Log Average Miss Rate = 1.37%
VGG19, Log Average Miss Rate = 0.55%

Fig. 9  A comparison between all feature extraction models using 
80/10/10 data split and 60% positive overlap threshold. The figure 
plots the log-average miss rate curve
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Cross‑validation and testing with separate subjects
The previous results were generated using images of an 
EEG waveform with K-complexes that display 5 s win-
dows, with a 0.1 s difference between adjacent windows. 
This may result in very little variations between the differ-
ent images in the dataset, and consequently lead to data 
leakage and an inflated good performance. Thus, some 
of the experiments were repeated with the data modi-
fied such that each K-complex in the recording appear in 

one image only. Hence, a total of 271 images were used 
for the model training, validation, and testing. Moreover, 
fivefold cross-validation was used instead of the previous 
holdout method. Table 11 shows the mean average test-
ing precision using VGG19 for various positive overlap 
thresholds and training epochs. The mean is taken over 
the fivefold cross-validation testing subsets. Indeed, the 
testing precision dropped slightly and required much 
more training epochs to reach good performance in com-
parison to the previous evaluation setup.

One more critique of the results relates to the pooling of 
all recordings from all patients in the dataset, which pre-
ceded the split into training, validation, and testing. How-
ever, real-life deployment will definitely include subjects 
not present in the dataset. Thus, to evaluate non-before 
seen data, separate patients were used in the testing set 
than in the training and validation sets. Table  12 shows 
testing precision and F score using VGG19. In this table, 
the model was trained, validated, and tested using the 
dataset without repeating any K-complex. Moreover, four 
subject provided the testing images (45 images) and the 
remaining 6 subjects were included in the testing (204 
images) and validation (22 images). The results show a 
slight drop in precision in comparison to method of pool-
ing all images from all patients together.

Training from scratch versus transfer learning
Deep transfer learning has been shown to be useful and 
effective in a diverse set of applications from many dis-
ciplines (e.g., sentiment analysis, software engineering, 
human gait analysis, etc.) [38]. However, the excellent 
performance maybe caused by the network architec-
tural design rather than the transfer (i.e., reuse) of the 
existing model weights. Thus, we evaluated the role of 
transfer learning, or lack of, by running fivefold cross 
validation using the untrained VGG19 network. Table 13 
shows the testing precision and F score for a model built 
from scratch using the same VGG19 architecture with-
out weights. In this table, the network was trained, vali-
dated, and tested using the dataset without repeating 
any K-complex. In comparison to Table  11, the results 

10-3 10-2 10-1

10-1

100
Split = 80\10\10, Theshold = 90

Alexnet, Log Average Miss Rate = 24.27%
Inceptionv3, Log Average Miss Rate = 15.00%
resnet101, Log Average Miss Rate = 16.98%
VGG19, Log Average Miss Rate = 18.56%

Fig. 10  A comparison between all feature extraction models using 
80/10/10 data split and 90% positive overlap threshold. The figure 
plots the log-average miss rate curve

Table 10  Average training times (minutes)

Data split 60/10/30 70/10/20 80/10/10
Feature extraction 
model

AlexNet 112.5 133.5 152.15

VGG19 189.5 216.3 247.93

ResNet-101 485.7 590.9 660.1

Inceptionv3 818.8 944.4 1178.0

Table 11  Mean average testing precision and F score using VGG19

The model was trained, validated, and tested using the dataset without repeating any K-complex. The mean is taken over the fivefold cross-validation testing subsets. 
Threshold is the positive overlap threshold

Training epochs (%) 25 (%) 50 (%) 75 (%) 100 (%)

Threshold Precision F score Precision F score Precision F score Precision F score

60 92.90 91.87 94.8 93.88 95.02 94.03 95.23 95.24

70 79.85 75.99 87.47 85.64 88.66 86.11 92.43 91.11

80 59.39 54.83 84.4 81.55 87.24 85.07 91.10 89.46

90 – – 72.76 68.3 82.5 79.24 85.22 82.07
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in Table 13 show a significant drop in precision and little 
improvement with more training epochs. Such differences 
in performance can confirm the importance of transfer 
learning as opposed to training the network from scratch.

Comparison to the related literature
The application of artificial intelligence has received 
great attention in the medical literature in general and in 
the identification of micro-events in EEG signals in par-
ticular. Table 14 shows a comparison to the latest results 
in detecting and locating K-complexes in EEG signals. 
Chambon et  al. [36] designed a dedicated deep neural 
network architecture to visually detect K-complexes and 
sleep spindles. Although surpassed the performance in 
the literature they surveyed, the IoU value of 0.3 (i.e., 30%) 

is considered small in comparison to our work. Moreover, 
even with such small IoU, their performance is consid-
erably low in comparison to the precision-recall curves 
presented in our work. In addition, an extended version 
of their work failed to achieve a precision value over 80% 
[36]. Tapia and Estéves [39] proposed recurrent event 
detector based on a recurrent neural network architec-
ture that the authors designed from scratch. Their model 
worked in two forms; one uses the EEG signal as a time 
series and the other employs the spectrogram generated 
by the continuous wavelet transform. However, their 
approach follows the traditional path of signal processing 
and feature extraction. The performance in terms of pre-
cision was 84.9% at the very low IoU of 20%.

Table 12  Testing precision and F-score using VGG19

The model was trained, validated, and tested using the dataset without repeating any K-complex. The testing subjects were different than the training and validation 
ones. Threshold is the positive overlap threshold

Training epochs (%) 25 (%) 50 (%) 75 (%) 100 (%)

Threshold Precision F score Precision F score Precision F score Precision F score

60 85.62 84.16 90.85 90.65 92.28 90.72 92.67 91.57

70 76.84 73.04 83.73 82.81 84.43 81.94 85.06 82.96

80 40.24 39.38 78.7 74.63 79.45 76.24 84.09 84.06

90 – – 65.83 65.62 74.65 71.84 79.44 77.29

Table 13  Testing precision and F-score using the untrained VGG19 network architecture

The network was trained, validated, and tested using the dataset without repeating any K-complex. Threshold is the positive overlap threshold

Training epochs (%) 25 (%) 50 (%) 75 (%) 100 (%)

Threshold Precision F score Precision F score Precision F score Precision F score

60 83.88 80.26 84.12 80.98 85 81.31 86.12 82.96

70 78.03 74.61 81.02 77.76 82.98 79.75 84.13 81.43

80 55.55 51.13 75.11 71.88 79.46 76.45 79.67 76.34

90 – – 60.4 57.4 70.87 67.45 78.5 75.16

Table 14  Comparison to the state of the art results

Study and years Method Results

Dumitrescu et al. 11] Feature extraction from the Cohen class energy 98.3% Accuracy

Al-Salman et al. 12] Multi-domain feature extraction 97.7% Accuracy

Al-Salman et al. 13] Fractal graph features of spectrogram images 97% Accuracy, 96.6% Recall

Oliveira et al. 42] Multitaper spectral analysis 71.88% Precision, 85.1% recall

Rangan et al. 3] Fuzzy neural network 87.6% Accuracy 94% recall

Ghanbari and Moradi 40] Synchrosqueezing Transform 93% Recall

Patti et al. 41] Pattern matched wavelets Recall 84%, precision 62%

Chambon et al. 36] Custom CNN for object detection Precision < 80% @ IoU = 30%

Tapia and Estéves [39] Recurrent Event Detector Precision = 84.9% @ IoU = 20%

This work Object detection in EEG waveform images 79.4499.44% precision @ IoU = 60%
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In terms of performance, Dumitrescu et  al. [11] 
reported comparable results to the ones in this paper, 
however, their results showed great discrepancies in 
that the training accuracy was 67.87% as opposed to 
the testing accuracy of 98.3%, which does not make 
sense as the artificial intelligence model should be 
optimized for the former. The studies of Al-Salman 
et  al. [12, 13] performed complex feature extraction 
using techniques from graph theory and multi-domain 
features. However, their data preprocessing technique 
resulted in windows with 80% overlap to adjacent one, 
and this may lead to data leaking. Moreover, there is 
no mention in both studies how a detected K-complex 
is considered correct or wrong in comparison to the 
ground truth data (i.e., should there be perfect overlap 
or what percentage is considered correct?). The same 
argument can be made about the study by Rangan 
et al. [3]. Other traditional methods as in the works of 
Ghanbari and Moradi [40] and Patti et al. [41] did not 
achieve good detection precision.

The work in this paper is different in that it does 
not rely upon explicit signal processing techniques 
(e.g., filtration), transformation to other domains (e.g., 
spectrograms), nor on the quality of the proposed fea-
tures and the quality of their extraction. Furthermore, 
the approach follows the natural working of the EEG 
inspection process by treating the waveform as an 
image, which enables seamless clinical deployment. 
Moreover, in comparison to the transfer learning used 
here, custom CNN designs need thorough evalua-
tion to establish their worthiness in comparison to 
the well-established models. Also, some of the related 
works did not precisely define how a correct detection 
is accepted. Moreover, superior performance in com-
parison to the literature was achieved over all metrics 
in most cases.

The present study has some limitations. First, the gen-
eration of images from the dataset may have led to data 
leaking. This is because shifting the waveform by a small 
amount will result in lookalike images that are easily 
discovered by the deep learning models. Second, lim-
iting the appearance of K-complexes to one per image 
resulted in a very small dataset. Deep learning models 
learn better from larger datasets and produce more sta-
ble performance [28]. Third, a larger dataset with more 
patients will enable more robust evaluation of more 
diverse EEG waveforms, even if little differences exist 
across subjects. Fourth, partially existing K-complexes 
were not handled explicitly by the methods in this work. 
Partial K-complexes may exist in an EEG recording due 
to errors in annotation, recording cutoff, or in the image 
generation procedure (however, such images do not 

exist in this work). Moreover, no other types of sleep 
events (e.g., spindles) were considered in the detection 
and location process. Fifth, Faster R-CNN does not 
handle windows with no K-complexes [5]. Sixth, it is 
worthwhile, based on the reported results, to embed the 
model and other future models in smartphone applica-
tions. These should be made available to professionals 
in order to identify shortcomings and improve the sys-
tem with feedback and more data (Additional files 1, 2).

Conclusion
EEG signal analysis is important for the diagnosis of 
many brain pathologies. This relies on detecting cer-
tain events in the signal. The K-complex is one of those 
features of the EEG waveform. It is used by clinicians 
in sleep studies and to detect brain abnormalities. 
However, the graphical inspection of the waveform is 
tedious, time consuming, and error-prone. Moreover, 
existing methods in the literature are based on complex 
signal and image processing techniques that may not be 
suitable for practical deployment and usability. In addi-
tion, they suffer from low accuracy.

Deep learning is gaining great traction in the artificial 
intelligence literature with many applications spanning 
various scientific fields especially in classification prob-
lems. Given a set of EEG waveform images, this work 
employed deep transfer learning and Faster R-CNN to 
determine the location of K-complexes with great pre-
cision. Nonetheless, expanding the dataset with more 
recording from a diverse number of subject should 
allow more robust evaluation and performance. The 
increasing real-life deployment of artificial intelligence-
enabled devices and applications, and the high robust 
performance will make it easier to implement K-com-
plex detection applications for usage by clinicians.
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