
R E S E A R C H Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Haque et al. BMC Medical Informatics and Decision Making          (2022) 22:282 
https://doi.org/10.1186/s12911-022-02015-0

BMC Medical Informatics 
and Decision Making

*Correspondence:
William J. Richardson
wricha4@clemson.edu
1Biomedical Data Science & Informatics Program, Clemson University, 
Clemson, SC, USA

2School of Medicine, Columbia Veterans Affairs Health Care System, 
University of South Carolina, Columbia, SC, USA
3Bioengineering Department, Clemson University, Clemson, SC, USA
4301 Rhodes Engineering Research, 29634 Clemson, SC, USA

Abstract
Background  Cardiac Resynchronization Therapy (CRT) is a widely used, device-based therapy for patients with left 
ventricle (LV) failure. Unfortunately, many patients do not benefit from CRT, so there is potential value in identifying 
this group of non-responders before CRT implementation. Past studies suggest that predicting CRT response will 
require diverse variables, including demographic, biomarker, and LV function data. Accordingly, the objective of this 
study was to integrate diverse variable types into a machine learning algorithm for predicting individual patient 
responses to CRT.

Methods  We built an ensemble classification algorithm using previously acquired data from the SMART-AV CRT 
clinical trial (n = 794 patients). We used five-fold stratified cross-validation on 80% of the patients (n = 635) to train the 
model with variables collected at 0 months (before initiating CRT), and the remaining 20% of the patients (n = 159) 
were used as a hold-out test set for model validation. To improve model interpretability, we quantified feature 
importance values using SHapley Additive exPlanations (SHAP) analysis and used Local Interpretable Model-agnostic 
Explanations (LIME) to explain patient-specific predictions.

Results  Our classification algorithm incorporated 26 patient demographic and medical history variables, 12 
biomarker variables, and 18 LV functional variables, which yielded correct prediction of CRT response in 71% of 
patients. Additional patient stratification to identify the subgroups with the highest or lowest likelihood of response 
showed 96% accuracy with 22 correct predictions out of 23 patients in the highest and lowest responder groups.

Conclusion  Computationally integrating general patient characteristics, comorbidities, therapy history, circulating 
biomarkers, and LV function data available before CRT intervention can improve the prediction of individual patient 
responses.

Keywords  Interpretable machine learning, Heart failure, Biomarkers, Cardiac resynchronization therapy, Personalized 
medicine
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Background
Cardiac resynchronization therapy (CRT) is the preferred 
treatment method for patients with ventricular dyssyn-
chrony accompanied by reduced ejection fraction and 
bundle branch block [1]. CRT reduces the risk of sudden 
heart failure due to the weakening of the heart muscle 
and can help alleviate disease symptoms for an improved 
quality of life [2]. The 2008 American Heart Association 
/ American College of Cardiology and 2007 European 
Society of Cardiology guidelines recommend the follow-
ing criteria for selecting patients for CRT: patients with 
sinus rhythm, left ventricular ejection fraction ≤ 35%, 
QRS > 120ms, NYHA class III/IV [3]. Unfortunately, 
roughly one-third of CRT recipients do not respond 
favorably to the treatment [4]. Given its expense and 
surgical risks, the ability to accurately predict individual 
patient benefits from this treatment could hold great 
clinical value [5].

The field of biomedical science has seen a surge in 
predictive models for disease prognosis and treatment 
outcomes using various machine learning approaches 
for detecting subtle patterns in underlying datasets [6, 
7]. Recent studies have tested the utility of advanced 
machine learning algorithms for predicting the response 
to CRT using various patient data including electronic 
health records, clinical imaging, electrocardiograms, etc., 
and some of these studies have reported moderate pre-
dictive accuracy [8–14]. However, notably absent in most 
CRT predictive algorithms is the inclusion of biochemi-
cal features. Given the important roles that biochemical 
markers such as extracellular matrix proteins and inflam-
matory signals can play in cardiac tissue remodeling, Spi-
nale and colleagues recently showed that the circulating 
levels of several serum protein biomarkers can hold excit-
ing predictive capability for CRT response [15]. Notably, 
elevated levels of the soluble suppressor of tumorigenic-
ity-2 (sST-2), soluble tumor necrosis factor receptor-II 
(sTNFr-II), matrix metalloproteinases-2 (MMP-2), and 
C-reactive protein (CRP) indicated a reduced likelihood 
of benefit across ~ 800 patients from the SMART-AV 
CRT trial.

Past efforts to predict individual patient responses to 
CRT using machine learning algorithms have largely 
been limited in two ways. First, most studies have used 
only a single type of data to make predictions (e.g., elec-
trocardiograms or biochemical markers - not both). Sec-
ond, most studies have used sophisticated ‘black-box’ 
algorithms with a limited ability for interpretation or 
explanation, which can potentially hinder their adoption 
and utility in clinical practice. One approach for improv-
ing interpretability is using simpler models like regres-
sion approaches, but an increase in recent explainability 
approaches is helping to make any model interpretable 
without penalizing prediction accuracy [16–18].

In this study, our objective was to computationally 
predict individual patient responses to CRT using a 
combination of demographics, physical characteristics, 
comorbidities, medication history, circulating biomarker 
levels, and echo-based LV assessment. Building upon 
the previous work of Spinale et al., we combined their 
biomarker-based metric with various features from the 
SMART- AV clinical patient data [15, 19]. We assessed 
the performance of our resulting ensemble machine 
learning classification model using receiver-operating 
curve analysis for a hold-out patient dataset and com-
parisons of 6-month cardiac measures between model-
predicted responder and non-responder groups. We also 
performed SHapley Additive exPlanations (SHAP) analy-
sis to help interpret the global importance of all features 
included in the model.

Methods
Study population and data preparation
The data source for our model training and testing 
was the SMART-AV trial published previously [19]. 
In that study, 794 patients with NYHA class II and IV, 
LVEF ≤ 35%, and QRS duration ≥ 120 milliseconds were 
randomly assigned to different defibrillation protocols 
and evaluated at 0, 3, and 6 months with echocardiog-
raphy and serum biomarker panels. The complete list of 
recorded features is organized in Table 1 with summary 
statistics in Table 2. A positive CRT response was defined 
as a decrease in ESV of at least 15 mL between 0 and 6 
months post-surgery, and the patient cohort held a nearly 
equal split of responders (n = 398) and non-responders 
(n = 396).

Missing data were imputed using two different meth-
ods for our study. Surgical intervention features, PCI 
and CABG, were imputed to match the most frequent 
value for each of those features. Categorical data were 
transformed using one-hot encoding. Non- categorical 
data and continuous data were imputed using the mean 
value for each respective variable, followed by the scaling 
using the RobustScaler method [20]. The patients were 
split into training and testing datasets, with 80% in the 
training dataset (n = 635) and 20% in the testing dataset 
(n = 159). The testing set was completely excluded from 
model training and feature selection.

Machine learning model development
The complete workflow of our model development, test-
ing, and interpretation framework is presented in Fig. 1. 
Using Python 3.6.4 and scikit-learn 0.23.2, we tested a 
wide variety of supervised classification machine learning 
algorithms, including K-Nearest Neighbors, Support Vec-
tor Classifier, Decision Tree Classifier, Random Forest, 
Adaptive Boosting, Gradient Boosted Classifier, Gauss-
ian Naive Bayes classifier, Linear Discriminant Analysis, 
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XGBoost, Catboost, logistic regression, and Multi-Layer 
Perceptron Neural Network [20]. We also tested Stacked 
and Voting ensembles that combined these other 
approaches [21–23]. This list of algorithms includes well-
established methods for binary classification tasks where 
parameters are fit to the underlying classifier structures 
in order to optimize predictive performance. In general, 
“ensemble” algorithms seek to improve classification per-
formance by combining several individual algorithms, 
thereby leveraging the different strengths of each under-
lying algorithm. “Boosting” approaches, generally, are 
techniques to improve relatively weak classifiers by itera-
tively re-weighting data, thereby enabling the algorithm 
to adapt over successive iterations of model training.

Each model was tuned using a cross-validated grid 
search across hyperparameters with parameters selected 
to maximize the area under the receiver-operating 
characteristic curve (AUC) for binary classification of 
patients in the training set. Notably, the algorithm only 
used 0-month (pre-surgery) feature data to predict 
the 6-month post-surgery response vs. non-response 

outcome. The resulting model parameters and hyperpa-
rameters are provided in Supplemental Table 1.

Feature selection was performed using a backward 
stepwise methodology, eliminating features that did not 
improve the model training score. A guiding hypothesis 
for this work was that combining the previously identi-
fied serum biomarkers with demographic and echo-based 
features would improve predictive capability. To evaluate 
this hypothesis, we trained and tested our ensembled 
model using three different sets of features, including all 
features listed in Table 1 plus (1) no biomarker values, (2) 
all 12 biomarker values, or (3) a biomarker score based 
on previous analysis by Spinale et al. [15]. The biomarker 
score for each patient is calculated by counting how 
many of the four critical biomarker analytes exceed a risk 
threshold (MMP-2 ≥ 982,000 pg/mL, sST-2 ≥ 23,721 pg/
mL, CRP ≥ 7381 ng/mL, sTNFR-II ≥ 7,090 pg/mL).

Model interpretation
Model performance was evaluated using 5-fold cross-
validation within the training dataset, and the final model 
was selected based on the highest mean AUC. After 
model selection using the training set, the final model 
performance was validated using the holdout validation 
set. Interpretation of model output results is difficult 
with ensemble models due to the inherent complexity 
of layering multiple algorithms to select a prediction. To 
help interpret global feature importance, we performed 
a SHapley Additive exPlanations (SHAP) analysis using 
the Python SHAP library 0.37.0 KernelExplainer and 
KernelSHAP using all samples as input for SHAP value 
calculation [24]. With ensemble models, feature impor-
tance and predictions become very personalized to the 
individual sample making it difficult to understand a 
local prediction using only global feature importance. To 
provide a more personalized explanation of an individual 
prediction, local interpretation is more accurate. We also 
picked two examples of CRT recipients to demonstrate 
how the model behaves locally for responders and non-
responders using Local Interpretable Model-agnostic 
Explanations (LIME) [25].

Results
Model predictive performance
Across all the algorithms tested, a majority-voting 
ensemble classification model demonstrated the best 
performance. The ensemble consisted of nine equally 
weighted models, each voting with their respective prob-
ability of surgical success: a Linear Discriminant Analysis 
classifier, a Catboost Classifier, a Gradient Boosted clas-
sifier, a Random Forest classifier, an XGBoost classifier, 
a Support Vector Classifier, a 3-layer Multi-level Per-
ceptron Neural Network, a Logistic Regression Classi-
fier, and an Adaboost classifier. Without using biomarker 

Table 1  Variables acquired from the SMART-AV clinical trial
Domain Individual Feature
General Charac-
teristics (10)

Sex, Age, Height, Weight, Systolic Blood Pressure 
(BPsys), Diastolic Blood Pressure (BPdia), Heart Rate 
at Rest (HRrest), QOL Score, 6-Minute Walk Distance, 
Center size

Comorbidities 
(10)

Atrial Fibrillation (Afib), Paroxysmal Atrial Fibrillation 
(PAF), Atrial Flutter, Renal Disease, Chronic Obstructive 
Pulmonary Disease (COPD), Premature Ventricular 
Contractions (PVC), Atrial Tachycardia Paroxysmal 
Supraventricular Tachycardia (AT-PSVT), History of Left 
Bundle Branch Block (LBBB), History of Right Bundle 
Branch Block (RBBB), Ischemic Cardiomyopathy

Surgical History 
(3)

Sinoatrial (SA) Node Surgery, Coronary Artery Bypass 
Graft (CABG), Pre-Cutaneous Coronary Intervention 
(PCI)

Medications (3) Diuretics, Ace inhibitors or ARBs (ACE-ARB), Digoxin

Echo-based As-
sessment (6)

Left Ventricular End Diastolic Volume (LVEDV), Left 
Ventricular End Systolic Volume (LVESV), Left Ventricu-
lar Ejection Fraction (LVEF), Stroke Volume (SV), EDV/
ESV, 1-Dimensional Stretch (cube root of EDV/ESV)

ECG (12) AV Interval without Atrial Pacing, PR Interval without 
Atrial Pacing, QRS Width, VT None, VT Nonsustained, 
VT Supraventricular Tachycardia (VT-SVT), Sick Sinus, 
Paced AV Delay, Echo Optimized AV Delay, Iterative AV 
Delay, Fixed AV Delay, Sensed AV Delay

Circulating Bio-
markers (12)

Matrix Metalloproteinase 2 (MMP-2), Matrix Metal-
loproteinase 9 (MMP9), Soluble Suppression of 
Tumorigenicity 2 (sST-2), C-Reactive Protein (CRP), 
N-terminal pro B-type Natriuretic Peptide (NT- proB-
NP), Tissue Inhibitors of Metalloproteinase 1 (TIMP1), 
Tissue Inhibitors of Metalloproteinase 2 (TIMP2), Tis-
sue Inhibitors of Metalloproteinase 4 (TIMP4), Soluble 
Glycoprotein 130 (sGP130), Soluble Interleukin 2 
Receptor Alpha (sIL2Ra), Tumor Necrosis Factor 
Receptor II (sTNFR-II), Interferon Gamma (IFNg)
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data, our algorithm approach demonstrated modest pre-
dictive performance with an AUC of 0.63 in the train-
ing patient set (Table 3). The addition of biomarker data 
substantially improved model performance with an AUC 

reaching 0.75 in the training patient set using all 12 bio-
markers or the simplified biomarker composite score 
(Table 3). Using the biomarker score with a voting clas-
sifier reached the highest AUC in both the training and 

Table 2  Baseline characteristics of CRT Responders and Non-Responders
Feature Name All

(n = 794)
CRT Non-Responder (n = 396) CRT Responder (n = 398)

Continuous Variables, unit
Age, year 65.8 ± 10.8 65.6 ± 10.7 66.1 ± 10.9

Height, cm 171.4 ± 10.4 171.6 ± 10.0 171.3 ± 10.7

Weight, kg 87.4 ± 20.8 88.2 ± 20.6 86.6 ± 20.9

BPSys, mm Hg 123.9 ± 20.3 123.2 ± 19.4 124.6 ± 21.0

BPDia, mm Hg 71.4 ± 13.4 71.3 ± 13.5 71.5 ± 13.3

HRrest, bpm 71.1 ± 12.3 70.9 ± 12.7 71.3 ± 11.0

QOL Score 46.6 ± 24.9 50.0 ± 25.8 43.3 ± 23.5

6 MW, m 273.4 ± 124.6 262.3 ± 133.1 284.5 ± 114.6

LVEDV, mL 176.7 ± 72.1 162.9 ± 66.9 190.5 ± 74.5

LVESV, mL 131.6 ± 65.6 118.0 ± 60.0 145.1 ± 68.2

LVEF, % 27.7 ± 8.8 29.7 ± 9.3 25.6 ± 7.8

SV, mL 45.1 ± 14.1 44.9 ± 14.6 45.3 ± 13.6

EDV/ESV Ratio 1.4 ± 0.2 1.5 ± 0.2 1.4 ± 0.2

1D Stretch 1.1 ± 0.0 1.1 ± 0.1 1.1 ± 0.0

AV Interval (Without Atrial Pacing), ms 252.5 ± 69.1 252.7 ± 70.6 252.2 ± 67.6

PR Interval (Without Atrial Pacing), ms 197.2 ± 49.8 200.2 ± 51.3 194.2 ± 48.3

QRS Width (Without Atrial Pacing), ms 153.6 ± 27.3 150.6 ± 26.7 156.7 ± 27.6

Iterative AV Delay (Recommended), ms 127.7 ± 38.2 131 ± 36.3 123.4 ± 39.6

Paced AV Delay (Recommended), ms 174.9 ± 39 181.2 ± 41.2 168.6 ± 37.7

Sensed AV Delay (Recommended), ms 127.1 ± 37.3 132.4 ± 39 121.8 ± 34.9

Biomarker CRT Score (0,1,2,3,4) 1.7 ± 1.2 2 ± 1.1 1.4 ± 1.1

Binary Categorical Variables, n (%)
Sex (Male) 565 (67.4%) 281 (71%) 254 (63.8%)

Atrial Fibrillation (Afib) 99 (12.5%) 57 (14.4%) 42 (10.6%)

PAF 97 (12.2%) 56 (14.1%) 41 (10.3%)

Atrial Flutter 10 (1.3%) 9 (2.3%) 1 (0.3%)

Renal Disease 117 (14.7%) 63 (15.9%) 54 (13.6%)

COPD 115 (14.5%) 64 (16.2%)) 51 (12.8%)

PVC 13 (1.6%) 8 (19.7%) 5 (1.3%)

AT-PSVT 12 (1.5%) 8 (2%) 4 (1%)

LBBB 611 (77%) 272 (68.7%) 339 (85.2%)

RBBB 103 (13%) 78 (19.7%) 25 (6.3%)

Ischemic Cardiomyopathy 445 (56%) 271 (68.4%) 174 (43.7%)

SA Surgery 93 (11.7%) 58 (14.6%) 35 (8.8%)

CABG 257 (32.4%) 163 (41.2%) 94 (23.6%)

PCI 248 (31.2%) 155 (39.1%) 93 (23.4%)

Diuretic 637 (80.2%) 316 (79.8%) 321 (80.7%)

ACE-ARB 674 (84.9%) 325 (82.1%) 349 (87.7%)

Digoxin 176 (22.2%) 96 (24.2%) 80 (20.1%)

Small Centersize 176 (22.2%) 86 (21.7% 90 (22.6%)

Sick Sinus 53 (6.7%) 24 (6.1%) 29 (7.3%)

VT None 654 (82.4%) 311 (78.5%) 343 (86.2%)

VT Non-Sustained 95 (12%) 51 (12.9%) 44 (11.1%)

VT SVT 3 (0.4%) 2 (0.5%) 1 (0.3%)

Echo Optimized AV Delay Group 261 (32.9%) 128 (32.3%) 133 (33.4%)

Fixed AV Delay Group 262 (33.0%) 139 (35.1%) 123 (30.9%)
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test patient set, so we proceeded with this model for the 
remaining analyses (Table 4; Fig. 2 A).

Our binary classification model correctly predicted 
71% of patient responses in the test set, with 61/88 clas-
sified responders and 52/71 classified non-responders 
matching the trial result (Fig.  2B). In other words, the 
prediction yielded 61 true positives, 52 true negatives, 27 

false positives, and 19 false negatives. To analyze more 
detailed patient stratifications, we separated patients 
into five groups according to the model-predicted prob-
ability of response (i.e., probability bins = 1-0.8, 0.8 − 0.6, 
0.6 − 0.4, 0.4 − 0.2, or 0.2-0). Across the stratified patients, 
the model correctly identified 96% of patients in the 
highest and lowest response groups, with 14/15 patient 
responders in the high probability score group and 
8/8 non-responders in the low probability score group 
(Fig. 2B).

In addition to response rate (which is judged by a strict 
over/under -15mL threshold for ESV change over six 
months), we also explored quantitative changes in left 
ventricle remodeling metrics across the model classifica-
tion groups (Fig. 3). Over six months after the procedure, 
patients predicted by the model as responders showed 
significant reductions in both ESV and EDV, while 
patients classified as non-responders showed no change 
in ESV and a slight increase in EDV over six months. 
Both responders and non-responders showed increased 
stroke volumes and ejection fractions, but the model-
predicted responders showed a statistically more signifi-
cant improvement in ejection fraction (~ 40% compared 
to ~ 20%). These discrepancies between groups were 
amplified further across the 5-group patient stratification 
using the model probability score (Fig. 3B). In the most 
extreme case, the high response probability group exhib-
ited almost a 75% improvement in ejection fraction, while 
the low response probability group exhibited no change 
in ejection fraction over the 6 months after surgery.

Model interpretability
To improve the interpretability of our ensemble classifi-
cation algorithm, we performed a SHAP analysis and cor-
responding visualization of feature importance (Fig. 4 A). 
Briefly, this technique calculates a collective, global aver-
age of how much each feature value contributed to each 
patient’s classification to indicate both the magnitude 
and direction that each feature contributes to the overall 
probability of falling on either side of the binary classi-
fier (i.e., responders vs. non-responders). SHAP analysis 

Table 3  Area-Under-the-Curves (AUC) for the ML models with or 
without the biomarker data
Feature Set Biomarker Feature Used Train 

AUC
(n = 635)

Test 
AUC
(n = 159)

No Biomarkers None 0.63 0.74

All Biomarkers MMP-2, MMP9, sST-2, CRP, NT- 
proBNP, TIMP1, TIMP2, TIMP4, 
sGP130, sIL2Ra, sTNFR-II, IFNg

0.75 0.77

Biomarker Score 
(0,1,2,3,4)

MMP-2 (≥ 982,000 pg/mL), 
sST-2(≥ 23,721 pg/mL), CRP 
(≥ 7381 ng/mL), sTNFR-II 
(≥ 7,090 pg/mL)

0.75 0.78

Fig. 1  General workflow of algorithm development and testing
 Patients were previously enrolled in the SMART-AV clinical trial based 
upon their New York Heart Association (NYHA) heart failure designation, 
left ventricular ejection fraction (LVEF), and duration of the Q-R-S wave 
from electrocardiography, and patients were then classified as responders 
or non-responders based upon their change in left ventricular end-systolic 
volume (LVESV) after six months of therapy [19]. We first processed the da-
taset by imputing missing values, numerically encoding categorical vari-
ables, and data scaling, and then we separated patients into the training 
set (for model parameter fitting) and testing set (for model performance 
testing). Lastly, we used SHapley Additive exPlanations (SHAP) analysis and 
Local Interpretable Model-agnostic Explanations (LIME) to improve model 
interpretation through feature explanation
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indicated that lower 1D stretch, lower biomarker score, 
absence of ischemic cardiomyopathy, lower QOL score, 

and higher age were strong global contributors within the 
algorithm for identifying responders.

Table 4  Comparison of the performance of the top 6 models in our study using Biomarker Scoring
Model Name Accuracy

Train
Accuracy
Test

Recall
Train

Recall
Test

ROC-AUC
Test

F1
Test

MCC
Test

Voting Classifier 1.000 0.730 0.997 0.713 0.784 0.726 0.460
Stacking Classifier 0.855 0.723 0.915 0.800 0.772 0.744 0.451

Gradient Boosting Classifier 1.000 0.730 1.000 0.625 0.775 0.699 0.470

Logistic Regression 0.706 0.692 0.733 0.763 0.766 0.713 0.387

Random Forest Classifier 0.935 0.679 0.940 0.750 0.757 0.702 0.361

Adaptive Boosting Classifier 0.751 0.667 0.802 0.775 0.723 0.701 0.340

Fig. 3  Cardiac remodeling across patient stratifications
 Model-predicted responders showed statistically significant differences in left ventricle remodeling metrics compared to the model-predicted non-
responders. (A) Binary classification identified a responder group with substantially greater improvements in ESV, EDV, and EF from 0–6 months after CRT 
intervention. (B) More detailed patient stratification further amplified the remodeling differences across groups

 

Fig. 2  Overall performance of the machine learning model
 The Receiver-Operating Characteristic curve for the supervised, binary classification ensemble model demonstrates high predictive capability with an 
area-under-the-curve of 0.784 for the majority voting classifier. (B) Model-predicted responders exhibited a 69% response rate (61/88), while model-
predicted non-responders exhibited only a 27% response rate (19/71). Further stratification based on the model-predicted responses probability score 
demonstrated a greater predictive accuracy
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To demonstrate feature importance in a local, patient-
specific visualization, we use LIME for an exam-
ple responder and non-responder (Fig.  3B). For the 
responder patient example with a higher probability of 
responding to CRT (0.81), 1D stretch of less than or equal 
to 1.08 and no history of RBBB, Atrial Flutter, Ischemic 

Cardiomyopathy, AT-PSVT, PAF, and SA are helping to 
move the patient to the response regimen. But no history 
of VT-SVT, non-sustained VT, and Biomarker Score > 2 
contribute to non-responsiveness for this patient. For the 
non-responder patient example with a higher probability 
of not responding to CRT (0.75), 1D stretch of greater 

Fig. 4  Global and local interpretations of model predictions
 (A) SHAP plot shows the feature importance in our model. 1D stretch, biomarker score, ischemic cardiomyopathy, QOL score, and age were indicated as 
the top 5 most important features for determining patient response probability. The scatter width and separation indicate the feature importance, and 
the color indicates which direction of that feature value is predictive of high vs. low patient response. (B) LIME plot shows the most significant contribut-
ing features for an example responder wherein a 1D Stretch of ≤ 1.08 along with a lack of RBBB, atrial flutter, ischemic cardiomyopathy, AT_PSVT, PAF, 
and SA surgery increased the probability of responding favorably to CRT treatment. (C) LIME plot shows the most significant contributing features for an 
example non-responder wherein a 1D Stretch of > 1.14 along with a lack of VT-SVT, Afib, and nonsustained VT increased the probability of not responding 
to treatment. On the other hand, a history of ischemic cardiomyopathy also affected the predicted non-response to CRT.
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than 1.14, a history of Ischemic Cardiomyopathy, and no 
history of VT-SVT, Afib, and Nonsustained VT are help-
ing to move the patient to the non-response group. But 
no history of RBBB, Atrial Flutter, SA surgery, PAF, and 
Biomarker Score of zero is responsible for this patient’s 
small probability of response to CRT.

Discussion
While CRT offers significant clinical benefits for many 
heart failure patients, a large proportion of the popula-
tion does not respond positively to treatment [4]. This 
high patient-to-patient variability presents a need for 
predictive methods to help identify which patients will or 
will not benefit from CRT based on information obtained 
before the procedure. We hypothesized that integrating 
multiple data sources and including biochemical levels 
from serum panels would significantly improve the pre-
dictive ability of machine learning algorithms.

Using previously obtained patient data in the SMART-
AV trial, we built a novel algorithm that integrates demo-
graphic data, physical characteristics, medical history, 
circulating biomarker levels, and echocardiography 
data to improve the prediction of CRT response before 
surgical intervention. In a previous study, Spinale and 
colleagues showed significant predictive power for iden-
tifying CRT response using pre-surgical levels of specific 
serum protein biomarkers (sST-2, sTNFr-II, MMP-2, and 
CRP) [15]. Given the important roles of inflammation 
and extracellular matrix turnover for regulating cardiac 
remodeling related to CRT, it should be no surprise that 
circulating proteins are associated with CRT response 
either as upstream regulators or downstream correlates. 
We combined the Spinale et al. patient biomarker score 
with 40 other input features spanning echo-based LV 
metrics, medical history, demographic information, and 
basic clinical assessments. Using these features enabled 
our ensemble machine learning classifier to correctly 
identify 71% of patient response outcomes, achieving an 
AUC of 0.784 – a substantial improvement over the pre-
vious study using the biomarker score alone [15].

A major limitation of many machine learning 
approaches is their ‘black-box’ nature of predictions, or 
in other words, their un-explainability. Future adoption 
of artificial intelligence into the clinical decision-mak-
ing process will undoubtedly be affected by an ability 
to explain (to some degree at least) why models predict 
what they predict and to identify the driving variables 
within the algorithms, especially for high-risk and costly 
decisions like CRT treatment. To improve interpretabil-
ity in high risk or costly decisions, a growing emphasis 
is being put on ‘glass-box’ or ‘white-box’ techniques. We 
employed SHAP analysis to elucidate the relative contri-
bution of each feature globally to the patient response 
probability output of our model (Fig.  4). This analysis 

revealed that important features came from diverse data 
sources, with the top five features including echo-based 
data (1D stretch), serum protein data (biomarker score), 
co-morbidity data (ischemic cardiomyopathy), clini-
cal evaluation data (QOL score), and demographic data 
(patient age). In addition, LIME revealed features respon-
sible for personalized prediction and showed diverse 
feature sets responsible for individual response to treat-
ment. Of course, we must emphasize that the power of 
these features to predict CRT response is indicative of 
their correlation to cardiac remodeling and not neces-
sarily indicative of their mechanistic causation of car-
diac remodeling. Additional notable limitations include 
a relatively short follow-up time of 6 months and a rela-
tively small patient sample size (compared to thousands 
of patients’ data used in electronic health record-based 
algorithms).

Numerous recent studies have applied a wide range 
of machine learning approaches to predict CRT from 
diverse datasets [8–14]. All these reports have gener-
ally produced AUC values > 0.7 with the best performing 
algorithms ~ 0.8% (comparable to our 0.784 AUC). The 
datatypes used for these past reports have varied (elec-
tronic health records, clinical imaging, demographic 
data, electrocardiograms, etc.), and the computational 
algorithms have spanned a range of simple regression 
models to more complicated approaches including gradi-
ent boosting [8], Naïve-Bayes [9], multiple kernel learning 
[10], random forest [11], adaptive lasso [12], and support 
vector machines [13]. In agreement with our results, 
the most important predictors from past studies have 
spanned different data types across comorbidity (e.g., 
ischemic cardiomyopathy and LBBB), electro-mechan-
ical (e.g., systolic blood pressure, QRS width, and wall 
strains), and demographic data (e.g., age and sex) [8, 10, 
12]. This diversity of predictor type further supports our 
underlying hypothesis that various data sources are not 
necessarily redundant and can therefore provide additive 
benefit for identifying CRT response.

Current clinical guidelines define specific eligibility cri-
teria for physicians to base their CRT recommendations 
[26]. The increasing accuracy of computational predic-
tions suggests that incorporating personalized model-
based probabilities could benefit such recommendation 
criteria. Encouragingly, our patient stratification demon-
strated 96% accuracy in the highest and lowest response 
subgroups with significant differences in volume changes 
and functional changes over six months post-CRT. Using 
higher resolution (quintile) binning was motivated by the 
potential practical utility for a clinician to label patients 
as very high, high, neutral, low, and very low response 
categories. Clinician decisions are often more compli-
cated than simply “operate vs. do not operate”, so the 
intermediate group binning could inform when to take 
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other clinical options (e.g. additional measurements, 
prolonged observation, etc.). Our algorithm was built 
and tested using only baseline, pre-CRT measurements, 
demonstrating that it is feasible for machine learn-
ing algorithms to harness a composite set of data from 
the demographic, functional, and biomarker domains 
obtained at the time of patient evaluation for CRT and 
provide predictive value on the ultimate CRT response. 
As future model developments are likely to further 
improve prediction accuracy across a broader number of 
patients, future clinical and ethical discussions will prove 
vital to appropriately leverage this predictive information 
into CRT decisions.

Conclusion
In this study, we have shown that integrating multiple 
types of data including demographics, circulating bio-
markers, and echo-based structure features can improve 
the predictive capability of machine learning algorithms 
to identify CRT responders and non-responders before 
intervention. Further, interpretability approaches like 
SHAP and LIME can help elucidate specific contribu-
tions of each feature’s role in determining the predicted 
responses across a cohort and patient-specific level.
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