
Vivas‑Valencia et al. 
BMC Medical Informatics and Decision Making          (2022) 22:244  
https://doi.org/10.1186/s12911-022-01991-7

RESEARCH

A two‑phase approach to re‑calibrating 
expensive computer simulation for sex‑specific 
colorectal neoplasia development modeling
Carolina Vivas‑Valencia1, You Zhou1, Aditya Sai2, Thomas F. Imperiale3,4,5 and Nan Kong1* 

Abstract 

Background:  Medical evidence from more recent observational studies may significantly alter our understanding of 
disease incidence and progression, and would require recalibration of existing computational and predictive disease 
models. However, it is often challenging to perform recalibration when there are a large number of model parameters 
to be estimated. Moreover, comparing the fitting performances of candidate parameter designs can be difficult due 
to significant variation in simulated outcomes under limited computational budget and long runtime, even for one 
simulation replication.

Methods:  We developed a two-phase recalibration procedure. As a proof-of-the-concept study, we verified the 
procedure in the context of sex-specific colorectal neoplasia development. We considered two individual-based state-
transition stochastic simulation models, estimating model parameters that govern colorectal adenoma occurrence 
and its growth through three preclinical states: non-advanced precancerous polyp, advanced precancerous polyp, 
and cancerous polyp. For the calibration, we used a weighted-sum-squared error between three prevalence values 
reported in the literature and the corresponding simulation outcomes. In phase 1 of the calibration procedure, we 
first extracted the baseline parameter design from relevant studies on the same model. We then performed sampling-
based searches within a proper range around the baseline design to identify the initial set of good candidate designs. 
In phase 2, we performed local search (e.g., the Nelder-Mead algorithm), starting from the candidate designs identi‑
fied at the end of phase 1. Further, we investigated the efficiency of exploring dimensions of the parameter space 
sequentially based on our prior knowledge of the system dynamics.

Results:  The efficiency of our two-phase re-calibration procedure was first investigated with CMOST, a relatively 
inexpensive computational model. It was then further verified with the V/NCS model, which is much more expen‑
sive. Overall, our two-phase procedure showed a better goodness-of-fit than the straightforward employment of the 
Nelder-Mead algorithm, when only a limited number of simulation replications were allowed. In addition, in phase 
2, performing local search along parameter space dimensions sequentially was more efficient than performing the 
search over all dimensions concurrently.

Conclusion:  The proposed two-phase re-calibration procedure is efficient at estimating parameters of computation‑
ally expensive stochastic dynamic disease models.
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Background
Colorectal cancer (CRC) is the second most common 
cancer in the United States for men and women com-
bined [1]. In 2017, there were roughly 135,000 new CRC 
cases, with 45% of men and 39% of women younger than 
65 at the age of diagnosis [2]. Colorectal neoplasia devel-
opment can take many years, remaining asymptomatic 
for much or all of this time. The development starts with 
small pre-cancerous polyps growing in the internal lin-
ing of the colon and rectum. These polyps may gradually 
increase in size or develop advanced histological features. 
Finally, advanced, precancerous polyps may evolve into 
invasive adenocarcinoma, eventually spreading locally 
or systemically through lymph and blood vessels. The 
five-year survival rate of CRC is 90% when the cancer is 
confined to the colon and rectum, whereas the five-year 
survival rate declines to 12% when it has spread to distant 
locations [3].

For CRC prevention, along with improving the accu-
racy and convenience of screening tests, there is a need 
to improve the prediction of tumor incidence and symp-
tom onset via computational and predictive modeling 
of colorectal neoplasia development. Once this need is 
addressed, diagnostic screening and surveillance can 
be better targeted on those at high risk of rapid disease 
progression. In recent clinical practice, patients are often 
further classified by detection of advanced precancer-
ous polyps, which include adenomas and sessile serrated 
polyps ≥ 10 mm, and adenomas with villous histology or 
high-grade dysplasia [4, 5]. Individuals with advanced 
precancerous lesions are more likely to develop other 
advanced lesions and asymptomatic CRC [6]. With 
improved prediction of precancerous lesion advance-
ment, population surveillance can become more effective 
and cost-effective.

Additional evidence from more recent clinical studies 
may emerge, which requires updates on our understand-
ing of colorectal neoplasia development. Moreover, many 
of these studies are conducted by exploring risk factors, 
e.g., comparing men and women, on the development. As 
a result, we often need to retrain existing computational 
models (i.e., updating the estimates of model parameters) 
to quantify the differences based on new data from the 
same population and/or data from a new population with 
distinct features from previously studied ones. This can 
help provide predictive intelligence on timely adjustment 
of CRC screening and surveillance strategies in terms of 
cost-effectiveness [7–13]. However, the computational 
models tend to become much more expensive with the 

incorporation of additional risk factors. Therefore, there 
is a need to develop an efficient algorithmic procedure 
for re-calibrating expensive computational models.

This paper used the predictive modeling of sex-specific 
colorectal neoplasia development in a proof-of-the-con-
cept study. We adapted two independently developed and 
well-established CRC disease models, both of which are 
individual-based state-transition models [15, 22]. Due to 
CRC-related behavior changes and clinical interventions 
(e.g., polypectomy) available, real-world patient medical 
records cannot provide sufficient age- and sex-specific 
incidence information about colorectal neoplasia devel-
opment under natural circumstances. In response, we 
resorted to model calibration against sex-specific preva-
lence data on key CRC preclinical stages. Note that there 
are multi-year population surveillance studies that collect 
colonoscopy images and derive sex-specific prevalence 
on the preclinical natural history, e.g., Brenner et al. [14].

Only a handful of papers in the CRC computational 
modeling literature have reported their model calibra-
tion work in detail. Roberts et al. [15] developed the V/
NCS model, a discrete-event simulation model used in 
the current study, on a self-created object-oriented sim-
ulation platform, with a focus on the modeling of CRC 
events and the event relationships. The authors reported 
in their prior manuscripts (e.g., [16–18]) a series of model 
calibration activities through heuristics against epide-
miological adenoma prevalence and CRC incidence data. 
Erenay et  al. [19] developed an individual-based event-
driven state transition simulation that mimics the natural 
history of metachronous colorectal cancer (MCRC) for a 
5-year period following the treatment of primary CRC. 
The model comprises five states, namely polyp-free, 
polyp, MCRC, metastatic-MCRC, and MCRC-related 
death. The authors estimated six unknown parameters 
of the natural history of MCRC through calibrating the 
simulation mentioned above against two calibration tar-
gets, namely 5-year MCRC incidence and mortality rate, 
with the principle of least sum-of-squared error. For the 
calibration, the authors simply ran the simulation model 
exhaustively with every possible combination of the 
unknown parameters and selected those with simulated 
outputs matching the benchmark statistics of a well-
defined patient cohort, derived from the SEER database. 
Rose et al. [20] proposed an individually-based state tran-
sition model consisting of two interacting submodels, 
namely a continuous-time disease-progression submodel 
and a discrete-time Markov submodel for surveillance 
and retreatment. The key components for modeling the 
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disease progression are recurring transitions to unresect-
ability and symptom onset, either of which is determined 
by a transition timing and modeled with an exponen-
tial distribution. The author estimated seven unknown 
parameters of disease progression through calibrating 
the simulation mentioned above against seven observ-
able outcomes, reported in Pietra et al. [21]. The authors 
developed a calibration procedure that consists of several 
rounds of calibration with increasingly narrowed can-
didate parameter sets and against a series of calibration 
targets. Prakash et al. [22] developed the CMOST model, 
an open-source framework for the microsimulation of 
CRC screening strategies also used in our study, facilitat-
ing automated parameter calibration against epidemio-
logical adenoma prevalence and CRC incidence data. The 
authors used a heuristic greedy algorithm followed by 
Nelder-Mead optimization [23] to minimize the squared 
error between the benchmark values and the correspond-
ing model predictions.

Sai et al. [24] investigated the efficiency of a Gaussian 
Processes-based surrogate modeling approach to approx-
imate the CMOST model to alleviate the computational 
burden in calibrating the CMOST model. Compared to 
above papers in the literature, we studied a different ver-
sion of the calibration problem, for which we have the 
option of using a baseline parameter design from the lit-
erature and/or previous studies to start the model param-
eter adjustments. In addition, we conducted comparative 
studies on the effect of global search as the predecessor 
of the Nelder-Mead optimization and compared different 
settings of Nelder-Mead to further improve the calibra-
tion efficiency.

It is evident that sex plays an essential role in CRC inci-
dence and progression, in addition to a wide range of risk 
factors, including family history [25] and lifestyle-related 
ones such as smoking [26], red-meat diet [27], among 
other factors [28–30]. More men than women are diag-
nosed with CRC. While men and women have similar 
genetic predispositions, there are substantial differences 
in CRC incidence between the two sexes [31, 32]. In addi-
tion, several studies suggest that females diagnosed with 
CRC have significantly longer survival than males [33, 
34]. Further, men have a higher prevalence of adenomas 
than women. For example, Ferlitsch et  al. [35] reported 
that adenomas prevalence was higher among men than 
women by an absolute difference of 10%, studying more 
than 44 thousand participants in a national screening 
colonoscopy program in Austria. In a study of more than 
50,000 Polish participants, Regula et  al. [36] reported 
that advanced precancerous polyp was found with a sig-
nificantly higher percentage in men than women. Bren-
ner et  al. [14] reported that adenoma prevalence (both 
advanced and non-advanced) was substantially higher 

in men than in women for different age groups, from 
an observational study of more than 3.6 million Ger-
man participants. Different from the above observational 
studies, we applied computational and predictive mod-
eling to differentiate colorectal neoplasia development 
between the two sexes and over age groups.

From the above literature review, we concluded that 
existing studies have not addressed several challenges 
in modeling and model calibration of CRC natural his-
tory and beyond. The main contribution of the current 
study is the development of an efficient re-calibration 
procedure for expensive stochastic simulations of dis-
ease natural history. We believe our method works well 
on all kinds of individual-based state-transition disease 
models with a high-dimensional model parameter space, 
unbounded value range on each parameter, some prior 
knowledge on the association among different param-
eters, and expensive computational simulation run. 
Further, through our proof-of-the-concept study, we 
quantified the age-dependent sex differences in colorec-
tal neoplasia development.

Methods
We proposed a two-phase procedure to re-calibrate 
computationally expensive disease simulations whose 
features have been described previously. In phase 1, we 
performed global sampling to identify reasonably good 
candidate parameter designs. In phase 2, we performed 
local search to further improve model fitting. To effi-
ciently adapt the local search idea, we compared two var-
iants of the Nelder-Mead algorithm implementation (i.e., 
exploring subsets of parameter space dimensions sequen-
tially vs. exploring the entire parameter space concur-
rently). We termed the two variants axial-based search 
and global search, respectively.

To investigate the procedure efficiency, we adapted two 
individual-based state-transition CRC natural history 
models as test cases. We set a weighted-sum-squared-
error on the prevalence of three preclinical disease states 
as the loss function to minimize and used benchmark 
statistics extracted from a German cohort study by Bren-
ner et al. [14]. Brenner and colleagues analyzed national 
screening colonoscopy registry data from nearly 3.6 
million German participants, qualifying the prevalence 
of each lesion in 5-year age groups. As a byproduct, we 
quantified the sex-specific colorectal neoplasia develop-
ment in different age groups.

Overview of the disease models
CRC begins with colorectal precancerous polyps, either 
adenomas or sessile serrated lesions. For ease of termi-
nology, we shall refer to any precancerous polyp as an 
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adenoma. After the occurrence of an adenoma, it gradu-
ally transitions to next stages, depending on the pathway 
to cancer it follows. Our study utilized the CMOST and 
V/NCS models, two well-known individual-based state-
transition models of CRC. Both models share common-
alties at the conceptual level in terms of the neoplasia 
development process. Both models, in principle, can sim-
ulate adenoma occurrence and then sequentially going 
through non-advanced stage, advanced stage, and even-
tually becoming invasive cancer prior to clinical stages, 
without reversing events. Nevertheless, it is worth point-
ing out that both models are expansive at investigating 
the efficacy of screening methods and strategies, which 
requires to delay or even reverse of the adenoma progres-
sion due to, for example, polypectomy.

The two models share key assumptions regarding ade-
noma occurrence and growth. Most relevant to our work 
is that occurrence and growth of each adenoma are inde-
pendent of other adenomas. Nevertheless, the two mod-
els differ in the quantification of the state transitions. The 
CMOST model incorporates age-dependent adenoma 
occurrence and adenoma-specific growth rates to specify 
the state transition probabilities for each individual ade-
noma along the adenoma-carcinoma sequence. All the 
transitions are modeled instantaneously in time incre-
ments of 3  months. While the V/NCS model does not 
incorporate age-dependency in modeling the adenoma 
occurrence and growth, it can differentiate individuals’ 
neoplasia development by several known risk factors, 
including age, sex, race, and family history. In addition, 
V/NCS models the growth of each adenoma with its 
dwell duration (i.e., length of time spent) at a state. Thus, 
the transition events are scheduled in reference to a sim-
ulation clock and thus they take place according to the 
specified timing in the simulation. In the V/NCS model, 
we also associated the simulated cohort with year-spe-
cific mortality risks. For more information, please see 
Additional file 1: Appendix A.

In summary, there are 19 unknown parameters in the 
CMOST model and 8 unknown parameters in the V/
NCS model. For lists of the parameters, please see Addi-
tional file 2: Appendix B.

Simulator adaptation for the calibration
With either model platform, one can input a set of char-
acteristics necessary to define a cohort of some arbitrary 
size, e.g., one that matches the U.S. population. The simu-
lation can then trace colorectal neoplasia development of 
each individual in the cohort. Note that as an addition in 
the V/NCS model, the start and end years of the simu-
lation can be specified to match with the reported year-
specific US census. One beneficial feature of both model 
platforms is that they can generate a trace statement that 
summarizes a sequence of periodic transitions directly 
(for the CMOST model) and time-stamped events (for 
the V/NCS model). One can use the trace statement to 
calculate the state-specific prevalence values (popula-
tion distribution among the three disease stages – NON, 
ADV, and CRC) and thus capture the neoplasia devel-
opment. More specifically, we developed a procedure to 
extract a state transition chart for each simulated indi-
vidual. By following each individual through the simula-
tion duration, one can characterize her disease stage at 
any specific point. For each of the five age groups (54–59, 
60–64, 65–69, 70–74 and 75–79), we counted its popula-
tion at the end of the simulation horizon and calculated 
the portion of the corresponding population subgroup in 
each of the three states as the corresponding prevalence 
value. The simulation adaptation is summarized as Fig. 1.

In the CMOST model, state NOV represents the sub-
population at early adenoma stages I-IV; state ADV rep-
resents the subpopulation at advanced adenoma stages 
V, VII; and state CRC represents the subpopulation with 
preclinical and clinical cancer. In the V/NCS model, state 
NOV includes individuals who have had at least one pro-
gressive or non-progressive non-advanced adenoma, or 
at least one adenoma that immediately progresses to can-
cer; state ADV includes those who have had at least one 
advanced adenoma but none has become cancerous; and 
state CRC includes those who have had cancerous adeno-
mas or have developed CRC.

A two‑phase calibration procedure
We proposed a two-phase approach to the model 
calibration. In phase 1 (a preliminary phase), we per-
formed global searches in an ad-hoc manner. When the 

Fig. 1  Illustration of simulator adaptation
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computational experiment is expensive, we elected to 
cluster the parameters based on their physical meanings 
and performed the searches progressively against aggre-
gate calibration targets over age groups. The purpose was 
to identify a promising parameter design as the start-
ing point for phase 2. In phase 2, we viewed the model 
calibration task as a nonlinear optimization problem. We 
performed the Nelder-Mead algorithm (simplex search 
algorithm), one of the best-known algorithms for multi-
dimensional unconstrained optimization without deriva-
tives. Given the high-dimensionality of the “black-box” 
optimization problem, we explored two variants of the 
search procedure, namely: (1) one-shot globally over the 
entire model parameter space, and (2) sequentially based 
on interconnections in subsets of model parameters. We 
provide more details in the following.

Phase 1 (Preliminary phase): identify promising initial 
search points for Phase 2
For the CMOST model, since the computational burden 
is much less, we can directly identify the promising val-
ues for all 19 input model parameters. For each param-
eter with baseline value vi , we extended it to a range with 
± 20%, i.e., [0.8vi, 1.2vi] . We applied Latin Hypercube 
Sampling to select 100 designs randomly from these 
ranges. Then we ran CMOST with the 100 designs and 
returned the first design satisfying the criterion that for 
the three system responses, namely the relative errors are 
all within 10% to the calibration targets. This design will 
be the initial point for Phase 2.

For the V/NCS model, since the computational bur-
den is much more, we took caution and consulted the 
domain expert to finalize each search range, which is 
also centered around the baseline value. Through our 
preliminary simulation analysis, we observed that in 
each pair of δ and γ, the prevalence values are a lot more 
sensitive to changes in δ than in γ. Thus, we set a larger 
range for each δ than the paired γ. We divided the search 
subspace of (δ0, γ0) with a five-by-five grid and divided 
each of δ1, γ1, δ2, γ2, δ3, γ3 with ten even intervals. We 
followed the adenoma-carcinoma sequence to calibrate 
the model parameters progressively, i.e., first adenoma 
progression propensity, then transition from NON to 
ADV, and finally transition from ADV to CRC. In the 
first step, we performed a grid search on (δ0, γ0) and 
fixed the other parameter values as one should first care-
fully emulate the adenoma progression risk distribution 
of the simulated cohort. Our calibration targets are the 
three prevalence values for each age group. At the end of 
this step, we identified promising (δ0, γ0) values such that 
the predicted prevalence values are reasonably close to 
the observations (less than 15% relative error). Next, we 
fixed (δ0, γ0) values to the identified ones and performed 

orthogonal sampling in the subspace formed by (δ1, γ1). 
The use of a sampling-based search as opposed to a grid 
search is because multiple promising (δ0, γ0) values were 
identified and thus using all of them for ensuing search 
would be computationally expensive. Our calibration 
targets are aggregate prevalence values of NON and 
ADV over age groups. We then followed the same idea 
to search in the subspace formed by (δ2, γ2) and used 
the same calibration targets. We perturbed (δ1, γ1) first 
because there were many more transitions from P_NON 
to ADV than from NP_NON to ADV. At the end of this 
step, we identified promising (δ1, γ1) and (δ2, γ2) designs 
such that both predicted prevalence values (i.e., at states 
NON and ADV) were further closer to the observations 
(less than 10% relative error). Finally, we fixed (δ0, γ0), 
(δ1, γ1), (δ2, γ2) to be the identified values and performed 
orthogonal sampling in the subspace formed by (δ3, γ3). 
Our calibration targets are aggregate prevalence values 
of NON, ADV, and CRC over age groups. At the end of 
this step, we identified promising (δ3, γ3) designs such 
that all three predicted prevalence values fall in a close 
range of the target values (less than 10% relative error 
on NON, less than 10% relative error on ADV, and less 
than 5% relative error on CRC). To facilitate the calibra-
tion, we used a built-in interactive visual tool to graph the 
corresponding Johnson SB distributions. We discarded 
some of the parameter designs according to the domain 
expert’s suggestion.

Phase 2: Local‑search based nonlinear optimization
In this phase, we employed the Nelder-Mead algorithm 
for gradient-free nonlinear optimization to further 
improve the model fitting. We set the parameter design 
identified in phase 1 as the starting point for the Nelder-
Mead. We used the weighted sum squared of the rela-
tive errors on the three aggregate prevalence values as 
a similarity measure and the objective function of the 
unconstrained nonlinear optimization problem (i.e., loss 
function of the calibration variables). Through consult-
ing with our domain expert, we assigned a larger weight 
to CRC similarities than ADV similarities and NON 
similarities.

Considering that it takes a long time to evaluate just 
one parameter design, we designed two search paths that 
differ by the search space chosen along the solution pro-
cess. For V/NCS, we considered the entire 8-dimensional 
search space the solution. We termed this strategy the 
“full-space local search strategy.” As an alternative option, 
we considered four subspaces progressively with an 
order identical to that in phase 1. That is, the responses 
are more sensitive to (δ0, γ0), than (δ1, γ1), than (δ2, γ2), 
and finally (δ3, γ3). When performing Nelder-Mead in 
one subspace, others were fixed at the initial values. We 



Page 6 of 9Vivas‑Valencia et al. BMC Medical Informatics and Decision Making          (2022) 22:244 

termed this strategy the “sequential local search strategy.” 
For CMOST, we grouped the 19 parameters in 3 groups, 
namely “adenoma initiation stage”, “early adenoma stage” 
and “advanced adenoma stage”. We then assigned each 
parameter to the corresponding group. We followed a 
similar idea as above to sequentially calibrate parameters 
from “initiation” to “early” and then to “advanced” stage.

Results
We set the simulated cohort in both the CMOST and the 
V/NCS models to be a population of 1000 white males or 
females with no family history who were born in 1949. 
In this way, we could utilize additional parameters previ-
ously made available in both models. We first examined 
the efficiency of our two-phase calibration approach to 
the relatively inexpensive model CMOST, in comparison 
with a straightforward execution of the full-space Nelder-
Mead algorithm. To use the Nelder-Mead algorithm, we 
simply called the MatLab function (fminsearch) and ran 
it to termination of the MatLab default setting and under 
some predefined Search Effort for the maximum number 
of function evaluations. Comparative results on CMOST 
showing loss function values with mean (standard devia-
tion) over 20 runs are reported in Table 1.

The comparison between the straightforward approach 
and the two-phase approach can reveal the effect of the 
proposed preliminary phase. In the experiment, phase 1 
took modest function evaluations to reach a promising 
initial point, which significantly helped the local search 
in phase 2 achieve much faster convergence. As shown 
in Fig.  2, when both applying the two-phase approach, 
the sequential search strategy with Nelder-Mead in 
phase 2 could outperform the corresponding full-space 
search strategy when search effort was limited (i.e., 100 
evaluations). Thus, the sequential strategy could further 
improve the convergence effectively under limited search 
effort allowed, as long as the parameter subspaces and 
their relative precedence can be reasonably specified. 
Moreover, the results over 20 runs showed that all three 
algorithms behave reasonably robust in calibration of 
CMOST, a stochastic simulation. Though the two-phase 
full-space search strategy could yield a better goodness-
of-fit when the search effort is relatively significant (i.e. 
a total of 500 function evaluations allowed), we specu-
lated that its sequential search counterpart would be 
more efficient when dealing with models that are com-
plex and computationally expensive since the CMOST 
model takes about 25 s to finish one function evaluation 

Table 1  Loss function values for calibration strategy comparison with CMOST

For two-phase approaches under a search effort of 100 function evaluations, we excluded those evaluations that used up all the search effort just in phase 1

Search effort 100 200 500

Straightforward full-space 0.05993 (0.00405) 0.00219 (0.00023) 0.00032 (0.00032)

Two-phase full-space 0.01670 (0.00112) 0.02319 (0.00243) 0.00592 (0.00398)

Two-phase sequential 0.01048 (0.00103) 0.03366 (0.00531) 0.01368 (0.01148)

Fig. 2  Convergence profiles for the 3 algorithms over 20 runs. a 2-Phase sequential method with 100 search effort, b 2-phase sequential method 
with 200 search effort
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on a personal laptop (or close to 1 h for 100 evaluations), 
while the V/NCS model can easily take over 30  min to 
run just one evaluation. We thus performed similar cali-
bration exercises on the V/NCS model.

For the V/NCS model, a more computationally expen-
sive model, we report comparative results in Table  2. 
Overall, our two-phase approach again showed a better 
goodness-of-fit than the straightforward Nelder-Mead 
implementation. For example, for a male cohort, both 
with the sequential search strategy for Nelder-Mead in 
phase 2, the two-phase approach yielded a loss function 
value of 0.0025 whereas the straightforward calibra-
tion with Nelder-Mead yielded a loss function value of 
0.0251 (ten-fold reduction). The same observation was 
made when both applied full-space search. For female 
cohort, the improvement was much more noticeable. 
Further, when comparing the two local search strate-
gies, the full-space search strategy yielded a lower loss 
function value than the sequential search strategy (male, 
0.0025 vs. 0.0056; female, 0.0005 vs. 0.0008). Additionally, 
these preliminary results suggested that the two-phase 
approach was more effective in calibrating the V/NCS 
model for a female cohort than a male cohort.

With the above results, we concluded that our two-
phase approach with the sequential local search strategy 
is effective. We next specified the number of simulation 
replications to be 10 to ensure the statistical confidence 
on stochastic dominance for each comparison. We col-
lected prevalence statistics for five different age groups 
over the range of 55–79. Table  3 shows the percentage 
of people with advanced adenoma for men and women 

within each of the five age groups. Our results show that 
the model with calibrated variables underestimated male 
advanced adenoma prevalence and overestimated female 
advanced adenoma prevalence for younger age groups, 
whereas it overestimated male advanced adenoma prev-
alence and underestimated female advanced adenoma 
prevalence. On the other hand, the comparative results 
on the prevalence of adenomas having become can-
cerous were just the opposite except for the age group 
55–59  years. Overall, the results supported our calibra-
tion of the V/NCS simulation for sex-specific colorectal 
neoplasia development modeling.

Discussions and conclusion
In this paper, we introduced an efficient two-phase recal-
ibration approach to estimate parameters in computa-
tionally expensive disease natural history models with 
prior point estimates on the model parameters. As a use 
case, we took into consideration the adenoma-carcinoma 
sequence and calibrated large sets of unknown param-
eters in two CRC natural history models. We quantified 
the sex- and age-specific adenoma-carcinoma sequence 
based on observations from a large cohort study. We 
hope to showcase an essential step in assessing the pop-
ulation-level cost and effectiveness of CRC screening 
methods and strategies for a population whose preva-
lence data were recently acquired.

Our study has the following limitations. In response 
to some of the limitations, we point out future research 
directions. First, we specified the calibration procedure 
subjectively at several places, e.g., the stopping crite-
ria for phase 1. Alternatively, we will explore the use of 
Bayesian calibration. Second, for the weighted sum in the 
loss function, we resorted to one domain expert, which 
may not have the buy-in from others. In addition, there 
was no real understanding on how the specification of 
weighting coefficients in the loss function affects the cali-
bration results. We will explore the use of multi-objective 
optimization methods to alleviate the subjectivity con-
cern. Third, using Nelder-Mead in phase 2 could well 
result in a local minimum. We will investigate the use 
of genetic algorithms such as NSGA-II, which in fact is 

Table 2  Loss function values for calibration strategy comparison 
with V/NCS

Male Female

Sequential Full-space Sequential Full-space

Direct local search 0.0251 0.0465 0.0230 0.2969

Two-phase 
approach

0.0025 0.0056 0.0005 0.0008

Table 3  Age-specific prevalence for advanced adenoma and cancerous neoplasia

Percentage (%) people with advanced adenoma Percentage (%) people with cancerous neoplasia

Male Target Female Target Male Target Female Target

55–59 6.25 6.6 3.85 3.50 0.73 0.60 0.27 0.30

60–64 7.63 8.2 4.98 4.50 0.82 1.00 0.56 0.50

65–69 10.41 9.2 5.38 5.30 0.85 1.30 1.03 0.70

70–74 11.31 9.9 5.76 6.40 2.20 1.90 0.92 1.10

75–79 13.17 10.4 6.71 6.80 2.62 2.50 1.44 1.60



Page 8 of 9Vivas‑Valencia et al. BMC Medical Informatics and Decision Making          (2022) 22:244 

intended to deal with optimization problems with multi-
ple objectives. Finally, while we proposed to perform cali-
bration on subsets of parameters sequentially and made 
a solid effort to identify the relative sensitivity, this pro-
cedure in phase 1 for the V/NCS model was by no means 
of scientific rigor. In addition, the progressive calibration 
procedure in phase 1 could have brought more valu-
able insights into efficient calibration for tailored natural 
history models, if not for limited access to the V/NCS 
model. We were not able to modify the source code of the 
simulator.
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